不对称氢转移反应中乳液反应体系的研究及含氟枝状分子负载催化剂的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称氢转移反应作为一种重要的手性合成方法已经被广泛的应用到手性仲醇的制备当中。在近年来不对称氢转移反应的研究中,取得最重大的进展当属由Noyori等人最先报道的手性的单磺酰化二胺钌(Ⅱ)催化剂在不对称还原潜手性酮类化合物中的研究与应用。这一催化体系对于合成许多具有生物活性的化合物具有极为重要的意义。近年来,随着人类对环保意识的加深,化学家们将更多的目光集中到水相不对称氢转移反应上。但是与传统的有机溶剂相比,水相氢转移反应在底物的适用范围与对映选择性上都存在着一定的不足。特别是对于一些水溶性较差的的酮类底物,水相氢转移反应往往无法达到令人满意的结果。此外,由于催化剂无法与产物有效的分离,重金属残留所造成的污染一直是不对称氢转移反应发展中的难以克服的障碍。因此寻找低流失并可重复使用的金属配合物催化剂,对于不对称氢转移反应既具有重要的理论研究意义同时又具有工业应用的价值。
     本论文将介绍两方面的工作:1.乳液体系下不对称氢转移反应的研究,以及乳液反应体系在磷酸西他列汀Sitagliptin不对称合成中的应用;2.含氟枝状分子负载的手性的单磺酰化二胺钌(Ⅱ)催化剂在水相不对称氢转移反应中的应用。
     在本论文第一部分工作中,我们发现乳液体系可以显著提高不对称氢转移反应的反应速度,并有效提高反应的对映选择性。许多无法在传统水相体系中合成的手性仲醇类化合物可以成功地通过这一新的反应体系合成,获得令人满意的反应收率,反应对于部分底物的对映选择性最高可达99%。此外,我们还将该反应体系成功地用于磷酸西他列汀Sitagliptin关键中间体的不对称合成中。
     本论文第二部分工作中,我们从3,5-二羟基苯甲酸、五氟溴苯以及羟基取代的手性单磺酰化二胺出发,经过九步合成,最终得到我们所需的含氟枝状分子负载的手性单磺酰化二胺配体。这一配体与金属钌配合所形成的负载催化剂在水相不对称氢转移反应中表现出令人满意的的催化效率与对映选择性。在催化剂重复利用效率的研究中,我们得到了极为出色的结果。该催化剂在不对称还原苯乙酮的反应中可以重复使用26次仍然保持较高的催化效率与对映选择性。在最初的九次重复使用中,反应时间无须延长,催化效率基本没有损失。即使在第24次重复使用时,我们依然可以在18个小时的反应时间内以93%的收率,91%的ee获得相应产物。经ICP检测,产物基本无重金属的残留。
Asymmetric transfer hydrogenation (ATH) has been used widely as an efficient and practical method for preparation of optically pure secondary alcohols. Since the first introduction by Noyori and co-workers in the 1990's, asymmetric transfer hydrogenation with (1S,2S)- or (1R,2R)-N-(p-tolylsulfonyl)-1,2-diphenyl-ethylenediamine (TsDPEN) in combination with [RuCl2(p-cymene)]2 as the catalyst has witnessed great success in enantioselective reduction of prochiral ketones. The protocol constitutes an efficient and practical method for preparation of optically pure secondary alcohols that belongs to a large family of key intermediates for the enantioselective synthesis of bioactive products. Recently, the interest in developing asymmetric transfer hydrogenation in aqueous medium has been significantly surged. The catalytic organic transformation using water as medium is particularly desirable because of the environmental concerns.
     Although asymmetric transfer hydrogenation in water has been proved to work well for an array of ketones, there is still much room for improvement both in substrate scope and enantioselectivity that can match or outperform the original organic solvent version. In many cases, inferior results were always achieved when performing the asymmetric transfer hydrogenation on water-insoluble ketones. Another limitation of the methodology in drug synthesis is that the Ru-TsDPEN catalyst cannot be easily separated from products and metals (Ru) would be leached in the products. The search for recyclable catalysts for asymmetric transfer hydrogenation with low leaching level of metals has been constantly recognized as one of the prime concerns from both academic and industrial perspectives.
