基于场协同理论的纵向涡强化换热技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效节能技术特别是实用的高效强化传热技术广泛应用于石油、化工、能源、冶金、材料等工程领域以及航空、电子、核能等高科技领域。研究、发展和应用新型强化传热技术,将带来巨大的经济和社会效益。本文基于场协同强化原则,采用理论、数值方法和实验研究探求对流换热的强化与优化问题,在此基础上开发新的强化技术并在工业中获得应用。
    首先在粘性耗散一定的条件下以热量传递势容耗散取得极值为优化目标,运用变分方法导出了层流对流换热场协同方程。数值求解表明,管内层流对流换热的最优速度场为多纵向涡流态。然后,在理论上导出了紊流对流换热的整体换热性能与局域时均速度场和时均温度场的一般关系式,将对流换热的场协同强化原则扩展至湍流换热。这表明层流和湍流对流换的强化均可通过改善速度场和温度场的协同而获得。提出了采用多纵向涡强化管内对流换热的场协同强化方法,并进行了数值分析。结果表明,管内多纵向涡对层流和湍流换热的强化效果显著而流阻增加较少,具有优良的综合强化换热性能。
    根据理论和数值分析的结果,发明了两种多纵向涡强化换热管——交叉缩放椭圆管和不连续双斜内肋管,对其进行了实验和数值研究。交叉缩放椭圆管是通过椭圆截面的交叉变化诱导产生强烈的二次流和多纵向涡流,而不连续双斜向内肋管则是通过不连续的双斜向内肋对的作用形成强烈的多纵向涡。管内多纵向涡的存在改善了对流换热的速度场和热流场的协同程度,从而使换热获得了显著强化,而流阻增加较少。性能分析和比较表明,研发的两种新型强化换热管具有优良的综合换热强化性能。在此基础上开发了新型换热管的工业规模生产的制造工艺和设备,设计和制造出相应的新型换热器,并在整体性能实验的基础上将已其小批量应用于建筑和能源等领域,获得了较好的效果。
    由对流换热场协同强化原则指导研究开发的采用一次表面诱发多纵向涡强化传热技术,在换热器行业具有广阔的应用前景。
The high-efficiency energy conservation techniques, especially, the practical high-efficiency heat transfer enhancement techniques, have a bright application in many engineering fields, such as petroleum, petro-chemistry, energy, metallurgy, material, aerospace, electronics, and nuclear energy. The researches on the development and application of heat transfer enhancement techniques will create immense economic and social benefits. Based on the field-coordinated enhancement principle, the enhancement and optimization for convective heat transfer are studied by theoretical analysis, numerical simulation and experiments in this dissertation. According to the analytical, numerical and experimental results, new heat transfer enhancement techniques are developed and applied in engineering.
    Firstly, under the condition of constant viscous dissipation, the field coordination equation was induced for steady laminar convective heat transfer by the conditional variational principle based on the extremum principle of heat transport potential capacity dissipation. The numerical solution shows that the optimal velocity field for laminar convective heat transfer in tubes is multi-longitudinal vortex flow. Secondly, the relation between Nusselt number and the local time-averaged velocity and temperature fields of turbulent convection was theoretically induced, which expands the field-coordinated enhancement principle to turbulent convective heat transfer. It shows that both laminar and turbulent convective heat transfer can be enhanced by improving the coordination between the velocity and temperature fields. Consequently, a field coordinated enhancement method by longitudinal vortex flow for convective heat transfer enhancement in tubes is presented. The numerical analysis indicates that that the multi-longitudinal vortex flow in tubes can markedly enhance both the laminar and turbulent heat transfer with less additional increase of flow resistance.
