含无机纳米颗粒复合相变储能材料的制备及热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变储能材料包括有机相变储能材料和无机相变储能材料。与无机相变材料相比,有机相变储能材料具有化学稳定性较好、相变温度适中、无相分离、价格便宜等优点。然而,有机相变材料导热系数较低,致使其在储能系统的应用中传热性能差,从而降低了系统的效能。为充分利用有机材料的优点,改善其导热性能。本文制备了含高导热无机纳米颗粒的复合相变储能材料,并探索添加材料的形态、尺寸等因素对复合相变储能材料导热系数等热性质的影响,进行复合物传热机理的初步探讨。主要包括以下内容:
     首先,研究了近似球形的纳米金属氧化物颗粒对复合物热物理性质的影响。本文制备了含ZnO、γ-Al2O3及γ-Fe2O3等金属氧化物纳米颗粒的复合物。其中纳米粒子的尺寸为10-50nm,其在基体石蜡(PW)中的分散性较相应微米级大颗粒分散效果好。用DSC分析了复合物的相变焓,结果表明γ-Al2O3/PW和γ-Fe2O3/PW的融化焓均较纯PW有所降低,并随金属氧化物纳米颗粒含量的增加而逐渐降低。含量为5.0wt%的γ-Al2O3/PW和γ-Fe2O3/PW的融化焓分别降至135.1和133.4kJ/kg。而ZnO/PW在浓度较低时,融化焓较纯PW高。但当ZnO纳米颗粒含量达5.0wt%时,其融化焓约达137kJ/kg,也较纯PW的融化焓142.2kJ/kg低。对复合物的导热系数的分析表明,添加纳米金属氧化物颗粒能够提高复合物的导热系数。但温度及添加物含量相同时,含不同种类纳米颗粒的复合物导热系数不同。当添加物含量为1.0wt%,在15℃时γ-Al2O3/PW、 γ-Fe2O3/PW和ZnO/PW的导热系数分别为0.23、0.25及0.26W/(m·K)。
     其次,探索了含碳纳米管(CNTs)复合物热性质的影响因素。本文通过对CNTs用强酸进行氧化在其表面引入羧基;通过碱处理在CNTs表面引入羟基;采用球磨方法将CNTs截断,改变其长径比;通过接枝在CNTs表面引入有机长链,这四种处理方法分别得到A-CNTs、M-CNTs、B-CNTs和G-CNTs。将处理后的各种CNTs制得纳米复合相变储能材料。对复合物的相容性分析表明A-CNTs、M-CNTs和G-CNTs在PA中的分散性较B-CNT优。对复合物导热系数进行测量的结果表明,各种处理方法所得CNTs形成的复合物的导热系数均随CNTs含量升高而升高。当CNTs含量相同时,复合物导热系数的提升与CNTs的处理方法有关。当CNTs含量为1.0wt%时,除G-CNT/PA外,其它复合物在固态的导热系数提高值较其液态的导热系数提高得多。在固态时复合物的导热系数的顺序是M-CNT/PA>A-CNT/PA>B-CNT/PA>P-CNT/PA> G-CNT/PA,而在液态时这一顺序则变成M-CNT/PA>A-CNT/PA>G-CNT/PA>B-CNT/PA>P-CNT/PA,即M-CNT/PA在所有测试温度的导热系数的是所研究各复合物中最高的,在25℃时其导热系数达0.339W/(m·K),较基体PA的导热系数提高51.6%。将其与部分现有理论模型计算结果相比发现该值高于现有理论模型计算结果。
     再次,研究了具有片状结构的石墨类添加物对复合物热性能的影响。研究结果表明,纳米石墨片(GNPs)的厚度约为10nm。所得复合物GNP/PA与含鳞片石墨的FG/PA和含膨胀石墨的EG/PA相比具有较好的稳定性。热分析结果表明,FG/PA和EG/PA的相变温度及相变焓有随添加物含量递增而递降的趋势。对复合物导热系数的研究表明,在添加物含量相同时GNP/PA的导热系数优于另外两种复合物。对GNP/PA的导热系数随添加物含量变化进行分析时发现复合物的导热系数与含量间并非简单的线性关系。GNP/PA在浓度为1.0wt%时出现逾渗现象。当GNPs含量高于1.0wt%低于5.0wt%时,复合物的导热系数明显提高,当GNPs含量超过5.0wt%时,复合物的导热系数随GNPs含量增加而提高的速度加快。当复合物中GNPs含量达10wt%时,固态导热系数超过1.0W/(m·K).