     In the present dissertation, the research work has been in connection with the following two themes.1. Highly efficient asymmetric transfer hydrogenation of ketones in emulsions and application in the enantioselective synthesis of Sitagliptin. 2. Fluorinated dendritic catalysts for asymmetric transfer hydrogenation in water.
     In the first part, we disclosed that the readily formed emulsion system is an ideal medium for performing the asymmetric transfer hydrogenation by HCO2Na in water, which provides greatly enhanced activity and enantioselectivities.
     Many significant chiral secondary alcohols become easily accessible with high conversion and optical purity via asymmetric transfer hydrogenation of prochird ketones in emulsions. Solid ketones that worked poorly in liquid medium gave much better results, demonstrating the benefits by using this new medium. This new system was also used in the asymmetric synthesis of Sitagliptin.
     In the second part, we report a highly efficient fluorinated dendritic catalyst for the asymmetric transfer hydrogenation of prochiral ketones in aqueous medium. This new catalyst has exhibited high catalytic activities, excellent enantioselectivities, and unprecedented recycling ability up to twenty-six times.
     The required fluorinated dendritic chiral ligand 61 was prepared with a nine-step protocol starting from 3,5-dihydroxybenzoic acid, bromopentafluorobenzene and p-hydroxyphenylsulfonamido modified chiral ligand.
     One of the most important objectives of designing the fluorinated dendritic catalyst was to facilitate catalyst/product separation via the solvent precipitation method. To our delight, the recycling use of the fluorinated dendritic catalyst was quite successful. The catalyst can be reused more than twenty-six times with no significant decline both in selectivity and activity for asymmetric transfer hydrogenation of acetophenone. Toward the beginning of the recycle (runs 1th-9th), excellent conversion and enantioselectivity were obtained with no extension of the reaction time. Even in the 24th run, the reaction also afforded a conversion of 93%and an ee of 91% in 18 h. ICP analysis showed that nearly no ruthenium had leached into the organic phase (hexane). And the ee's remained almost unchanged until the 26th run (93% conversion and 88% ee, in 24 h).
引文
[1]Sheldon, R. A. Chirotechnology:Industial Synthesis of Optically Active Compounds [M]. NewYork, Marcel dekker, Inc,1993.
    [2]戴立信,陆熙炎,朱光美.手性技术的兴起[J].化学学报,1995,6:15-22.
    [3]蒋耀忠,周向葛,胡文浩.手性催化与不对称反应[J].化学研究与应用,1993,5:1-11.
    [4]Blaschke, G.; Kraft, H. P.; Markgraf, H. Chromatographische Racemattrennung des Thalidomids und anderer Glutarmid-Derivate [J]. Chem. Ber.1980,113,2318-2322.
    [5]Parshall, G. W.; Nugent, W. A. Making Pharmaceuticals via Homogeneous Catalysis [J]. Chentech,1988,18,184-190.
    [6]Konche, B.; Blasch, G. Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography [J]. J. Chromatogr. A 1994,666,235-240.
    [7]林国强,陈耀祖等.手性合成——不对称反应及其应用[M].北京,科学出版社,2001,5.
    [8]Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts [J]. Chem. Rev.1992,92, 1051-1069.
    [9]Langer, T.; Helmchen, G. Highly efficient new catalysts for enantioselective transfer hydrogenation of ketones [J]. Tetrahedron Lett.1996,37,1381-1384.
    [10]Gamez, P.; Dunjic, B.; Lemaire, M. Diureas as Ligands in Asymmetric Reduction of Ketones [J]. J. Org. Chem.1996,61,5196-5197.
    [11]Krasik, P.; Alper, H. Schiff bases as added chiral ligands for the [Ru(η6-C6H6)Cl2]2 catalysed hydrogen-transfer reduction of ketones with 2-propanol [J]. Tetrahedron 1994, 50,4347-4354.
    [12]Schwick, L.; Irelan, T.; Puntener, K.; Knochel, P. New C2-symmetrical ferrocenyl diamines as ligands for ruthenium catalyzed transfer hydrogenation [J]. Tetrahedron:Asymmetry 1998,9,1143-1163.