    Tow multi-longitudinal vortex enhanced tubes, the alternating elliptical axis tube (AEA-tube) and the discrete double-inclined ribs tube (DDIR-tube), are invented according to the theoretical and numerical analysis. The experimental and numerical studies on the two enhanced tubes are performed. The strong multi-longitudinal vortex flow in the AEA-tube is induced by alternating change of the elliptical cross-section, and for the DDIR-tube, the strong multi-longitudinal vortex flow is
    
    induced by the effect of the discrete double-inclined ribs. The existence of the multi-longitudinal vortices in tube improves the coordination between the velocity and heat flux fields for convective heat transfer, and remarkably enhances the heat transfer with less resistance increase. The performance analysis and comparison show that the two novel enhanced heat transfer tubes have excellent performance. After simulation and experiments for the new enhanced tubes, the processing technology and equipment for the novel enhanced tube were developed for industry manufacture, and the new heat exchangers with AEA-tubes are designed and manufactured, some novel heat exchangers have been successfully applied in the fields of architecture and energy, their energy conservation effect is remarkable.
    The enhancement techniques multi-longitudinal vortex induced by the primal surface change developed based on the field-coordinated enhancement principle will have broad application in heat exchangers.
引文
[1] 顾维藻, 神家锐, 马重芳, 张玉明. 强化传热. 北京: 科学出版社, 1990
    [2] Bergles A E. Handbook of heat transfer applications. New York: McGraw-Hill, 1985
    [3] Bergles A E. Heat transfer enhancement-the encouragement and accommodation of high heat fluxes. ASME Journal of Heat Transfer, 1997, 119: 8-19
    [4] 王阳元, 康晋锋. 物理学研究与微电子科学技术的发展. 物理, 2002, 31(7):415-421.
    [5] 王阳元. 21世纪硅微电子技术展望. http://www.sica.org.cn/temp/zjlt.htm
    [6] 陈和平, 中国"十五"接纳计划及对策.能源研究与利用, 2001, 1:7-11
    [7] 《能源节约与资源综合利用"十五"规划》.国经贸资源〔2001〕1018号国家经贸委资源节约与综合利用司, 2001.10
    [8] 《国民经济和社会发展"九五"计划和2010年远景目标纲要》. 八届人大四次会议工作报告, 1996.3
    [9] 霍雅勤. 中国能源现状及可持续利用对策. 中国能源, 1999, 2:42-44
    [10] Bergles A E. Advanced enhancement - third generation heat transfer technology, or the 'final frontier'. Trans IChemE, 2001, 79:437-444
    [11] Bergles A E. ExHFT for fourth generation heat transfer technology. Experimental Thermal and Fluid Science, 2002, 26:335-344
    [12] Webb R L, Bergles A E. Heat transfer enhancement: second generation technology. Mechanical Engineering, 1983, 115(6): 60-67
    [13] Bergles A E. Some perspectives on enhanced heat transfer second Generation heat transfer technology. ASME Journal of Heat Transfer, 1988, 110: 1082-1096
    [14] Constantinos A. Balaras. A review of augmentation technigues for heat transfer in single-phase heat exchangers. Energy, 1990, 15(10):899-906
    [15] O'Connor J P, You S M. A painting technique to enhance pool boiling heat transfer in saturated FC-72. ASME Journal of Heat Transfer, 1995, 117:387-393
    [16] Eckels S J, Doerr T M, Pate M B. heat transfer and pressure drop of r-134a and ester lubricant mixtures in a smooth and a micro-fin tube:part I-evaporation. ASHRAE Transactions, 1994, 100(2):265-281