     最后,采用第一性原理和分子动力学方法对CNT结构、前线轨道、能带及声子谱等进行了计算,分析了管径尺寸、管长、温度等因素对CNT热性能的影响。设计了含CNT复合物导热模型,并计算了相关模型的导热系数。结果表明,在298K时CNT的导热系数随CNT长度的递增呈现递增趋势,且当管长度超过20nm后导热系数增加明显。随机分布模型计算结果表明,修饰对CNT含CNTs复合物导热系数有一定的影响,端基接羧基有利于提高含CNT复合物的导热系数;纵向导热模型计算结果与实验值符合较好。
Phase change materials (PCMs) include organic PCM and inorganic PCM. Due to the high storage density and small temperature variation from storage to retrieval, organic materials have been applied as PCMs for thermal energy storage in solar heating and cooling applications. In spite of their desirable properties of the organic, low thermal conductivity is its major drawback decreasing the rates of heat storage and retrieval during melting and crystallization processes which in turn limits their utility areas. In these years, studies have been carried out with the purpose of developing LHTES systems with enhanced thermal performance, like dispersing high conductivity particles and inserting a metal matrix into organic matrix. In this study, Heat storage nanocomposites consisting of organic matrix and nanoparticles have been prepared and how size, shape and the like of additions affect on their thermal properties have been investigated.
     Firstly, one dimension carbon nanotubes (CNTs) were dispersed into organic base to prepare phase change composites. Due to their high thermal conductivities and low weight carbon nanotubes (CNTs) are superior candidates for applications as fillers in composite materials to enhance thermal transport. However, interfacial thermal resistance between the CNTs and the matrix is considered to account dominantly for the discrepancy of high theoretical thermal conductivity and low measured data. Before adding into PA, four different methods, acid oxidation, mechanochemical reaction, ball milling, and grafting following acid oxidation, were used to treat CNTs. During treatment, hydroxyl groups, carboxylic groups, and amidocyanogen were introduced onto the surfaces of the CNTs. Both chemical treatment and ball milling help to break the CNT aggregates and to enhance their dispersibility. Ball milling shortened the CNTs considerably. SEM observation found that there existed extra attachments on the surfaces of G-MWCNTs. Shiver can be seen in between A-CNTs, which treated at120℃. M-CNTs were shown straighter than others. Measurements show that the thermal conductivity increase of the composites is highly depended on the CNT pretreatment process. We propose that the difference in the interfacial thermal resistance between the CNTs and the matrix is due to the difference of the CNT surface state caused by different treatment processes. At a specified temperature under solid state, the thermal conductivity enhancement is in the order of M-MWCNT/PA>A-MWCNT/PA>B-MWCNT/PA>P-MWCNT/PA> G-MWCNT/PA. Whereas the order changes into M-MWCNT/PA> A-MWCNT/PA> G-MWCNT/PA>B-MWCNT/PA>P-MWCNT/PA at a specified temperature under liquid state, that is, the thermal conductivity enhancement ratios of G-MWCNT/PA surpass the corresponding values of B-MWCNT/PA and P-MWCNT/PA. In all the CNT/PA composites, the one containing CNTs with hydroxyl groups, treated by a mechanochemical reaction, has the highest thermal conductivity increase, which, at room temperature, is0.339W/(m·K), which up to51.6%for a CNT addition of1.0wt%.
     Secondly, oxide nanoparticles including ZnO, γ-Al2O3and γ-Fe2O3were added into organic matrix to prepare nanocomposite. Intensive sonication was used to make well dispersed and homogeneous composites. Differential scanning calorimetric (DSC) analysis and transient short-hot-wire (SHW) method were employed to measure the thermal properties of the composites. The composites γ-Al2O3/PW increase the latent heat thermal energy storage capacity, Ls, and melting point, Tm, in low nanoparticle loadings, while they decrease the Ls and Tm with high nanoparticle loading of5.0wt%compared with those of organic matrices. γ-Al2O3/PW and γ-Fe2O3/PW decrease Ls with the nanoparticle loadings. With nanoparticle loading of5.0wt%, Ls of γ-Al2O3/PW/PW and γ-Fe2O3/PW are135.1and133.4kJ/kg。 ZnO/PW increase Ls with low nanoparticle loadings, while Ls of5.0wt%ZnO/PW is137kJ/kg, which is lower than142.2kJ/kg of PW,. For the composite with metal oxide nanoparticles, γ-Al2O3/PW has the highest thermal conductivity in solid state, while γ-Fe2O3/PW has the highest thermal conductivity in liquid state. At15℃, thermal conductivities of γ-Al2O3/PW、γ-Fe2O3/PW and ZnO/PW with nanoparticle loading of1.0wt%are0.23,0.25and0.26W/(m·K), respectively.
     Thirdly, the thermal properties of composite with sheet like particles were investigated. graphene nanoplatelets (GNPs) were prepared by typical acid oxidation and ultrasound stirring. The morphology and microstructure of the composites were examined by scanning electron microscope (SEM) and optical microscope images. The GNPs were not thicker than20nm and about2um in diameter. GNP/PA composites were prepared by adding GNPs into the melting PA with intensive ultrasonic. The GNP/PA composites were more steadier compared with the flake graphite (FG)/PA and expanded graphite (EG)/PA. The GNP/PA composite enhanced the thermal conductivity in both liquid state and solid state. The thermal conductivity of the composite GNP/PA is much higher than the result of the theoretical model. When the GNPs loading is no more than1.0wt%, thermal conductivity of the composites increase slightly, while it quiken from1.0wt%to5.0wt%, and acutely more than5.0wt%. Thermal conductivity of composite with10.0wt%GNPs is more than1.0W/(m·K).