    [13]Jiang, Q.; Vanplew, D.; Murtuza, S.; Zhang, X. A convenient synthesis of optically active phenylglycine [J]. Tetrahedron Lett.1996,37,397-398.
    [14]Gao, J. X.; Ikariya, T.; Noyori, R. A Ruthenium(Ⅱ) Complex with a C2-Symmetric Diphosphine/Diamine Tetradentate Ligand for Asymmetric Transfer Hydrogenation of Aromatic Ketones [J]. Organmetallics 1996,15,1087-1089.
    [15]Evans, D. A.; Nelson, S. G.; Gagna, M. R.; Muci, A. R. A chiral samarium-based catalyst for the asymmetric Meerwein-Ponndorf-Verley reduction [J]. J. Am. Chem. Soc.1993,115,9800-9801.
    [16](a) Murata, K.; Ikariya, T.; Noyori, R. New Chiral Rhodium and Iridium Complexes with Chiral Diamine Ligands for Asymmetric Transfer Hydrogenation of Aromatic Ketones [J]. J. Org. Chem.1999,64,2186-2187. (b) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of α,β-Acetylenic Ketones [J]. J. Am. Chem. Soc.1997,119,8738-8739. (c) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. The Catalyst Precursor, Catalyst, and Intermediate in the RuⅡ-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones [J]. Angew. Chem., Int. Ed. Engl.1997,36,285-288. (d) Noyori, R.; Hashiguchi, S. Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes [J]. Acc. Chem. Res.1997,30,97-102.
    [17]Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by Chiral Ruthenium(H) Complexes [J]. J. Am. Chem. Soc.,1995,117,7562-7563.
    [18]Fujii, A.; Inoue, S.; Hashiguchi, S.; Uemastu, N.; Ikariya, T.; Noyori, R. Ruthenium(Ⅱ)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid-Triethylamine Mixture [J]. J. Am. Chem. Soc.,1996,118,2521-2522.
    [19]Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya T.; Noyori, R. Asymmetric Transfer Hydrogenation of Imines [J]. J. Am. Chem. Soc.,1996,118,4916-4917.
    [20]Murata, K.; Ikariya, T. New Chiral Rhodium and Iridium Complexes with Chiral Diamine Ligands for Asymmetric Transfer Hydrogenation of Aromatic Ketones [J]. J. Org. Chem.,1999,64,2186-2187.
    [21]Mao, J.; Baker, D. C. A Chiral Rhodium Complex for Rapid Asymmetric Transfer Hydrogenation oflmines with High Enantioselectivity [J]. Org. Lett.,1999,1,841-843.
    [22]Hannedouche, J.; Clarkson, G. J.; Wills, M. A New Class of "Tethered" Ruthenium(Ⅱ) Catalyst for Asymmetric Transfer Hydrogenation Reactions [J]. J. Am. Chem. Soc., 2004,126,986-987.
    [23]Hayes, A.; Clarkson, G.; Wills, M. The importance of 1,2-anti-disubstitution in monotosylated diamine ligands for ruthenium(Ⅱ)-catalysed asymmetric transferhydrogenation [J]. Tetrahedron:Asymmetry,2004,15,2079-2084.
    [24]Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. A Class of Ruthenium(Ⅱ) Catalyst for Asymmetric Transfer Hydrogenations of Ketones [J]. J. Am. Chem. Soc., 2005,127,7318-7319.
    [25]Wu, X.; Xiao, J. Aqueous-phase asymmetric transfer hydrogenation of ketones-a greener approach to chiral alcohols [J]. Chem. Commun.,2007,2449-2466.
    [26]Pratt, L. R. Introduction:Water [J]. Chem. Rev.,2002,102,2625-2626.
    [27]Lindstrom, U. M. Stereoselective Organic Reactions in Water [J]. Chem. Rev.,2002, 102,2751-2772.
    [28]Kobayashi, S. Editorial Commentary:Water is Beautiful [J]. Adv. Synth. Catal.,2002, 344,219-220.
    [29]Bubert, C.; Blacker, J.; Brown, S. M.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Thorpea, T.; Williams, J. M. J. Synthesis of water-soluble aminosulfonamide ligands and their application in enantioselective transfer hydrogenation [J]. Tetrahedron Letters,2001, 42,4037-4039.
