华中亚热带红壤与水稻土磷素的形态与转化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷作为植物生长必需的大量营养元素,其在土壤中的转化、迁移及植物有效性一直是土壤和植物营养学家的研究热点。近年来,磷作为水体富营养化的重要控制元素影响水环境质量而日益受到人们的日益关注。提高农田土壤磷的利用率和降低磷在土壤中的累积和流失,从而减少磷对水环境的污染,对于磷肥资源的高效利用和保护环境都具有十分重要的意义。
     本论文在综述了土壤磷素的化学行为与农田生态系统磷素循环国内外研究进展的基础上,通过模拟培养实验、田间调查、田间定位试验与室内分析相结合的方法,研究了华中亚热带丘岗区红壤与水稻土磷素的形态与转化特点,内容包括添加有机物料和磷酸盐对红壤与水稻土微生物量磷和无机磷形态转化的影响,施用有机肥料、水旱轮作与地下水位变化对水稻土微生物量磷、无机磷形态及磷素有效性的影响;同时,还对江汉平原土壤磷素的分布、形态组成与循环进行了研究。研究的重点为旱地红壤及水稻土微生物量磷的转化与土壤无机磷转化之间的关系。所取得的主要结果如下:
     模拟培养试验验结果证明:(1)添加添加有机物料促进了土壤无机固定态磷的活化,土壤微生物对磷素的生物固持作用增强是其重要原因之一。添加葡萄糖和稻草极显著提高了红壤和红壤性水稻土微生物量磷含量,而土壤无机磷总量显著降低,其中红壤性水稻土主要是Fe-P含量降低,而旱地红壤主要是Al-P的降低。(2)添加葡萄糖促进了外加磷酸盐向土壤微生物量磷和其它非无机固定态磷的转化,减少了土壤无机矿物对磷酸盐的固定。在培养结束时,无外加葡萄糖碳源时所添加的磷酸盐几乎完全转化为土壤无机固定态磷;而在有外加葡萄糖碳源存在时,所添加的磷酸盐仅有46.5%转化为土壤无机固定态磷,而有53.5%转化为土壤微生物量磷和其它非无机固定态磷。
     田间定位试验结果表明:(1)长期施用有机肥使水稻土微生物磷含量极大地提高,土壤易溶态无机磷组分的比例增加,提高了磷素有效性。(2)水旱轮作下土壤微生物量磷含量呈显著上升,土壤微生物对磷素的同化作用增强;水旱轮作后土壤微生物量C/P比值显著降低,指示土壤微生物对有机物料的矿化具有较大释放磷的潜力,土壤微生物量磷对土壤有效磷库的补充作用加强,故水旱轮作有利于土壤磷素的活化。
     田间调查与定位观测研究结果表明:丘岗区潜育性水稻土地下水位的升降明显影响土壤有效磷的含量及土壤无机磷的形态,土壤有效磷、Fe-P和O-P均随地下水位的升高而显著下降。潜育性土壤有效磷、全磷和无机磷总量均比非潜育性土壤显著降低,丘岗区红壤性潜育化水稻土Fe-P和O-P的降低占无机磷降低总
    
    华中亚热带红攘和水稻土磷素的形态与转化过程
    量的89%,江汉平原长江冲积物发育的潜育性水稻土Ca一P的降低占无机磷降低总
    量的64%。从而揭示了土壤无机磷的损失是潜育性水稻土磷素有效性下降的重要
    原因之一。
     农田土壤磷素循环与平衡研究结果显示:江汉平原水稻土几种主要和植制度
    下农田土壤磷素输入量变化在36.4一52.45 kg/hmZ.yr之间,平均为41.65
    kg/h mZ.yr;磷素的输出量变化在24.5~39.6 kg/hmZ.yr之间,平均为29.0
    kg/h mZ.yr。农田土壤磷素的输入输出均呈盈余状态,其盈余量为2.:;一27.9
    kg,/h mZ.yr,输入与输出量的比值(I/0)为1 .06一1 .88,指示该地区农田正发生
    着土壤磷素的累积。
Studies on chemical transformation and translocation of phosphorous in soil and its availability to crops have been permanent research topics in soil and plant nutrition science since phosphorous is distinguished to be one of the essential macro nutrients for plant growth. With an increasing concern on environmental issues in recent years, phosphorous as a key chemical element for eutrophication control has been focused by more and more environmentalists. From viewpoint of both high efficient use of resources and environment protection, it is of great significance to increase utilization of phosphorous by plants, decrease phosphorous accumulation in soil and reduce phosphorous loss from soil.