     Lastly, CNTs and their composites were simulated by first principle and molecular dynamics for the structure, front orbits, band structure, phonon spectra and thermal properties. How size, length and temperature effect on the thermal properties of CNT were analyzed. The results showed that the electrons in the n bond should contribute much in thermal conductivity. The molecular dynamics was used to simulate the thermal properties of the CNT composites. At298K, thermal conductivity of CNT increases with the length, and it quikens when lenger than20nm. The results showed that the function on the end of CNT affect the thermal conductivity in the random model. The thermal conductivity of the composite by end model accords the results of our experiments.
引文
[1]Belen Zalba, Jose M Marin, Luisa F. Cabeza, Harald Mehling, Review on thermal energy storage with phase change:materials, heat transfer analysis and applications[J]. Applied Thermal Engineering.2003,23(3):251-283.
    [2]柯秀芳,黄金.无机水合盐相变材料Na2SO4·10H2O的研究进展[J].材料导报.2008(03):63-67.
    [3]于建香,刘太奇,操彬彬.物理法制备微胶囊无机芯相变材料及其表征[J].新技术新工艺.2010(03):81-84.
    [4]Atul Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 2009,13(2):318-345.
    [5]Frederic Kuznik, Damien David, Kevyn Johannes, Jean-Jacques Roux, A review on phase change materials integrated in building walls [J], Renewable and Sustainable Energy Reviews,2011,15(1):379-391.
    [6]Esam M., Alawadhi, Hashem J. Alqallaf, Building roof with conical holes containing PCM to reduce the cooling load:Numerical study [J]. Energy Conversion and Management,2011,52(8-9):2958-2964.
    [7]曾令可,宋婧,陈丙璇,王慧,税安泽.钾明矾/纤维多孔陶瓷基复合蓄热材料的制备工艺优化[J].人工晶体学报.2008(06):1472-1475+1434.
    [8]Mohammed M. Farid, Amar M. Khudhair, Siddique Ali K. Razack, Said Al-Hallaj, A review on phase change energy storage:materials and applications [J], Energy Conversion and Management,2004,45(9-10):1597-1615.
    [9]满亚辉,吴文健.Na2SO4·10H2O相变过程及其相变潜热的计算[J].国防科技大学学报.2009(02):41-43.
    [10]施韬,孙伟,王倩楠.潜热储能石膏基建筑材料的制备及其储(放)热行为研究[J].功能材料.2009(06):970-973.
    [11]陈枭,张仁元,李辉鹏.A1基金属相变储能材料的研究与应用进展[J].材料研究与应用.2009(02):73-76.
    [12]Chen K.N., Cabra C. Jr., Krusin-Elbaum L. Thermal stress effects of Ge2Sb2Te5 phase change material:Irreversible modification with Ti adhesion layers and segregation of Te[J], Microelectronic Engineering,2008,85(12):2346-2349.
    [13]张仁元,孙建强,卢国辉.共晶铝-镁-锌储能合金的热稳定性和液态腐蚀性[J].机械工程材料.2006(07):11-14+18.
    [14]孙建强,张仁元.金属相变储能与技术的研究与发展[J].材料导报2005(08):99-101+105.
    [15]Murat M. Kenisarin, High-temperature phase change materials for thermal energy storage, Renewable and Sustainable Energy Reviews,2010,14(3):955-970.
    [16]刘靖,王馨,曾大本,郭旭涛,张寅平.高温相变材料A1-Si合金选择及其与金属容器相容性实验研究[J].太阳能学报.2006(01):36-40.
    [17]Ben-Abdallah,朱孝钦,陆建生.用六水氯化钙作为相变材料的换热器储热性能研究[J].无机盐工业.2007(08):56-58.
    [18]Atul Sharma, C.R. Chen, V.V.S. Murty, Anant Shukla. Solar cooker with latent heat storage systems:A review[J], Renewable and Sustainable Energy Reviews,2009,13(6-7): 1599-1605
    [19]Adebiyi G A, Thodge B K, Steele W G. Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase-change storage materials[J]. J. Energy Resources Technology.1996,118(9):102-111.
    [20]王小伍,吕恩荣,林文贤,等.多元醇NPG/PE和NPG/TAM二元体系贮热性能的实验研究[J].太阳能学报.1999(01):45-49.
    [21]Suppes G. J., M. J. Goff, Shailesh Lopes, Latent heat characteristics of fatty acid derivatives pursuant phase change material applications, Chemical Engineering Science, 2003,58(9):1751-1763
    [22]余丽蓉,陆春华,高树军,许仲梓.十二醇/三聚氰胺-甲醛核壳结构材料的制备[J].南京工业大学学报(自然科学版).2007(02):6-10.
    [23]徐瑞云,蔡蕍,丁蕙,陆庆宁.癸二醇和十二烷二醇及其混合物的液固相变研究[J].理化检验(化学分册).2006(07):521-523.
    [24]李志广,万红敬,黄红军,张敏.低温相变材料十二醇-脂肪酸二元体系相变温度的研究[J].化工新型材料.2007(11):55-56.