    [30]Thorpe, T.; Blacker, J.; Brown, S. M.; Bubert, C.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Williams, J. M. J. Efficient rhodium and iridium-catalysed asymmetric transfer hydrogenation using water-soluble aminosulfonamide ligands [J]. Tetrahedron Letters, 2001,42,4041-4043.
    [31]Rhyoo, H. Y.; Park, H.; Suh, W. H.; Chung, Y. K. Use of surfactants in water-soluble ruthenium(Ⅱ) complex-catalyzed asymmetric hydrogen-transfer reduction of aromatic ketones [J]. Tetrahedron Lett.,2002,43,269-272.
    [32]Canivet, J.; Suss-Fink, G. Water-soluble arene ruthenium catalysts containing sulfonated diamine ligands for asymmetric transfer hydrogenation of a-aryl ketones and imines in aqueous solution [J]. Green Chem.,2007,9,391-397.
    [33]Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J. Asymmetric Transfer Hydrogenation of Prochiral Ketones in Aqueous Media with New Water-Soluble Chiral Vicinal Diamine as Ligand [J]. Org. Lett.,2003,5,2103-2106.
    [34]Wu, J.; Wang, F.; Ma, Y.; Cui, X.; Cun, L.; Zhu, J.; Deng, J.; Yu, B. Asymmetric transfer hydrogenation of imines and iminiums catalyzed by a water-soluble catalyst in water [J]. Chem. Commun.,2006,1766-1768.
    [35]Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.; Zhu, J.; Deng, J. Asymmetric transfer hydrogenation of ketones and imines with novel water-soluble chiral diamine as ligand in neat water [J]. Green Chem.,2007,9,23-25
    [36]Sinou, D. Asymmetric Organometallic-Catalyzed Reactions in Aqueous Media [J]. Adv. Synth. Catal.2002,344,221.
    [37]Dwars, T.; Oehme, G. Complex-Catalyzed Hydrogenation Reactions in Aqueous Media [J]. Adv. Synth. Catal.2002,344,239.
    [38]Joo, F.; Katho, A. Recent developments in aqueous organometallic chemistry and catalysis [J]. J. Mol. Catal. A:Chem.1997,116,3-26.
    [39]Herrmann, W. A.; Kohlpaintner, C. W. Water-Soluble Ligands, Metal Complexes, and Catalysts:Synergism of Homogeneous and Heterogeneous Catalysis [J]. Angew. Chem., Int. Ed. Engl.1993,32,1524-1544.
    [40]Cortez, N. A.; Aguirre, G.; Parra-Hake, M.; Somanathan, R. Ruthenium(Ⅱ) and rhodium(III) catalyzed asymmetric transfer hydrogenation (ATH) of acetophenone in isopropanol and in aqueous sodium formate using new chiral substituted aromatic monosulfonamide ligands derived from (1R,2R)-diaminocyclohexane [J]. Tetrahedron:Asymmetry,2008,19,1304-1309.
    [41]Wu, X.; Li, X.; Hems, W.; King, F.; Xiao, J. Accelerated asymmetric transfer hydrogenation of aromatic ketones in water [J]. Org. Biomol. Chem.,2004,2, 1818-1821.
    [42]Wu, X.; Vinci, D.; Ikariya, T.; Xiao, J. A remarkably effective catalyst for the asymmetric transfer hydrogenation of aromatic ketones in water and air [J]. Chem. Commun.,2005,4447-4449.
    [43]Cortez, N. A.; Aguirre, G.; Parra-Hake, M.; Somanathan, R. Water-soluble chiral monosulfonamide-cyclohexane-1,2-diamine-RhCp* complex and its application in the asymmetric transfer hydrogenation (ATH) of ketones [J]. Tetrahedron Letters, 2007,48,4335-4338.
    [44]Matharu, D. S.; Morris, D. J.; Clarkson, G. J.; Wills, M. An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine [J]. Chem. Commun.,2006,3232-3234.
    [45]Wu, X.; Li, X.; King, F.; Xiao, J. Insight into and Practical Application of pH Controlled Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water [J]. Angew. Chem. Int. Ed.,2005,44,3407-3411.