    Based on a review of research development on chemical behaviors of phosphorous in soil and its cycling in agroecosystem, this dissertation dealt with chemical fractions, transformation and cycling of phosphorous in red soil and paddy soil of subtropics in central China, using techniques of laboratory incubation, field investigation and field experiments. Research aspects contained effects of organic material and phosphate addition on transformation of microbial biomass P and inorganic P fractions in red soil and paddy soil, effects of different fertilizer treatments, paddy-upland rotation and changes of groundwater level on microbial biomass P, inorganic P fractions and its availability to crops, as well as distribution, inorganic fractions and cycling of phosphorous in an alluvial plain etc. Emphasis was focused on the relation of changes of microbial biomass P to inorganic P transformation in soil. The main results were showed as follows:
    (1) Incubation experiment by using the paddy soil developed from Quaternary red soil showed that total inorganic P in paddy soil with organic materials addition
    (glocuse and rice straw) significantly decreased compared to the control without organic materials addition, where the decrease of total inorganic P was dominantly caused by release of iron phosphate (Fe-P) . On the other hand, soil microbial biomass P was significantly raised by organic materials addition. So it was suggested that possibly phosphorous immobilization mediated by soil microorganisms resulted in the release of phosphorous fixed by soil inorganic particles.
    (2) Incubation experiment by using the upland red soil derived from Quaternary red clay indicated that total inorganic P in red soil was also significantly reduced and microbial biomass P was markedly raised by glucose addition. What was different from the case in paddy soil was that total inorganic P decrease was dominated by Al-P
    
    
    decrease, accounting for more than 60% of total inorganic P decrease. Following 60 days incubation, almost all the phosphate added into the soil in the treatment cf single phosphate addition was transformed into inorganic P forms fixed by the soil minerals. However, in the treatment of phosphate combined with glocuse addition, only 46.5% of applied phosphate was transformed into inorganic P forms fixed by soil inorganic minerals and 53.5% of that was transformed into other forms of phosphorous non-fixed by soil inorganic minerals such as microbial biomass P. It was assumed that addition of organic carbon into upland red soil stimulated the transformation of applied phosphate into microbial biomass P and other forms of phosphorous non-fixed by inorganic minerals, and possibly reduced the fixation of applied phosphaU by soil inorganic minerals.