    [25]张梅,那莹,姜振华.接枝共聚法制备聚乙二醇(PEG)/聚乙烯醇(PVA)高分子固-固相变材料性能研究[J].高等学校化学学报.2005(01):170-174.
    [26]Ruben Baetens, BJ(?)rn Petter Jelle, Arild Gustavsen, Phase change materials for building applications[J], Energy and Buildings,2010,42(9):1361-1368.
    [27]王桃侠,王艳秋,金万祥.聚乙二醇/涤纶固固相转变材料相变性能的调控[J].化工进展.2008(12):2004-2007.
    [28]丁庆军,胡曙光,李潜.相变材料聚乙二醇应用于沥青混合料可行性的研究[J].公路.2009(07):291-295.
    [29]王立岩,郭静,李楠.形态稳定相变材料聚乙二醇/聚酰胺共混物的制备及性能[J].高分子材料科学与工程.2009(05):161-164.
    [30]李金田,茅靳丰,李伟华,李靖,熊小艳.三水醋酸钠的过冷机理与实验研究[J].制冷学报.2009(05):32-35.
    [31]Min Li, Hongtao Kao, Zhishen Wu, Jinmiao Tan, Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J], Applied Energy,2011,88(5):1606-1612.
    [32]刘星,汪树军,刘红研.石蜡的聚烯烃定形包覆研究[J].精细化工.2006(03):209-211+214.
    [33]Quanying Y, Chen L, Lin Z. Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall[J]. Solar Energy Materials and Solar Cells.2008,92(11):1526-1532.
    [34]Zhang Y.P., Lin K.P., Yang R., Di H.F., Jiang Y, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings[J]. Energy and Buildings, 2006,38(10):1262-1269.
    [35]Atul Sharma, C.R. Chen, V.V.S. Murty, Anant Shukla, Solar cooker with latent heat storage systems:A review[J], Renewable and Sustainable Energy Reviews,2009,13(6-7): 1599-1605.
    [36]王贺,李夔宁,郭宁宁.有机相变蓄冷复合材料的研究[J].化工新型材料.2009(04):87-88.
    [37]周然,闫全英,梁辰.用于相变墙体中的石蜡和多元醇相变材料的研究[J].建筑节能. 2007(05):37-39.
    [38]施凯,胡树军,刘成岑.十二醇/聚氨酯合成相变材料热焓值的研究[J].山西化工2009(05):14-19.
    [39]余志成,颜超,李俊玲.聚氨酯型相变微胶囊的制备及在蚕丝织物上的应用[J].蚕业科学.2009(03):588-593.
    [40]万红敬,李志广,黄红军.二元共晶系相变材料热力学模型的研究[J].军械工程学院学报.2009(03):71-74.
    [41]肖德炎,张东,田胜力.有机/无机复合相变储能材料的长期化学稳定性研究[J].材料开发与应用.2005(02):13-15+32.
    [42]曾翠华,张仁元.无机水合盐相变储热材料的过冷性研究[J].能源研究与信息.2005(01):211-217.
    [43]Wang Jian-Ping, Zhang Xing-Xiang, Wang Xue-Chen, Preparation of macro-capsules containing shape-stabilized phase change materials and description of permeation kinetics of its wall[J], Energy Conversion and Management,2009,50(11):2802-2809.
    [44]Desheng Ai, Lizan Su, Zhe Gao, Changsheng Deng, Xiaming Dai, Study of ZrO2 nanopowders based stearic acid phase change materials[J], Particuology,2010,8(4): 394-397
    [45]李桦,张莹,马晓光.硅烷偶联剂对复合相变材料性能的影响[J].纺织学报.2009(03):76-81.
    [46]马保国,蹇守卫,金磊,穆松,张琴.无机/相变定型储能材料的制备研究进展[J].材料导报.2008(12):36-39+43.
    [47]陈学竞,丁永红,俞强.石蜡/交联聚乙烯高分子固-固相变贮能材料的制备[J].江苏工业学院学报.2007(04):13-16.
    [48]张金喜,赵建国,郭全贵.聚乙二醇/膨胀石墨相变储能复合材料[J].现代化工2008(09):46-47.
    [49]乔英杰,王德民,张晓红,孙柏周.复合相变储能材料研究与应用新进展[J].材料工程.2007(S1):229-232.
    [50]孙志林,屈宗长.相变储热技术在太阳能热泵中的应用[J].制冷与空调.2006(06):44-48.
    [51]Velraj R, Seeniraj R V, Hafner B. Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit[J]. Solar Energy.1997,60:281-290.
    [52]王馨,张寅平.圆筒壁和球壁中固液相变强化传热机理分析[J].清华大学学报(自然科学版).2003(06).
    [53]张延静,江楠.针翅管换热器数值模拟与针翅优化[J].石油机械.2010(02):39-42.
    [54]温娟,丁京伟,齐承英,杨历.壁面扰流影响边界层湍流拟序结构及强化传热机理的研究[J].河北工业大学学报.2009(03):5-12.