    [46]Wang, F.; Liu, H.; Cun, L.; Zhu, J.; Deng, J.; Jiang, Y. Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Hydrophobic Metal-Amido Complexes in Aqueous Micelles and Vesicles [J]. J. Org. Chem.,2005,70,9424-9429.
    [47]Arakawa, Y.; Haraguchi, N.; Itsuno, S. Design of novel polymer-supported chiral catalyst for asymmetric transfer hydrogenation in water [J]. Tetrahedron Letters, 2006,47,3239-3243.
    [48]Arakawa, Y.; Chiba, A.; Haraguchi, N.; Itsuno, S. Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water using a Polymer-Supported Chiral Catalyst Containing a Hydrophilic Pendant Group [J]. Adv. Synth. Catal.,2008,350, 2295-2304.
    [49]Haraguchi, N.; Tsuru, K.; Arakawa, Y.; Itsuno, S. Asymmetric transfer hydrogenation of imines catalyzed by a polymer-immobilized chiral catalys [J]. Org. Biomol. Chem., 2009,7,69-75.
    [50]Ahlford, K.; Lind, J.; Maler, L.; Adolfsson, H. Rhodium-catalyzed asymmetric transfer hydrogenation of alkyl and aryl ketones in aqueous media [J]. Green Chem.,2008,10, 832-835.
    [51]Robertson, D. W.; Krushinski, J. H.; Fuller, R. W.; Leander, J. D. The absolute configurations and pharmacological activities of the optical isomers of fluoxetine, a selective serotonin-uptake inhibitor [J]. J. Med. Chem.,1988,31,1412-1417.
    [52]Watanabe, M.; Murata, K.; Ikariya, T. Practical Synthesis of Optically Active Amino Alcohols via Asymmetric Transfer Hydrogenation of Functionalized Aromatic Ketones [J]. J. Org. Chem.,2002,67,1712-1715.
    [53]Huang, H.; Liu, L. T.; Chen, S.-F.; Ku, H. The synthesis of a chiral fluoxetine intermediate by catalytic enantioselective hydrogenation of benzoylacetamide [J]. Tetrahedron:Asymmetry 1998,9,1637-1640.
    [54]Dehli, J. R.; Gotor V. Enantio- and chemoselective bioreduction of β-keto nitriles by the fungus Curvularia lunata [J]. Tetrahedron:Asymmetry 2000,11,3693-3700.
    [55]Kamila, S.; Zhu, D.; Biehl, E. R.; Hua, L. Unexpected Stereorecognition in Nitrilase-Catalyzed Hydrolysis of β-Hydroxy Nitriles [J]. Org. Lett.,2006,8, 4429-4431.
    [56]Li, Y.; Li, Z.; Li, F.; Wang, Q.; Tao, F. Preparation of polymer-supported Ru-TsDPEN catalysts and use for enantioselective synthesis of (S)-fluoxetine [J]. Org. Biomol. Chem.,2005,3,2513-2518.
    [57]郅慧编译.磷酸西他列汀(sitagliptin) [J]中国药物化学杂志2007,17,336.
    [58]孙桂芳,蔡正艳,周伟澄.西他列汀合成路线图解[J]. Chinese Journal of Pharmaceuticals,2008,39,383-386.
    [59]Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-ami ne:A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes [J]. J. Med. Chem.,2005,48,141-151.
    [60]Ikemoto, N.; Tellers, D. M.; Dreher, S. D.; Liu, J.; Huang, A.; Rivera, N. R.; Njolito, E.; Hsiao, Y.; McWilliams, J. C.; Williams, J. M.; Armstrong, J. D.; Sun, Y.; Mathre, D.J.; Grabowski, E. J. J.; Tillyer, R. D. Highly Diastereoselective Heterogeneously Catalyzed Hydrogenation of Enamines for the Synthesis of Chiral β-Amino Acid Derivatives [J]. J. Am. Chem. Soc.,2004,126,3048-3049.
    [61]Kim, D.; Kowalchick, J. E.; Edmondson, S. D.; Mastracchio, A.; Xu, J.; Eiermann, G. J.; Leiting, B.; Wu, J. K.; Pryor, K. D.; Patel, R. A.; He, H.; Lyons, K. A.; Thornberry, N. A.; Weber, A. E. Triazolopiperazine-amides as dipeptidyl peptidase IV inhibitors:Close analogs of JANUVIA (sitagliptin phosphate) [J]. Bioorg.& Med. Chem. Lett.,2007,17, 3373-3377.