    [17] Eckels S J, Doerr T M, Pate M G. In-tube heat transfer and pressure drop of r-134a and ester lubrication mixtures in a smooth tube and a micro-fin tube:part II-condensation. ASHRAE Transactions, 1994. 100(2):283-294
    
    
    [18] Taslim M E, Li T, Spring S D. Measurements of heat transfer coefficients and friction factors in passages rib-roughened on all walls. Journal of Turbomachinery, Transactions of the ASME, 1998, 120(3 ):564-570
    [19] Fiebig M, Sanchez M A. Enhancement of heat transfer and pressure loss by winglet vortex generators in a fin-tube element. Compact Heat Exchangers for Power and Process Industries,1992,HTD-v201,ASME,New York, 7-14
    [20] Eason R M, Bayazitoglu Y, Miade A. Enhancement of heat transfer in square helical ducts. Int. J. Heat Mass Transfer,1994, 37:2077-2087
    [21] Fukusako S, Yamada M,Kimoshita K, et al. Boiling heat transfer in liquid-saturated porous bed,Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference,JSME,Tokyo,Japan and ASME,New York, 1991,v2:281-288
    [22] Lee J H,Singh R K. Mathematical models of scraped surface heat exchangers in relation to food sterilization. Chemical Engineering Communications, 1990, 87:21-52
    [23] Soria J, Norton M P. The Effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate. Experimental Thermal and Fluid Science, 1991, 4:226-238
    [24] Hong J S. The study of ultrasonic enhancement in phase-changer process,ASME paper No. 93-HT-2,1993
    [25] Ohadi M M, Nelson D A, Zia S. Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. Int. J. Heat Mass Transfer, 1991, 34:1175-1187
    [26] Inagaki T, Komori K. Experimental study of heat transfer enhancement in rurbulent natural convection along a vertical flow plate-part I:the effect of injection or sunction. Heat Transfer Japanese Research, 1993, 22:387-397
    [27] Ma C F, Zhaeng Q, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large prandtl number liquid. Int. J. Heat Mass Transfer, 1997, 40(6):1481-1500
    [28] Yilmaz M, Comakli O, Yapici S. Enhancement of heat transfer by turbulent decaying swirl flow. Energy Conversion and Management. 1999, 40(13):1365-1376
    [29] Bali T, Ayhan T. Experimental investigation of propeller type swirl generator for a circular pipe flow. International Communications in Heat and Mass Transfer. 1999, 26(1): 13-22
    [30] Saha S K, Dutta A, Dhal S K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. Int. J. Heat Mass Transfer, 2001, 44(22): 4211-4223
    
    
    [31] Kiml R, Mochizuki S, Murata A. Effects of rib arrangements on heat transfer and flow behavior in a rectangular rib-roughened passage: application to cooling of gas turbine blade trailing edge. Journal of Heat Transfer-Transactions of the ASME, 2001, 123(4): 675-681
    [32] Willett F T, Bergles A E. Heat transfer in rotating narrow rectangular ducts with heated sides oriented at 60 degrees to the r-z plane. Journal of Tubomachinery-Transactions of the ASME, 2001, 123(2): 288-295
    [33] Murata A, Mochizuki S. Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int. J. Heat Mass Transfer, 2001, 44(6): 1127-1141
    [34] Asmantas L A, Nemira M A, Trilikauskas V V. Coefficients of heat transfer and hydraulic drag of a twisted oval tube. Heat Transfer-Soviet Research (USA), 1985, 17(4): 103-109