    [55]高喆,艾德生,赵昆,邓长生,戴遐明.ZrO_2-硬脂酸系纳米复合相变储能材料的可行性研究[J].中国粉体技术.2007(03):32-35.
    [56]Mora R J, Vilatela J J, Windle A H. Properties of composites of carbon nanotube fibres[J]. Composites Science and Technology.2009,69(10):1558-1563.
    [57]Bekyarova E, Thostenson E T, Yu A, et al. Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites[J]. Langmuir.2007,23(7):3970-3974.
    [58]Sanchez-Garcia M D, Lagaron J M, Hoa S V. Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers[J]. Composites Science and TechnologySpecial issue on Chiral Smart Honeycombs.2010,70(7):1095-1105.
    [59]Jun F, Makoto K, Yoshikazu K. Thermal conductivity of energy storage media using carbon fibers[J]. Energy Conversion & Management.2000,41:1543-1556.
    [60]Helical microtubules of graphitic carbon[J]. Nature.1991,354:56-58.
    [61]Thornton M J, Walker G S. Catalytic carbon deposition on three-dimensional carbon fiber preforms using alkane gas feedstocks[J]. New Carbon Materials.2009,24(3): 251-259.
    [62]Walker Jr. P L. Carbon:An old but new material revisited [J]. Carbon.1990,28(2-3): 261-279.
    [63][63] Bi K, Chen Y, Chen M, et al. The influence of structure on the thermal conductivities of low-dimensional carbon materials[J]. Solid State Communications. 2010,150(29-30):1321-1324.
    [64]Abdalla M, Dean D, Adibempe D, et al. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite[J]. Polymer.2007,48(19):5662-5670.
    [65]Biercuk M J, Llaguno M C, Radosavljevic M, et al. Carbon nanotube composites for thermal management [J]. Appl. Phys. Lett.2002,80:2267.
    [66]Choi E S, Brooks J S, Eaton D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing[J]. J. Appl. Phys. 2003,94:6034.
    [67]Gonnet P, Liang Z, Choi E S, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites[J]. Current Applied Physics.2006, 6(1):119-122.
    [68]Kim K S, Bae D J, Kim J R, et al. Band gap engineering of a carbon nanotube by hydrogen functionalization[J]. Current Applied Physics.2004,4(5):559-562.
    [69]方晓明,张正国,王学泽.石蜡/膨胀石墨复合相变材料的结构与热性能[J].华南理工大学学报(自然科学版).2006(03):1-5.
    [70]丁剑红,张寅平,王馨,杨睿,林坤平.掺杂对定形相变材料导热系数的影响[J].太阳能学报.2005(06):853-856.
    [71]Katsnelson M I. Graphene:Carbon in two dimensions.[J]. Mat. Taday.2007,10:20-27.
    [72]Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mat.2007,6:183-191.
    [73]傅强,包信和.石墨烯的化学研究进展[J].科学通报.2009,54(18):2657-2666.
    [74]Li H, Liu C, Fan S. Catalyzed Filling of Carbon Nanotube Array with Graphite and the Thermal Properties of the Composites [J]. The Journal of Physical Chemistry C.2008, 112(15):5840-5842.
    [75]曹文学,冯超,王丽伟,王如竹.复合固化吸附储氢材料的传热性能测试及仿真[J].化学工程.2010(01):18-21.
    [76]邱玉琳,梁基照.LDPE/石墨复合材料导热系数模拟与实测值的比较[J].塑料科技.2009(08):38-41.
    [77]董辰光,杜辛颖,张智理,李良波,孟平蕊ACR/CPVC/石墨粉体共混导热材料的研究[J].化学建材.2009(06):5-6.
    [78]魏志勇,毕可东,陈云飞.石墨烯纳米带热导率的分子动力学模拟[J].东南大学学报(自然科学版).2010(02):306-310.
    [79]刘剑虹,初明辉,刘瑞虹.Na2SO4·10H2O复合相变体系的性能测试[J].建筑节能.2008(01):44-46.
    [80]Ping Zhang, Yuan Hu, Lei Song, Jianxiong Ni, Weiyi Xing, Jian Wang, Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material[J], Solar Energy Materials and Solar Cells,2010,94(2):360-365.
    [81]袁新强,王忠,陈立贵.HDPE/活性炭颗粒相变材料的制备及其性能研究[J].材料导报.2009(02):34-36.
    [82]王亮,饶宇,林贵平.应用于强化传热的相变材料微胶囊的制备及特性[J].航空动力学报.2005(04):651-655.
    [83]商福民,刘登瀛,冼海珍,刘建红.振荡流热管自激强化传热特性实验研究[J].工程热物理学报.2009(03):461-464.
    [84]唐经文,张新铭,习磊朋.石墨泡沫内流动与传热的数值分析[J].重庆大学学报.2009(06):625-628.
    [85]江利锋,叶宏.导热增强型相变材料模拟钢板红外特征的优化设计[J].兵工学报.2007(06):692-699.
    [86]刘宝庆,王冰,蒋家羚,张琼.可拆式螺旋板换热器传质传热的数值模拟[J].应用基础与工程科学学报.2010(01):71-79.