    [62]Hansen, K. B.; Balsells, J.; Dreher, S.; Hsiao, Y.; Kubryk, M.; Palucki, M.; Rivera, N.; Steinhuebel, D.; Armstrong Ⅲ, J. D.; Askin, D.; Grabowski E. J. J. First Generation Process for the Preparation of the DPP-Ⅳ Inhibitor Sitagliptin [J]. Org. Pro. Res.& Dev.,2005,9,634-639.
    [63]Dai, Q.; Yang, W.; Zhang, X. Efficient Rhodium-Catalyzed Asymmetric Hydrogenation for the Synthesis of a New Class of N-Aryl β-Amino Acid Derivatives [J]. Org. Lett.,2005,7,5343-5345.
    [64]Ahn, J. H.; Shin, M. S.; Jun, M. A.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Kang, N. S.; Kim, S. Y.; Sohn, S.-K.; Kim, S. G.; Jin, M. S.; Lee, J. O.; Cheona, H. G.; Kima, S. S. Synthesis, biological evaluation and structural determination of β-aminoacyl-containing cyclic hydrazine derivatives as dipeptidyl peptidase Ⅳ (DPP-IV) inhibitors [J]. Bioorg. & Med. Chem. Lett.,2007,17,2622-2628.
    [65]Kubryk, M.; Hansen, K. B. Application of the asymmetric hydrogenation of enamines to the preparation of a beta-amino acid pharmacophore [J]. Tetrahedron:Asymmetry, 2006,17,205-209.
    [66]Hasegawa, PA. Combination of a dipeptidyl peptidase-4 inhibitor and antihypertensive agent for the treatment of diabetes and hypertension [P]. WO: 2007050485,2007-05-03.
    [67]Cypes, S.; Chen, A.; Ferlita, R. Phosphoric acid salt of a depeptidyl peptidase-Ⅳ inhibitor [P]. WO,2005003135,2005-01-13.
    [68]Dreher, S.; Ikemoto, N.; Njolito E. Process to chiral β-amino acid derivatives [P]. WO, 2004085661,2004-10-02.
    [69]Xiao, Y.; Armstrong, J.; Krska, S. Process for the preparation of chiral β amino acid derivatives by asymmetric hydrogenation [P]. WO,2004085378,2004-10-07.
    [70]Racero, J. C.; Macias-Sanchez, A. J. Novel Rearrangement of an Isocaryolane Sesquiterpenoid under Mitsunobu Conditions [J], J. Org. Chem.,2000,65,7786-7791.
    [71]Dandapani, S.; Curran, D. P. Fluorous Mitsunobu reagents and reactions [J]. Tetrahedron, 2002,58,3855-3864.
    [72]Bitter, I.; Csokai, V. An expedient route to p-tert-butylthiacalix[4]arene 1,3-diethers via Mitsunobu reactions [J]. Tetrahedron Lett,2003,44,2261-2265.
    [73]Ragnarsson, U.; Grehn, L. Novel Gabriel reagents [J]. Acc. Chem. Res.,1991,24, 285-289.
    [74]Khan, M. N. Suggested Improvement in the Ing-Manske Procedure and Gabriel Synthesis of Primary Amines:Kinetic Study on Alkaline Hydrolysis of N-Phthaloylglycine and Acid Hydrolysis of N-(o-Carboxybenzoyl)glycine in Aqueous Organic Solvents [J]. J. Org. Chem.,1996,61,8063-8068.
    [75]Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts [J]. Chem. Rev.1992,92, 1051-1069.
    [76]Wu, X.; Liu, J.; Tommaso, D. D.; Iggo, J. A.; Catlow, C. R. A.; Bacsa, J.; Xiao, J. A Multilateral Mechanistic Study into Asymmetric Transfer Hydrogenation in Water [J]. Chem. Eur. J.,2008,14,7699-7715.
    [77]Wu, X.; Li, X.; Zanotti-Gerosa, A.; Pettman, A.; Liu, J.; Mills, A. J.; Xiao, J. RhⅢ-and IrⅢ-Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water [J]. Chem. Eur. J.,2008,14,2209-2222.