    [35] Dzyubenko B V, Stetsyuk V N. Principles of heat transfer and hydraulic resistance in twisted tube bundles. Izvestiya an Sssr: Energetika i Transport (USSR), 1989, 27(4): 137-145
    [36] Dzyubenko B V, Stetsyuk V N. Principles of heat transfer and hydraulic resistance in twisted tube bundles. Power Engineering (USSR), 1989, 27(4): 128-136
    [37] Cho Y W, Chung S H, Shim J D, et al. Fluid flow and heat transfer in molten metal stirred by a circular inductor. Int. J. Heat Mass Transfer, 1999, 42(7): 1317-1326
    [38] Kemmere M F, Meuldijk J, Drinkenburg A H, et al. Development of batch emulsion polymerization processes. Chemical Engineering Communications, 2001, 186: 217-239
    [39] Webb R L. Principles of Enhanced Heat Transfer. John Wiley & Sons, New York, ISBN 0-471-57778-2 (1994)
    [40] 陈庚, 罗棣庵. 用大空隙率多孔体强化管内换热的研究. 工程热物理学报, 1995, 16(3): 245-248
    [41] 周定伟, 马重芳. 圆形液体浸没射流冲击核沸腾传热的实验研究. 自然科学进展, 2002, 2: 182-186
    [42] 陈听宽, 田永生, 陈宣政等. 顺排翅片管束加扰流件强化传热和阻力特性的试验研究. 化工机械, 1994, 21(3): 125-131
    [43] 胡振军, 神家锐. 离散倾斜肋的传热强化及流动特性. 工程热物理学报, 1995, 16(3): 327-332
    [44] 张寅平, 胡先旭等. 等热流圆管内潜热型功能热流体层流换热的内热源模型及应用. 中国科学:E辑. 2003, 33(3): 237-244
    
    
    [45] 田茂诚,周强泰等. 汽-水换热器内流体诱导振动强化传热试验. 化工学报, 2001, 52(3): 257-261
    [46] 顾维藻, 涂建平, 刘文艳等. 燃气轮机涡轮叶片冷却通道内的流动与传热研究. 工程热物理学报, 1996, (17)3: 323-327
    [47] 姚志彪. 环形管内涡旋流动特性及传热机理研究. 化学工程, 1997, 25(1): 17-19
    [48] 高文元, 孙以苓, 盛展武. 固流体波面板换热器振动强化传热的研究. 石油化工设备, 1997, 26(4):7-10
    [49] 张正国, 王世平, 林培森. 花瓣形翅片管的强化传热研究概况. 石油化工设备, 1997, 26(4): 1-14
    [50] 姜培学, 李勐, 马永昶等. 微型换热器的实验研究. 压力容器, 2003, 20(2): 8-12
    [51] 姚寿广, 周根明, 朱德书. 内插螺旋线圈管的强化传热试验及结构优化研究. 动力工程, 1998, 18(5): 29-31
    [52] 杜建通, 邹同华. 电场强化对流换热及其应用. 低温工程, 1999, (1): 27-30
    [53] 沈文生, 陈烈强, 马晓茜等. 强制对流开槽翅片的传热性能研究. 流体机械, 1999, (7): 51-55
    [54] 李瑞阳, 施伯红, 郁鸿凌等. EHD强化水平管外沸腾传热的试验研究. 工程热物理学报, 2000, 21(1): 97-100
    [55] 解旭斌, 王维城, 王栋. 高效传热管内凝结换热性能及阻力性能的实验研究. 工程热物理学报, 2000, 21(6): 742-745
    [56] 崔海亭, 姚仲鹏, 杨英俊. 单头"W"形螺旋槽管传热与流体力学特性研究. 热能动力工程, 2001, 16(2): 151-152
    [57] 赵晓曦, 邓先和, 陆恩锡. 菱形翅片管的强化传热特性. 化工科技, 2002, 5: 1-3
    [58] 钱颂文, 马小明,方江敏等. 三维整体对翅强化传热管的传热和压降性能研究与比较 . 化工学报, 2002, 53(7): 700-704
    [59] 周定伟, 刘登瀛. 声空化场强化单相对流传热的实验研究. 自然科学进展, 2002, 12(5): 553-556
    [60] Wang S, Li Z X, Guo Z Y. Novel concept and device of heat transfer augmentation. Proceedings of The 11th International Heat Transfer Conference, July 1998, Korea
    [61] 王崧. 纤毛状肋和插入物的传热强化研究: [博士学位论文]. 北京:清华大学力学系, 1999
    [62] 王崧, 李志信, 过增元. 纤毛肋强化管内对流换热. 清华大学学报(自然科学版), 2000, 40(4): 55-57
    
    
    [63] Xia Z Z, Li Z X, Guo Z Y. Study on convective heat transfer in fiber-finned ducts based on the concept of equivalent thermal conductivity. Third International Conference on Compact Heat Exchangers and Enhancement Technology for the Process Industries, 2001, Davos
    [64] 程林, 田茂诚, 林颐清等. 弹性管束汽-水换热器强化传热试验研究. 工程热物理学报, 2001, 22(2):199-202
    [65] Cheng Lin, Qiu Yan. The research of complex heat transfer enhancement by fluid induced vibration, J. Hydrodynamics, Ser. B, 2003, 1: 84-89
    [66] Cheng L, Tian M C, Zhang G M. Heat transfer enhancement by fluid induced vibration, Heat Transfer 2002, Proc. 12th Int. Heat Transfer Conf.