    [87]贾代勇,罗智特,杜雁霞.相变材料蓄冷球蓄冷过程的数值模拟[J].制冷空调与电力机械.2004(02):33-36.
    [88]童金章,关凌云,南策文,等.有限变形下含非完美界面复合材料有效模量的界限.复合材料学报.1999(02):141-147.
    [89]Nan, C.W., Z. Shi and Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites[J]. Chemical Physics Letters,2003.375(5-6):p.666-669.
    [90]Unnikrishnan, V.U., D. Banerjee and J.N. Reddy, Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems[J]. International Journal of Thermal Sciences,2008.47(12):p.1602-1609.
    [91]He B., Martin V. and Setterwall F., Liquid-solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage[J]. Fluid Phase Equilibria,2003.212(1-2):p.97-109.
    [92]Hu, X. and Y. Zhang, Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries:laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002.45(15):3163-3172.
    [93]康艳兵等,相变蓄热球体堆积床传热模型及热性能分析.清华大学学报(自然科学版),2000(02):106-109+113.
    [94]张寅平,胡先旭,郝磬,等.等热流圆管内潜热型功能热流体层流换热的内热源模型及应用[J].中国科学E辑.2003(03):237-244.
    [95]胡先旭,张寅平.等热流条件下潜热型功能热流体换热强化机理研究[J].工程热物理学报.2002(02):224-226.
    [96]吴峰,空气外掠波纹管束强化传热规律数值计算[J].热能动力工程,2009(04):452-456+541-542.
    [97]Wei Y, Jiang, Liu L, et al. Vacuum-Breakdown-Induced Needle-Shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications[J]. Nano Letters.2007,7(12):3792-3797.
    [98]陈俊,郭茶秀.相变材料的研究与应用新进展[J].河南化工.2006(04):5-7.
    [99]高明珠.相变材料微胶囊在纺织服装中的应用[J].四川纺织科技.2004(02):34-36.
    [100]冯洁,王府梅.聚乙二醇在相变纺织材料上的应用[J].国际纺织导报.2006(09):67-69.
    [101]李倩,徐军.智能凝胶在纺织服装领域的应用[J].合成纤维.2007(03):26-29+44.
    [102]李新娥.空调纤维的研发及应用[J].纺织科技进展.2008(02):18-19.
    [103]Li C, Chou T. Failure of carbon nanotube/polymer composites and the effect of nanotube waviness[J]. Composites Part A:Applied Science and Manufacturing.2009, 40(10):1580-1586.
    [104]Rady M. Thermal performance of packed bed thermal energy storage units using multiple granular phase change composites[J]. Applied Energy.2009,86(12):2704-2720.
    [105]鲁辉,张雄,张永娟.脂肪酸/膨胀珍珠岩/石蜡复合相变材料的制备及其在建筑节能中的应用[J].新型建筑材料.2010(02):21-23+28.
    [106]王立久,孟多.LA-MA/聚甲基丙烯酸甲酯复合相变蓄热材料的制备与性能[J].功能材料.2010(04):709-712.
    [107]张勇,邹志荣,李建明,胡晓辉.日光温室相变空心砌块的制备及功效[J].农业工程学报.2010(02):263-267.
    [108]徐军,万贤,张冰清,王懿,郭宝华.石蜡/P(MMA-co-AA)核壳结构相变蓄能微胶囊的制备[J].高分子学报.2009(11):1154-1156.
    [109]Takahiro Nomura, Noriyuki Okinaka, Tomohiro Akiyama, Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant[J]. Conservation and Recycling,2010,54(11):1000-1006.
    [110]王浩宇,吴义民,韩国军.内翅片换热管内相变材料融化的数值模拟[J].北京建筑工程学院学报.2009(02):9-12.
    [111]李秀珍,吕永康.Mg(NO3)2·6H2O-KNO3(NH4NO3)蓄热材料的制备及相变研究[J].无机化学学报.2009(10):1868-1872.
    [112]梁新刚,王爱华,任建勋.热电泵-相变材料热控系统的实验研究[J].清华大学学报(自然科学版).2005(11):1502-1505.
    [113]Diaconu B M, Varga S, Oliveira A C. Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications [J]. Applied Energy.2010,87(2):620-628.
    [114]Xu Z, Li H, Li K, et al. Carbon Nanotube-Templated Copper Phthalocyanine Derivative Assemblies via Solid-Phase Synthesis:Effects of Hydrogen Bond on the Structure of the Assemblies[J]. Crystal Growth & Design.2009,9(9):4136-4141.
    [115]宗原,张陆旻,戴干策.石墨填充聚丙烯导热复合材料的流变行为[J].高分子材料科学与工程.2009(04):74-76.
    [116]李凯莉,张东.相变材料热物性测试方法[J].材料导报.2007(12):103-105.
    [117]陈超,王吴.填充了球状相变材料的蓄热槽放热特性的数值分析[J].建筑热能通风空调.2003(04):52-55.