    [78]Tascioglu, S.; Micellar solutions as reaction media [J]. Tetrahedron,1996,52, 11113-11152.
    [79]Oehme, G.; Grassert, I.; Paetzold, E.; Meisel, R.; Drexler, K.; Fuhrmann, H. Complex catalyzed hydrogenation and carbon-carbon bond formation in aqueous micelles [J]. Coord. Chem. Rev.,1999,185-186,585-600.
    [80]Tung, C.; Wu, L.; Zhang, L.; Chen, B. Supramolecular Systems as Microreactors: Control of Product Selectivity in Organic Phototransformation [J]. Acc. Chem. Res., 2003,36,39-47.
    [81]麻生明,环境友好的合成化学,1999年科学发展报告[M],北京:科学出版社,1999,101.
    [82]李月明,范青华,陈新滋等,不对称有机反应——催化剂的回收与再利用[M],北京: 化学工业出版社,2003,前言.
    [83]Bonds, W. D.; Brubacke, C. H.; Chandrasekaran, E. S.; Gibbons, C.; Grubbs, R. H.; Kroll, L. C. Polystyrene attached titanocene species. Preparation and reaction. J. Am. Chem. Soc.1975,97,2128-2132.
    [84]Sherrington, D. C.; Hodge, P. ed. "Syntheses and Separations Using Functional Polymers", John Wiley,1988.
    [85]Merrifield, R. B. Solid Phase Peptide Synthesis. Ⅰ. The Synthesis of a Tetrapeptide [J]. J. Am. Chem. Soc.1963,85,2149-2154.
    [86]Letsinger, R. L.; Komet, M. J. Popcorn Polymer as a Support in Multistep Syntheses [J]. J. Am. Chem. Soc.1963,85,3045-3046.
    [87]Bayston, D. J.; Travers C. B.; Polywka, M. E. C. Synthesis and evaluation of a chiral heterogeneous transfer hydrogenation catalyst [J]. Tetrahedron:Asymmetry 1998,9, 2015-2018.
    [88]Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q. Efficient Heterogeneous Asymmetric Transfer Hydrogenation of Ketones Using Highly Recyclable and Accessible Silica-Immobilized Ru-TsDPEN Catalysts [J]. Org. Lett.2004,6,169-172.
    [89]Liu, P. N.; Deng, J. G.; Tu, Y. Q.; Wang, S. H. Highly efficient and recyclable heterogeneous asymmetric transfer hydrogenation of ketones in water [J]. Chem. Commun.,2004,2070-2071.
    [90]Huang, X.; Ying, J. Y. Asymmetric transfer hydrogenation over Ru-TsDPEN catalysts supported on siliceous mesocellular foam [J]. Chem. Commun.,2007, 1825-1827.
    [91]Li, J.; Zhang, Y.; Han, D.; Gao, Q.; Li, C. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica [J]. J. Mol. Cat. A:Chem.,2009,298,31-35.
    [92]Li, X. G.; Chen, W. P.; Hems, W.; King, F.; Xiao, J. L. Asymmetric transfer hydrogenation of ketones with a polymer-supported chiral diamine [J]. Tetrahedron Lett. 2004,45,951-953.
    [93]Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Asymmetric Transfer Hydrogenation in Water with a Supported Noyori-Ikariya Catalyst [J]. Org. Lett. 2004,6,3321-3324
    [94]Zhoua, H.; Fan, Q.; Huang, Y.; Wu, L.; He, Y.; Tang, W.; Gub, L.; Chan, A. S.C. Mixture of poly(ethylene glycol) and water as environmentally friendly media for efficient enantioselective transfer hydrogenation and catalyst recycling [J]. Journal of Molecular Catalysis A:Chemical,2007,275,47-53.
    [95]Liu, J.; Zhou, Y.; Wu, Y.; Lia, X.; Chan, A. S. C. Asymmetric transfer hydrogenation of ketones with a polyethylene glycol bound Ru catalyst in water [J]. Tetrahedron: Asymmetry,2008,19,832-837.