    [67] Guo Z Y. Mechanism and control of convective heat transfer - Coordination of velocity and heat flow fields. Chinese Science Bulletin, 2001, 46 (7): 596-599
    [68] Guo ZY, Li DY, Wang BX. A novel concept for convective heat transfer enhancement. International Journal of Heat And Mass Transfer, 1998, 41(14):2221-2225
    [69] 刘艳革, 许中义, 孙翰书. 新型螺旋槽管的轧制及其轧具的设计和制造. 石油化工设备, 1995, 24(6): 46-48
    [70] 张昌德. 列管式换热器螺旋槽管的轧制. 石油化工设备, 1997, 26(4):38-40
    [71] Ravigururajan T S, Bergles A E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Experimental Thermal and Fluid Science, 1996, 13: 55-70
    [72] Ravigururajan T S, Bergles A E. Optimization of in-tube enhancement for large evaporators and condensers. Energy, 1996, 21(5): 421-432
    [73] Gee D L, Webb R L. Forced convection heat transfer in helically rib-roughened tubes. International Journal of Heat and Mass Transfer, 1980, 23: 1127-1136
    [74] Ganeshan S, M.Raja Rao. Studies on thermohydraulics of single- and multi-start spirally corrugated tubes for water and time-independent power law fluids. International Journal of Heat and Mass Transfer, 1982, 25:1013-1022
    [75] 崔海亭, 袁修干, 姚仲鹏. 旋流管强化传热与流体动力学试验研究. 北京航空航天大学学报, 2002, 28(4):459-461
    [76] 吴慧英, 帅志明, 周强泰. 凝结换热器采用螺旋槽管的强化传热研究. 化工学报, 1997, 48(5): 626-630
    [77] 钱颂文,马小明, 王家中等. 螺旋槽管污垢特性研究. 制冷, 1995, 2:11-13
    [78] 马晓茜. 单头螺旋槽管作为中低压换热元件的可行性分析. 中国锅炉压力容器安全, 1996, 12(4): 13-15
    
    
    [79] 崔海亭, 袁修干, 姚仲鹏. 选用螺旋槽管经验计算公式问题的探讨. 石油机械, 2001, 29(7):42-44
    [80] 赵欣, 王瑞君, 姚仲鹏. 螺旋型表面强化管现状与进展. 石油化工设备, 2001, 30(3): 38-41
    [81] 吴云辉, 周强泰. 50286型锅炉空气预热器的改造. 锅炉技术, 2002, 33(4): 22-24
    [82] 修兴京. 螺旋槽管应用于空气预热器的改造分析. 西北电力技术, 2002, 30(4):56-58
    [83] 李治滨. 螺旋槽管强化传热原理及在石化装置上的应用前景. 石油化工设备技术, 2002, 23(2):8-10
    [84] 楼波, 梁平,龙新峰等.螺旋槽管用于凝汽器强化传热的改造分析. 中国电力, 2001, 34(10): 80-82
    [85] 何秀英, 徐国祥,李志富等. 螺旋槽管式空气预热器在100MW机组锅炉上的应用. 节能技术, 2000, 18(5):12-13
    [86] Vijayaraghavan Srinivasan, Christensen R N. Expermental investigation of heat transfer and pressure drop characteristics of flow through spirally fluted tubes. Experimental Thermal and Fluid Science, 1992, 5:820-827
    [87] Garimella S, Christensen R N. Heat transfer and pressure drop characteristics of spirally fluted annuli. Transactions of the ASME, 1995, 117: 54-68
    [88] Webb R L, Narayanamurthy R, Thors P. Heat transfer and friction characteristics of internal helical-rib roughness. Transactions of the ASME, 2000, 122: 134-142
    [89] Michael K.Jensen and Alex Vlakancic. Technical note - Experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes. International Journal of Heat and Mass Transfer,1999, 42: 1343-1351
    [90] Butterworth David , Insight:A twist in the tale, Chemical Engineer, 1997 , 9: 21-24
    [91] Butterworth, David, Design and application of twisted-tube exchanger, Advances in industrial heat transfer Conference(Birmingham),1996, pp87-95
    [92] 江楠,宏甄亮, 岑汉钊. 管壳式换热器强化传热研究进展. 化肥工业, 1998, (6): 27-32
    [93] 陆应生, 陈慕玲,潘宁忠等. 强化传热元件与高效换热器研究进展. 化工进展, 1998, (1): 46-48
    [94] 钱颂文, 方江敏, 江楠等. 扭曲管与混和管束换热器. 化工设备与管道, 2000, 37(2): 20-22