    [118]陈焕芝,周建伟,黄建新.微胶囊复合相变材料的制备及性能表征[J].应用化工.2008(06):630-632.
    [119]韩莹,闫亚明,刘朝贤,李斌,牟定荣.利用瞬态平面热源法检测烟丝热物性的方法.烟草科技.2009(09):11-14.
    [120]谢华清,奚同庚.低维材料热物理.上海科学技术文献出版社.2008年9月第1版.
    [121]Mujumdar A S. Mujumdar A S. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials.[J]. Applied Thermal Engineering.1991,17:1067-1083. Thermal Engineering.2008,28(11-12):1536-1550.
    [123]Quah H, Cheong K Y, Lockman Z. Stimulation of silicon carbide nanotubes formation using different ratios of carbon nanotubes to silicon dioxide nanopowders[J]. Journal of Alloys and Compounds.2009,475(1-2):565-568.
    [124]Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering.2007,27(8-9):1271-1277.
    [125]Yosida Y, Oguro I. Effect of nanocrystal/carbon nanotube interface on surface superconductivity of TaC encapsulated in the multiwall carbon nanotubes[J]. Physica C: Superconductivity.2006,434(2):173-177.
    [126]Xue Q Z. Model for thermal conductivity of carbon nanotube-based composites[J]. Physica B:Condensed Matter.2005,368(1-4):302-307.
    [127]Xue Q. Model for effective thermal conductivity of nanofluids[J]. Physics Letters. 2003,307:313-317.
    [128]Gao L, Zhou X F. Differential effective medium theory for thermal conductivity in nanofuids[J]. Physics Letters A.2006,348:355-360.
    [129]Bhattacharya P, Saha S K, Yadav A, et al. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids[J]. Journal of Applied Physics. 2004,95:6492-6494.
    [130]Xu F, Xu J, Ji J, et al. A novel biomimetic polymer as amphiphilic surfactant for soluble and biocompatible carbon nanotubes (CNTs)[J]. Colloids and Surfaces B: Biointerfaces.2008,67(1):67-72.
    [131]Duong H M, Papavassiliou D V, Mullen K J, et al. A numerical study on the effective thermal conductivity of biological fluids containing single-walled carbon nanotubes[J]. International Journal of Heat and Mass Transfer.2009,52(23-24): 5591-5597.
    [132]Shenogin S, Bodapati A, Xue L, Ozisik R., Keblinski P. Effect of chemical functionalization on thermal transport of carbon nanotube composites[J], Appl. Phys. Lett. 2004,85:2229-2231.
    [133]Frusteri F, Leonardi V, Vasta S, Restuccia G. Measurement and Analysis of Thermophysical Properties of a Mixture of Phase-Change-Material Particles and Nanofluid[J]. Appl Therm Eng,2005,25,1623-1633.
    [134]Pan H. L L Z X, Liu L, Guo Z X, et al. Carbon nanotubols from mechanochemical reaction[J]. Nano Lett.2003,3:29-32.
    [135]Laachachi A, Vivet A, Nouet G, et al. A chemical method to graft carbon nanotubes onto a carbon fiber[J]. Materials Letters.2008,62(3):394-397.
    [136]Li Z, Zhang W, Luo Y, et al. How graphene is cut upon oxidation[J]. J. Am. Chem. Soc.2009,131:6320-6321.
    [137]Karaipekli A, Sari A. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renewable Energy.2008, 33(12):2599-2605.
    [138]Karaipekli A, Sari A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Solar Energy.2009,83(3):323-332.
    [139]Javey A, Guo J, Farmer D B, et al. Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-K Gate Dielectrics[J]. Nano Letters.2004,4(3): 447-450.
    [140]Dan B, Irvin G C, Pasquali M. Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films[J]. ACS Nano.2009,3(4):835-843.
    [141]Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta.2009,488(1-2):39-42.
    [142]Fu S Y. Thermal conductivity of misaligned short-fiber-reinforced polymer composites[J]. J. Appl. Poly. Sci.2003,88:1497-1505.
    [143]Nomura S, Chou T W. Bounds of effective thermal conductivity of short-fiber composites[J]. J. Comp. Mater.1980,14:120-129.
    [144]Chen C-H, Wang Y-C, Effective thermal conductivity of misoriented short-fiber reinforced thermoplastics[J], Mechanics of Materials.1996,23:217-228.
    [145]Papanikolaou N. Nonequilibrium radiation dosimetry. J. Phys.:Condens. Matter. 2008,20:135201.
    [146]Zhong H L, Lukes J R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling[J]. Phys. Rev. B.2006, 74:125403.
    [147]Shenogin N, Shenogin S, Xue L, et al. On the lack of thermal percolation in carbon nanotube composites [J]. Appl. Phys. Lett.2005,87:133106.
    [148]Chen J, Cagin T, Godard Ⅲ WA, Thermal conductivity of carbon nanotubes[J]. Nanotechnology.2000,11:65-69.
    [149]Kumar S, Alam M A, Murthy J Y. Effect of percolation on thermal transport in carbon nanotube composites[J]. Appl. Phys. Lett.2007,90:104105.