    (3) Long-term field experiments proved that microbial biomass P in pacdy soils were greatly raised by long-term application of organic manure combinsd with chemical fertilizer, otherwise, there were minor or no increase of microbial bi Dmass P in paddy soils under the condition of long-term application of single chemical fertilizer. Both Al-P and Fe-P as a percentage of the total inorganic P presented an increase tendency and O-P as a percentage of the total inorganic P showed a decrease tendency in all the treatments with organic manure application. Thus, it was concluded that organic m
引文
1.王岩,沈其朵。史瑞和,黄尔迈.有机、无机肥料施用后土壤微生物量C、N、P的变化及氦素转化。土壤学报.1998,35(2):227-234
    2.王光火.朱祖祥,土壤利高岭石与磷酸根反应动力学。浙江农业大学学报,1988,14(4):364-370
    3.王光火,朱祖祥,石灰性土壤与磷酸盐反应及吸附态磷的同位素交换。土壤学报,1993,30(4):374-379
    4.中国科学院南京土壤研究所,中国士壤。科学出版社:1978,367-391
    5.尹金来,沈其荣,周春林等,猪粪和磷肥对石灰性土壤无机磷组分及有效性的影响。中国农业科学,34(3):296-300
    6.尹瑞龄,我国早地土壤的溶磷微生物。土壤,1988,20(5):243-246
    7.冯固,杨茂秋,白灯莎,用~(32)P示踪研究石灰性土壤中磷素的形态及有效性的变化。土壤学报,1996,33(3):301-306
    8.史瑞和,江苏省几种土壤磷素状况和磷肥肥效。土壤学报,1962,10:374-379
    9.刘凡,介小磊.贺纪正等,不同pH条件下针铁矿表面磷的配位形式及转化特点。土壤学报,1997,34:367-374
    10.刘小虎.皱德乙,刘新华等,长期轮作施肥对棕壤有机磷组分及其动态变化的影响。土壤通报,1999,30(4):20-26
    11.刘建铃,张福锁,小麦-玉米轮作长期肥料定位试验中土壤磷库的变化.Ⅱ.土壤01sen-P及各形态无机磷的动态变化。应用生态学报,2000,11(3):365-368
    12.刘建铃,李仁岗.张凤华.栗钙土磷肥转化与效应研究。植物营养和肥料学报,1996.2(3):206-211
    13.刘淑欣,熊德中,土壤吸磷与供磷特性的研究,土壤通报,1989,20(4):147-149
    14.刘鸿翔,王德禄等,黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化,Ⅲ土壤养分收支。2002,应用生态学报,13(11):1410-1412
    15.刘增文,李玉山,刘秉正,王佑民.黄土残塬沟壑区刺槐人工林生态系统的养分循环与动态模拟。西北林学院学报,1998,13(2):34-40
    16.向万胜,童成立,吴金水,李学垣.湿地农田土壤磷素的分布、形态与有效性及磷素循环。生态学报,2001.21(12):2067-2073
    17.向万胜、古汉虎,湖北江汉平原四湖地区湿地农田土壤的养分状况及主要障碍因子。土壤通报,1997,28(3):119~120。
    18.吕家珑,张一平等。陕西几种土壤磷吸附动力学特征及过渡态理论运用的研究。土壤通报.1997,28(3):112-115
    19 吕宗珑,李祖荫,石灰性土壤固磷机制的探讨。土壤通报,1991,22(5):204-206
    
    
    20.安卫红,张淑民,石灰性土壤无机磷的分级及其有效性研究。土壤通报,1991,22(1)34-37
    21.庄恒扬,曹卫星,沈新平,陆建飞,麦—稻两熟集约生产土壤养分平衡与调控研究。生态学报,2000,20(5):766-770
    22.成瑞喜,刘景福,徐芳森,磷肥对中酸性土壤无机磷形态转化及其有效性的影响。土壤,1996,28(2):225-228
    23.成瑞喜,贾平,中酸性土壤无机磷形态及生物有效性。热带亚热带土壤科学,1998,7(1):6-10
    24.朱荫湄,鲁如坤,顾益初,时正元,磷肥在土壤中的形态转化。土壤,13(4):130-133
    25.何电源,潜育化水稻土的改良,中国土地退化防治研究(中国科学院技术协会学会工作部编)。北京:中国科学技术出版社,1990,340-345。