    [95] 思勤, 夏清, 梁龙虎等. 螺旋扁管换热器传热与阻力性能. 化工学报, 1995, 46(5): 601-607
    [96] 孟继安. 扭曲椭形截面换热管.中国专利ZL 00136122.8
    
    
    [97] 孟继安. 旋流高效换热器. 中国专利ZL98214433.4
    [98] "交叉椭形截面换热管及换热器的研制". 大庆石化公司科研报告(内部), 2001
    [99] 朱永红, 曹红科, 孙凤刚. 关于波纹管热器几个问题的探讨. 化肥设计, 2001, 39( 6):19-21
    [100] 王泓伟, 张志英. 波纹管式换热器的特性研究. 氮肥设计, 1994, 32(6):47-49
    [101] 曾敏,王秋旺, 屈治国等. 波纹管内强制对流换热与阻力特性的实验研究. 西安交通大学学报, 2002, 36(3): 237-240
    [102] 宋景东,徐志明,甘云华等. 波纹管传热与污垢性能的实验研究. 东北电力学院学报, 2003, 23(1): 6-9
    [103] 夏再忠. 导热和对流换热过程的强化与优化:[博士学位论文]. 北京: 清华大学力学系,2001
    [104] Jacobi A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices: a review of resent progress. Experiment Thermal and Fluid Science 1995, 11:295-309
    [105] Eibeck P A, Eaton J K. Heat transfer effects of a longitudinal vortex embedded in a turbulent boundary layer. J. of Heat Transfer , 1987, 109: 17-24
    [106] Pauley W R, Eaton J K. The effect of embedded longitudinal vortex arrays on turbulent boundary layer heat transfer. J. of Heat Transfer, 1994, 116:871-878
    [107] Russell C M B, Jones T V, Lee G H. Heat transfer enhancement using vortex generators. Heat Transfer 1982, Proc. Seventh Heat Transfer Conf., Vol. 3. pp. 283-288, Hemi- sphere, New York, 1982
    [108] Turk A Y, Junkhan G H. Heat transfer enhancement downstream of vortex generators on a flat plate, Heat Transfer 1986, Proc. Eighth lnt. Heat Transfer Conf.. Vol. 6, pp. 2903-2908, Hemisphere, New York, New York, 1986
    [109] Manohar S. Sohal, Kahoru Torii , James E. O'Brien, Gautam Biswas . Application of vortex generators and oval tubes to enhance performance of air-cooled condensers and other heat exchangers. New Energy Industrial Technology Development Organization (Research report)
    [110] 黄素逸, 叶加贵. 钢制椭圆管矩形翅片空冷器的研制应用. 石油化工设备技术, 1993, 14(6): 17-18
    [111] 苏华, 王厚华, 李惠风. 穿孔翅片管的实验研究及翅片效率分析.制冷, 2000, 3: 18-22
    [112] Fiebig M. Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int. J. Heat and Fluid Flow, 1995, 16: 376-388
    
    
    [113] Fiebig M, Kallweit P, Mitra N K. Wing type vortex generators for heat transfer enhancement. Heat Transfer 1986, Proc. Eighth Int. Heat Transfer Conf. , Hemisphere, New York, 1986, Vol. 6, pp. 2909-2913
    [114] Fiebig M, Kallweit P, Mitra N. Tiggelbeck, S. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp. Thermal Fluid Sci., 1991, 4: 103-114
    [115] Fiebig M. Vortices, generators and heat transfer. Trans. ICHemE, 1998, 76: 108-172
    [116] Biswas G, Mitra N K. Longitudinal vortex generators for enhancement of transfer in heat exchanger applications[C]. 11th IHTC, Kyongju, Korea , 1998, 5: 334-339
    [117] Pauley W R, Eaton J K. The effect of embedded longitudinal vortex arrays on turbulent boundary layer heat transfer. J. of heat transfer, 1994, 116:871-878
    [118] Riemann K A. W?rmeübergang und druckabfall in kan?len mit periodischen wirbelstr?mungen bei thermischem anlauf. Ph.D. thesis, Ruhr-Universit?t Bochum, Germany. 1992.(cited in [112])