    [150]Bonnet P, Sireude D, Gamier B, et al. Thermal properties and percolation in carbon nanotube-polymer composites [J]. Appl. Phys. Lett.2007,91:201910.
    [151]Hu M, Shenogin S, Keblinski P. Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene[J]. Appl. Phys. Lett. 2007,91:241910.
    [152]Singh I V, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites[J]. International Journal of Thermal Sciences.2007,46(9): 842-847.
    [153]Lin W, Zhang R, Moon K, et al. Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport[J]. Carbon.2010, 48(1):107-113.
    [154]Namilae S, Chandra N. Role of atomic scale interfaces in the compressive behavior of carbon nanotubes in composites[J]. Composites Science and Technology.2006,66(13): 2030-2038.
    [155]Nan C W, Liu G, Eaton D L, et al. Interface effect on thermal conductivity of carbon nanotube composites[J]. Appl. Phys. Lett.2004,85:3549.
    [156]Zhou X F, Gao L. Effective thermal conductivity in nano fluids of nonspherical particles with interfacial thermal resistance:Differential effective medium theory[J]. Journal of Applied Physics.2006,100:24913.
    [157]Ju S, Li Z Y. Theory of thermal conductance in carbon nanotube composites[J]. Physics Letters A.2006,353(2-3):194-197.
    [158]Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in atomically thin carbon films[J]. Science.2004,306:666-669.
    [159]Zhang P, Hu Y, Song L, et al. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material[J]. Solar Energy Materials and Solar Cells.2010, 94(2):360-365.
    [160]Khan U, O'Connor I, Gun'Ko Y K, et al. The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties[J]. Carbon.2010,48(10):2825-2830.
    [161]Chabrier D, Bhushan B, Marsaudon S. Humidity effect on the interaction between carbon nanotubes and graphite[J]. Applied Surface Science.2010,256(14):4672-4676.
    [162]Yan J, Wei T, Shao B, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors[J]. Carbon.2010, 48(6):1731-1737.
    [163]周文明,贺蕴秋.氧化石墨插层纳米复合材料的制备研究进展[J].材料导报.2007,S3:204-206+213.
    [164]Prasher R. Graphene Spreads the Heat[J]. Science.2010,328:185-186.
    [165]Lin W, Zhang R, Wong C P. Modeling of thermal conductivity of graphite nanosheet composites[J]. Journal of Electronic Materials.2010,39:268-272.
    [166]Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with nterfacial thermal resistance[J]. J. Appl. Phys.1997,81: 6692-6696.
    [167]Stoner G R, Albright T D. The interpretation of visual motion:Evidence for surface segmentation mechanisms [J]. Vision Research.1996,36(9):1291-1310.
    [168]Lin W, Zhang R, Moon K, et al. Molecular phonon couplers at carbon nanotube/substrate interface to enhance interfacial thermal transport[J]. Carbon.2010, 48(1):107-113.
    [169]Wong M, Paramsothy M, Xu X J, et al. Physical interactions at carbon nanotube-polymer interface [J]. Polymer.2003,44(25):7757-7764.
    [170]Tan H, Huang Y, Liu C. The viscoelastic composite with interface debonding[J]. Composites Science and Technology.2008,68(15-16):3145-3149.
    [171]Gao J, Li Z, Meng Q, et al. CNTs/UHMWPE composites with a two-dimensional conductive network[J]. Materials Letters.2008,62(20):3530-3532.
    [172]Song Y S, Youn J R. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method[J]. Carbon. 2006,44(4):710-717.
    [173]Cai D, Song M. Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite[J]. Carbon.2008,46(15): 2107-2112.
    [174]Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon.2009,47(1):2-22.
    [175]Koshio A, Yudasaka M, Zhang M, et al. A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication[J]. Nano Lett.2001,1:361-363.
    [176]Xie H, Chen L. Adjustable thermal conductivity in carbon nanotube nanofluids[J]. Physics Letters A.2009,373(21):1861-1864.
    [177]Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites [J]. Computer Methods in Applied Mechanics and EngineeringMultiple Scale Methods for Nanoscale Mechanics and Materials.2004, 193(17-20):1773-1788.
    [178]Bi K, Chen Y, Yang J, et al. Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes[J]. Physics Letters A.2006,350(1-2):150-153.
    [179]袁亚湘,孙文瑜,石钟磁,李岳生.最优化理论与方法/计算方法丛书.科学出版社.1997年.
    [180]徐光宪,黎乐民,王德民.量子化学:基本原理和从头计算法.科学出版社.1980.
    [181]陈正隆,徐为人,汤立达.分子模拟的理论与实践.化学工业出版社.2007.第1版.
    [182]Vasili P, Tersoff J. Valence force model for phonons in graphene and carbon nanotubes[J]. Phys. Rev. B.2009,79:241409.
    [183]Wang J, Xie H, Xin Z. Thermal properties of heat storage composites containing multiwalled carbon nanotubes[J]. J. Appl. Phys.2008,104:113537.
    [184]Wang J, Xie H, Xin Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy.2010,84(2): 339-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700