    26.何电源,廖先苓,稻田合理施用石灰的试验研究。土壤通报,1989,20(3):108-112
    27.何振立,土壤微生物量及其在养分循环和环境质量评价中的意义。土壤,1997,(2):61-69
    28.何振立.土壤微生物量的测定方法:现状和展望。土壤学进展,1994,22(4):36-42
    29.何振立,袁可能,朱祖祥,评价土壤磷素植物有效性的物理化学指标。土壤学报,1991,28(3):302-308
    30.余慎,李振高,熏蒸提取法测定土壤微生物量研究进展。土壤学进展,1994,22(6):42-50
    31.吴金水,肖和艾,陈桂秋,黄敏,旱地土壤微生物磷测定方法研究。土壤学报,2003,40(1):70-77
    32.吴金水,土壤有机质及其周转动力学,中国南方土壤肥力与栽培植物施肥。北京,科学出版社,28-62。
    33.张扬珠,蒋有利,稻作制、有机肥和地下水位对红攘性水稻土磷的吸持作用的影响。土壤学报,1998,35(3):328-336
    34.张宝贵,李贵桐,土壤生物在土壤磷有效化中的作用。土壤学报,1998,36(1):104-111
    35.张素君,张蚰南,刘鸿祥,王德禄,东北黑土地区农业中磷肥残效的研究。土壤通报,1994,25(4):178-180
    36.张新民,广东省主要母质发育水稻土对磷素的吸附解吸特性。广州:华南农业大学博士后研究工作报告,2000,28-37。
    37.张福锁 主编,土壤与植物营养研究新动态(第一卷)。北京:北京农业大学出版社,1992,94-101
    38.李庆逵,磷肥品种、土壤性质和植物营养关系。土壤学报,1966,(1):117-122
    39.李祖荫,石灰性土壤中粘粒与碳酸钙的固磷作用。土壤肥料,1983(2):13-17
    40.李祖荫,吕家珑,碳酸钙和物理性粘粒固磷特性的研究。土壤,1995,27:304-310。
    41.杨钰,阮晓红,土壤磷素循环及对土壤流失的影响。土壤与环境,2001,10(3):256-258
    42.杨秋忠等,台湾土生固氮溶磷铁菌特性之研究。中国农业化学会志,1998,36(2):201-270
    
    
    43.沈汉,从农田土壤养分的10年演变看北京市今后施肥方向与策略。北京农业科学.1996,14(3):1-4
    44.沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性。土壤学报,1992.29(1):80-85
    45.沈仁芳,蒋柏藩.黄淮海地区土壤对磷的吸附与解吸特性。土壤,1993,25(1):68-70
    46.沈其仁,王岩,史瑞和,土壤微生物量和土壤固定态铵的变化及水稻对残留N的利用。土壤学报.2000.37(3);330-337
    47.沈其仁,余铃,刘兆普等,有机无机肥配合施用对滨海盐土土壤微生物量态氮及土壤供氮特征的影响。土壤学报,1994.31(3):287-294
    48.沈善敏,农业生态系统中与主要营养元素循环及农田土壤养分收支平衡.中国土壤肥力(沈善敏主编)。北京:中国农业出版社.1998,80-83
    49.沈善敏,廉鸿志,张璐,宇万太,磷肥残效及农业系统养分循环再利用中长期试验。植物营养与肥料学报,1998,4(4):338-344
    50.陆文龙.张福锁,曹一平等,低分子有机酸对石灰性土壤磷吸附动力学的影响。土壤学报,1999,36(2):189-197
    51.陈实,殷秀岩,张路,沈善敏,农业生态系统磷肥残效及磷循环研究Ⅳ农业系统磷循环的一个简单模型及其验证。应用生态学报,1994,5(3):256-262
    52.陈水土,阮五崎,九龙口、厦门西海域磷的生物地球化学研究,Ⅲ生物活动参与下的磷形态转化及磷循环估算。海洋学报,16(2):63-71
    53.陈国潮,土壤微生物量测定方法现状及其在红壤上的应用。土壤通报,1999,30(6):284-288
    54.陈国潮,何振立.黄吕勇,菜茶果园红壤微生物量磷与土壤磷以及磷植物有效性之间的关系研究。土壤学报,2001,38(1):75-80
    55.陈金林,姜志林,张武兆等,苏南丘陵次生枥林生态系统磷素循环的系统分析与预测。生态学杂志,2000,19(1):1-5
    56.周文龙,张福锁,曹一平,植物根际pH及其效应。土壤与植物营养研究新动态,北京农业大学出版社,1991:40-49
    57.孟赐福,傅庆林,施石灰石粉后红壤化学性质的变化。土壞学报,1995,32(3):300-307
    58.林启美,土壤可溶性无机磷对微生物生物量磷测定的干扰。生态学报,2001.21(6):993-996
    59.郑春荣.陈怀满,周东美等,土壤中积累态磷的化学耗竭。应用生态学报,2002,13(5):359-363
    60.姚槐应,何振立,黄昌勇,红壤微生物量氮的周转期及其研究意义。土壤学报,1999,36(3):387-394
    61.赵晓齐.鲁如坤,有机肥对土壤磷素吸附的影响。土壤学报,1991,28(1):7-14
    62.赵晓齐.鲁如坤,施用石灰对土壤吸附磷的影响。土壤.1991,23:82-86。
    
    
    63.殷仕学,土壤微生物生物量及其与养分循环关系的研究进展。土壤学进展,1993,21(4):1-8
    64.秦祖平,徐琪,熊毅,太湖地区两种稻麦轮作制中营养元素循环。生态学报,1989,9(3):245-251
    65.莫淑勋,有机肥料中磷及其与土壤磷素肥力的关系。土壤学进展,1992,20(9):1-9
    66.莫淑勋,钱菊芳,钱承梁,猪粪等有机肥料中磷素养分循环再利用的研究。土壤学报,1991,28(3):309-315
    67.袁可能,植物营养元素的土壤化学。北京:科学出版社,1983,110-163