    [119] Zhu J X, Mitra N K, Fiebig M. Effects of longitudinal vortex generators on heat transfer and flow loss in turbulent channel flow. Int. J. heat Mass Transfer, 1993, 36:2339-2347
    [120] Zhu J X, Fiebig M, Mitra N K. Numerical investigation of turbulent flows and heat transfer in a rib-roughened channel with longitudinal vortex generators. Int. J. heat Mass Transfer, 1995, 38:495-501
    [121] 王娴, 宋富强, 屈治国等. 场协同理论在椭圆型流动中的数值验证. 工程热物理学报, 2002, 23(1): 59-62
    [122] 杨茉, 赵明, 殷俊等. 场协同与对流换热的稳定性. 中国工程热物理学会传热传质学学术会议论文集, 青岛, 2001, pp. 136-140
    [123] 王建刚, 杨茉, 赵明等. 底部加热的低Prandtl数流体自然对流的分岔. 中国工程热物理学会传热传质学学术会议论文集, 青岛, 2001, pp. 141-150
    [124] 吴明, 何亚玲, 陶文铨等. 场协同理论对脉管制冷机研究的指导. 中国工程热物理年会论文集: 传热传质学, 青岛, 2001, pp. 161-165
    [125] Onsager L. Reciprocal relations in irreversible process II. Physical Review, 1931, 38: 2265-2279
    [126] Onsager L, Machlup S. Fluctuations and irreversible processes. Physical Review, 1953,91(6):1505-1512
    [127] Biot M A. Variational principles in irreversible thermodynamics with application to viscoelasticity. Physical Review, 1955, 97(6): 1463-1469
    
    
    [128] Biot M A. Themoelasticity and irreversible thermodynamics. Journal of Applied Physics. 1956, 27(3): 240-253
    [129] 杨东华. 不可逆过程热力学原理及工程应用. 北京:科学出版社, 1989
    [130] 曾丹苓. 工程非平衡热动力学. 北京:科学出版社, 1991
    [131] 过增元, 程新广, 夏再忠. 最小热量传递势容耗散原理及其在导热优化中的应用. 科学通报, 2003, 48(1).
    [132] 钱伟长. 粘性流体力学的变分原理和广义变分原理. 应用数学和力学, 1984, 5(3): 305-322
    [133] 孟继安. 交叉椭形截面换热管. 中国专利00136122.8
    [134] 孟继安. 不连续双斜向内肋换热管. 中国专利03138077.8
    [135] 陶文铨. 计算传热学的近代进展. 北京,科学出版社,2000
    [136] Demuren A O. Wilson, R.V. Estimating uncertainty in computations of two-dimensional separated flows. ASME J. Heat Transfer, 1994, 116:216-220
    [137] 陶文铨. 数值传热学. 西安,西安交通大学出版社,2003
    [138] Richardson L F. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to stresses and masonry dam, Trans. Royal Society of London, Ser A,1911,210:307-357(转自文献[137]
    [139] Roache P J. Prospective: A method for uniform reporting of grid refinement studies. ASME J. Fluids Eng., 1994, 116:405-413
    [140] Fluent6.0 使用手册
    [141] Kader B. Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transfer, 1993, 24(9):1541-1544
    [142] 刘征. 壁面温度测量及异形管管内对流换热的实验研究:[硕士学位论文]. 清华大学工程力学系, 2002
    [143] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows. Int Chem.Eng, 1976, 16:359-36
    [144] Frank P. Incropera, David P. Dewitt. Fundamentals of heat and mass transfer, John Wiley & Sons, Inc., 1996
    [145] Petukhov B S, Popov V N. Theoretical calculation of heat exchange and frictional resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties, High Temp. Heat Phys. 1963, 1: 69-83. (转自文献[144])
    [146] Sieder E N, Tate G E. Ind. Eng. Chem., 28, 1429, 1936. (转自文献[144])
    
    
    [147] Manglik R M, Bergles A E., Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes, Transactions of ASME, 1993, 115:881-896
    [148] Ravigururajan T S, Bergles A E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Experimental Thermal and Fluid Science, 1996, 13:55-70
    [149] 孟继安. 交叉椭形截面管换热器. 中国专利00136122.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700