    [96]Zhou, Z.; Sun, Y. Water-soluble chiral aminosulfonamides as ligands for ruthenium(II)-catalyzed asymmetric transfer hydrogenation [J]. Cat. Commun.,2009, 10,1685-1688.
    [97]Kawasaki, I.; Tsunoda, K.; Tsuji, T.; Yamaguchi, T.; Shibuta, H.; Uchida, N.; Yamashita, M.; Ohta, S. A recyclable catalyst for asymmetric transfer hydrogenation with a formic acid-triethylamine mixture in ionic liquid [J]. Chem. Commun.,2005, 2134-2136.
    [98]Grayson, S. M.; Frechet, J. M. J. Convergent Dendrons and Dendirmers:form Synthsis to Applications [J]. Chem. Rev.,2001,101,3819-3867.
    [99]Chen, Y. C.; Wu, T. F.; Deng, J. G.; Liu, H.; Jiang, Y. Z.; Choi, M. C. K.; Chan, A. S. Dendritic catalysts for asymmetric transfer hydrogenation [J]. Chem. Commun.2001, 1488-1489.
    [100]Chen, Y. C.; Wu, T. F.; Deng, J. G.; Liu, H.; Cui, X.; Zhu, J.; Jiang, Y. Z.; Choi, M. C. K.; Chan, A. S. Multiple Dendritic Catalysts for Asymmetric Transfer Hydrogenation [J], J. Org. Chem.2002,67,5301-5306.
    [101]Chen, Y.; Wu, T.; Jiang, L.; Deng, J.; Liu, H.; Zhu, J.; Jiang, Y. Synthesis of Dendritic Catalysts and Application in Asymmetric Transfer Hydrogenation [J]. J. Org. Chem. 2005,70,1006-1010.
    [102]Liu, P. N.; Chen, Y. C.; Li, X. Q.; Tua, Y. Q.; Deng, J. G. Dendritic catalysts for asymmetric transfer hydrogenation based (1S,2R)-norephedrine derived ligands [J]. Tetrahedron:Asymmetry,2003,14,2481-2485.
    [103]Liu, W.; Cui, X.; Cun, L.; Zhua, J.; Deng, J. Tunable dendritic ligands of chiral 1,2-diamine and their application in asymmetric transfer hydrogenation [J]. Tetrahedron:Asymmetry,2005,16,2525-2530.
    [104]Jiang, L.; Wu, T.; Chen, Y.; Zhu, J.; Deng, J. Asymmetric transfer hydrogenation catalysed by hydrophobic dendritic DACH-rhodium complex in water [J]. Org. Biomol. Chem.,2006,4,3319-3324.
    [105](a)(德)基尔希,当代有机氟化学:合成反应应用实验[M],华东理工大学出版社,2006,前言.(b) Schlosser, M. Parametrization of Substituents:Effects of Fluorine and Other Heteroatoms on OH, NH, and CH Acidities [J]. Angew. Chem. Int. Ed. 1998,110,1496-1513. (c) O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond [J]. Chem. Soc. Rev.,2008,37,308-319.
    [106]Chen, Q.; Li, Z. Photoinduced Electron Transfer Reaction of Pentafluoroiodo-benzene with Aromatic Compouds [J]. J. Chem. Soc. Perkin Trans.1,1993,1705-1709.
    [107](a) Ma, D.; Xia, C. CuI-Catalyzed Coupling Reaction of β-Amino Acids or Esters with Aryl Halides at Temperature Lower Than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857 [J]. Org. Lett.2001,3,2583-2586. (b) Buck, E.; Song, Z. J.; Tschaen, D.; Dormer, P. G.; Reider, P. Ullmann Diaryl Ether Synthesis:Rate Acceleration by 2,2,6,6-Tetramethylheptane-3,5-dione [J]. Org. Lett. 2002,4,1623-1626.
    [108]Slagle, J. D.; Huang, T. T.-S.; Franzus, B. Mechanism of the Triphenylphosphine-Tetrachloromethane-Alcohol Reaction:Pericyclic or Clustered Ion Pairs? [J]. J. Org. Chem.1981,46,3526-3530.
    [109]Noyori, R.; Yamakawa, M.; Hashiguchi, S. Metal-Ligand Bifunctional Catalysis:A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl Compounds [J]. J. Org. Chem.2001,66,7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700