    68.郭智芬,徐书新,石灰性土壤不同形态无机磷对作物磷营养的贡献。中国农业科学,1997,30(10):26-32
    69.顾益初,钦绳文,草地土壤长期定位试验残留磷的转化与有效性。土壤,1997,(1)13-17
    70.顾益初,蒋柏藩,石灰性土壤无机磷的测定方法。土壤,1990,22(2)101-102
    71.顾益初,蒋柏藩,鲁如坤,风化对土壤粘粒中磷素形态转化及其有效性的影响。土壤学报,1984,21(2):134-143
    72.高超,张桃林,吴蔚东,不同利用方式下农田土壤对磷的吸持与解吸特征。环境科学,2001,22(4):67-71
    73.高云超,朱文珊,陈文新,土壤微生物生物量周转的估算。生态学杂志,1993,12(6):6-10
    74.曹一平,崔健宇,石灰性土壤中油菜根际磷的化学动态及生物有效性。植物营养与肥料学报,1994,1(试刊):49-54
    75.曹志红,李庆逵,黄土性土壤对磷的吸附与解吸。土壤学报,1988,25:218-226。
    76.盛学斌,孙建中,关于土壤磷素研究的现状与趋向。环境科学进展,1995,3(2):11-21
    77.章永松,林含永,倪咸永,有机肥对土壤磷吸附—解吸的直接影响。植物营养与肥料学报,1996,2(3):200-205
    78.章永松,林咸永,有机肥(物)土壤中磷的活化作用机理研究Ⅰ有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用。植物营养与肥料学报,1998,4(2):145-150
    79.龚子同,韦启璠,黄戊,吴志东,关于水稻土的次生潜育化问题。土壤学报,1981,18:(2):122-134。
    80.龚子同,张效朴,韦启璠,我国潜育化水稻土的形成、特征及增产潜力。中国农业科学,1990,23(1):45~53。
    81.傅庆林,易旱农田生态系统养分循环的研究。应用生态学报,1993,4(2):146-149
    82.程传敏,曹翠玉,干湿交替过程中石灰性土壤无机磷的转化及有效性。土壤学报,1997,34(4):381-391
    83.蒋柏藩,石灰性土壤无机磷有效性的研究。土壤,1992,24(2):61-64
    84.蒋柏藩,顾益初,石灰性土壤无机磷分级体系的研究。中国农业科学,1989,22(3):58-66
    
    
    85.蒋柏藩,鲁如坤。顾益初.时正元,南方水稻土中磷酸铁对水稻磷素营养的意义。土壤学报。1963,11(4):361-369
    86.鲁如坤.土壤磷素化学研究进展。土壤学进展,1990.(6):1-5
    87.鲁如坤,水稻土磷素化学和有效施用磷肥。磷肥和复肥,1993,(1):84-86
    88.鲁如坤.刘鸿祥.闻大中等,我国典型地区农业生态系统养分平衡和循环研究Ⅱ农田养分收入参数。1996b,土壤通报,27(4):151-154
    89.鲁如坤,刘鸿祥.闻大中等,我国典型地区农业生态系统养分平衡和循环研究Ⅰ农田养分支出参数。1996a,土壤通报,27(4):145-151
    90.鲁如坤,刘鸿祥,闻大中等.我国典型地区农业生态系统养分平衡和循环研究Ⅳ农田养分平衡的评价方法和原则。土壤通报,1996c,27(5):197-199
    91.鲁如坤,刘鸿翔,闻大中等,我国典型地区农业生态系统养分循环和平衡研究Ⅲ全国和典型地区养分循环和平衡现状。土壤通报,1996d,27(5):193-196
    92.鲁如坤.时正元,施建平,我国南方六省农田平衡现状评价和动态变化研究。中国农业科学,2000,33(2):63-67
    93.鲁如坤,时正元。钱乘梁,土壤积累态磷研究Ⅲ几种典型土壤中累积态磷的形态特征及其有效性。土壤,1997,28(2):57-75
    94.鲁如坤,时正元,顾益初,土壤积累态磷研究Ⅱ磷肥的表观积累利用率。土壤,199,26(6):286-289
    95.熊恒多,李仕俊.范业宽,酸性土壤有机磷分级的探讨。土壤学报,1992,30(4):390-399
    96.裴洪平,王微微,何金土.周宏.杭州两湖引水后生态系统中磷素循环模型。生态学报,18(6):648-653
    97.薛泉宏,尉庆丰,薛喜乐,黄土性土壤在连续液流条件下吸附、解吸磷酸根的动力学研究。土壤学报,1995,32(2):142-150
    98. Amrani M., Westfall D. G., Moughli. Phosphate sorption in calcareous Moroccan soils as affected by soil properties. Communication in Soil Science and Plant Analysis, 1999,30(9&10):1229-1314
    99. Anderson G. Soil Organic Components. Vol.1, Springer Verlag, N. Y. 1975, 305-331
    100. Anderson J. P. E., and Domsch K.H. Mineralization of bacteria and fungi in chloroformfumigated soils. Soil Biology and Biochemistry. 1978, 10:207-213
    101. Anderson T H and Domsch K H. Ratios of microbial biomass o total organic carbon in arable soils, Soil Biology and Biochemistry, 1989, 21: 471-479
    102. Appelt H. et al., Effect of organic compounds on the adsorption of phosphate. Soil Science Society of America Procedure 1975, 34, 628-630.
    103. Archer J. R., Marks M. J.. Control of nutrient losses to water from agriculture in Europe. Proceedings No. 405 of the Fertilizer Scociety, 1997.
    
    
    104. Aslam T, Choudhary M A , and Saggar S, Tillage impacts on soil microbial biomass C, N and P, earthworms and agronomy after two years of cropping following permanent pasture in New Zealand, Soil & Tillage Research, 1999, 51:103-111
    105. Bache B.W. Aluminum and iron phosphate studies relating to soils.ⅡReaction between phosphate and hydrous oxides. Journal of Soil Science, 1975, 15:110-117
    106. Baker J.M. et al., Critical N, P and K levels in winter wheat . Communication in Soil Science and Plant Analysis, 1985,4:347-358
    107. Bar Yosef B. Roots exertions and their environmental effects. Influence on availability of phosphorous, in plant roots, the hidden half (Yoav Weisel et al. eds.) New York, Hong Kong, Marcel Dekker Inc. 1991,529-557
    108. Barajas M. and Brookes PC., Effects of heavy metals from a mine in Gipuzkoa, Spain on soil microbial biomass and organic matter dynamics. Trans. 15th World Congress of Soil Science, Acapulco, Mexico, 1994, V4b:60-61
    109. Barber S.A. Soil nutrient bioavailability: A mechanistic approach. NY: John wiley & Sons, 1984. 114-136
    110. Barrow N.J. Evaluation and Utilization of Residual Phosphorous in Soil. In: The Role of Phosphorous in Agriculture (eds by Khasawneh et al.), 1990, 333-355
    111. Batra M.L., Chaudhryb M.L. Transformation of native and applied phosphorous in soil as affected by moisture regimes under black gram. Journal of Indian Society of Soil Science,1988, 36:714-718
    112. Bhatti J.S., Comerford N.B. and Johnston C.T. Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a spodic horizon. Soil Science Society of American Journal, 1998,62:1089-1095
    113. Borggaard O.K., Jorgensen S.S., Moberg J.P., Raben-Lange Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. Journal of Soil Science, 1990,41:443-449
    114. Bowmen R.A. and Cole C.V. An exploratory method for fractionation of organic phosphorous from grassland. Soil Science, 1978, 125:95-101
    115. Brookes P C , Powlson D S and Jenkinson D S . Phosphorus in the soil microbial biomass, Soil Biology and Biochemistry , 1984,16:169-175
    116. Brookes P C, Powlson D S and Jenkinson D S, Measurement of microbial biomass phosphorus in soil, Soil biology and Biochemistry, 1982, 14:319-329
    117. Brookes P.C. and Chander K., Effects of heavy metals at around current permitted EC limits on the synthesis and turnover of the soil microbial biomass. Trans, 15th World Congress of Soil Science, Acapmlco, Mexico, 1994, V4b:58-59
    
    
    118. Campbell C.A., Zentner R.P. Overwinter changes in Olsen phosphorous in a 14-years crop rotation study in southwestern Saskatchewan. Canadian Journal of Soil Science, 1993, 73:123-128
    119. Carreira J.A., Lajtha K. Factors affecting phophate sorption along a Mediterranean dolomitic soil and vegetation chronosequence. European Journal of Soil Science, 1997,48:139-149
    120. Chang S.C. and Jackson M.L. Fractionation of soil phosphorous in soils. Soil Science, 1957, 84:1334-1447
    121. Chapelle A. A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecological Modelling, 1995,80:131-147
    122. Chaussod R., Houot S., Guiraud D. and hetier J.M., Size and turnover of the microbial biomass in agricultural soils: laboratory and field experiments, In: Nitrogen Efficiency in Agricultural soils, Jenkinson D.S. and Smith K.A. (eds). Elsevier Applied Science, Amsterdam, 1988, pp312-326
    123. Chen J.H., Barber S.A. Effect of liming and adding phosphate on predicted phosphorous uptake by maize on acid soils of three soil orders. Soil Science Society of American Jounal, 1990,58:1424-1431
    124. Chien S.H. et al. Supersaturation phenomena and the formation of fluorapatite in aqueous suspensions of phosphate rock. Soil Scinece Society of American Proceedings, 1975, 39:43
    125. Chien S.H..Clayton W.R. Application of elpvich equation to the kinetics of phosphate release and sorption in soil. Soil Science Society of American Journal, 1980, 44:260-264
    126. Collins H P, Rasmussen P E. Crop rotation and residue management effects on soil carbon and microbial dynamics, Soil Science Society of American Journal, 1992, 56:783-788
    127. Cox, F. R. et al. A descriptive model of soil test nutrient levels following fertilization. Soil Science Sciety of American Journal, 45:529-532
    128. Crank J.The Mathmatics of Diffusion. Oxford: Clarendon Press, 1975
    129. Dale W. Johnson, Trine Sogn, Sheila Kvindesland. Forest Ecology and Management 138:91-106
    130. Damodar Reddy D., Subba Rao I. V. 1991. Investigations on crop response to applied phosphorus utilization in soybean-wheat system on Vertisols in response to integrated use of manure and fertilizer phosphorus. Field Crop Research 62:181-190.
    131. Daniel T.C., Sharpley A.N., Edwards D.R. et al. Minimizing sueface water eutrophication from agriculture by phosphorous management. Journal of Soil and Water Conservation, 1994, 49:30-38
    132. Darbisher F. V. and Russell E. J. Oxidation in soils, and its relation to productiveness. Part Ⅱ. The influence of partial sterilization. Journal of Agriculture Science, 1907, Cambridge 2:
    
    305-326
    133. Dictor M. C. Tessier L. and Soulas G. Reassessement of the KEC coefficient of Fumigation-extraction method in a soil profile. Soil Boilogy and Biochemistry. 1998, 30(2) : 119-127
    134. Donahue R.L., Miller R.W., Shickluna J.C. Soils in introduction to soils and plant growth. New York N.Y.: Prentice-Hall, 1983
    135. Earl K.D., Syers J.K.,McLaughlin J.R. Origin of the effects of citrate, tartrate and acetate on phosphate sorption by soils and synthetic gels. Soil Science Society of American Jounal, 1979,43:674-678
    136. Eze O.C., Loganathan P. Effect of pH on phosphate sorption of some Paleudults of southern Nigeria. So/7 Science, 1990,150:613-621
    137. Fengmao Guo, Russell S Yost. Partitioning soil phosphorous into three discrete pools of differing availability. Soil Science, 1998, 163(10) :822-831
    138. Fife C.V. An evaluation of amomonia fluoride as a selective extractant for aluminum-bound soil phosphate: Ⅱ. Preliminary studies on soils. Soil Science, 1959, 87:83-88
    139. Fife C.V. An evaluation of amomonia fluoride as a selective extractant for aluminum-bound soil phosphate: Ⅲ. Detailed studies on selected soils. Soil Science, 1962, 93:113-123
    140. For R.H., Withers P.J.A. The contribution of agricultural phosphorous to eutrophication. Proceedings No. 365 of the fertilizer Society, 1995
    141. Forth H.D. Fundamemtal of Soil Science ,10th Edition, John Wiley and Sons, 1978
    142. Fox T R , Comeford N.B. Mcfee W.W. , Phosphorus and aluminum release from a spodic horizon mediated by organic acids, Soil Science Society of American Journal, 1990, 54: 1763-1757
    143. Freedman B. The impacts of pollution and other stresses on ecosystem structure and function. San Diego: Academic Press Inc. 1989
    144. Freese D., Van der Zee ,Van Riemsdijk W.H. Comparison of different models for phosphate sorption as a function of the iron and aluminum oxides of soils. Journal of Soil Science, 1992,43:729-738.
    145. Frissel M.J.(ed), Cycling of Mineral Nutrients in Agricultural Ecosystem. Elsevier Scientific Publication Company, 1976, pp3-16, 277-316
    146. Fuller, W H , Nieslen, D R , and Miller, R W , Some factors influencing the utilisation of phosphorus from crop residues, Soil Scinece Society of American Proceedings 1956, 20: 218-224
    147. Glendining M.J., Powlson D.S., Poulton P.R. et al, The effects of long-term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment. Journal of
    
    Agricultural Science, 1996, 127:347-363
    148. Hasta P. L., Kenji K. and Tadao A. Phosphorus requirements of microbial biomass in a regosol and an andosol. Soil Biology and Biochemistry, 1998, 30:865-872.
    149. He D.Y, Liao X.L. and Wan C.L. et al. Nutrient supplying characteristics of gleyed paddy soil, Current Progress in Soil Research in People's Republic of China. Nanjing: Jiansu Science and Technology Publishing House. 1985, 352-364.
    150. He Z L and Zhu J. Transformation kinetics and potential availability of specifically-sorbed phosphate in soils, Nutrient Cycling in Agroecosystems , 1998, 51:209-215
    151. He Z L, Wu J , O'Donnel A G and Syers J K Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture, Biology and Fertility of Soil, 1997, 24:421
    152. He Z. L. and Zhu J. He Z. L. and Zhou J. Transformation and bioavailability of specifically sorbed pjosphate on variable-charged minerals in soils. Biology and Fertility of Soils , 1997 , 25:175-181.
    153. He Z. L., Wilson M.J., CambellC. O., Edwards A. C. and Chapman S.J. Distribution of phosphorous in soil aggregate fractions and its significance with regard to phosphorous transport in agricultural runoff. Water, Air and Soil Pollution, 1995, 83:69-84.
    154. He Z. L., Yuan K. N. and Zhu Z. X. Phosphate desorptivity from some important clay minerals and typical groups of soil in China: 1. Hysteresis of adsorption and desorption. Ada Agriculturae Universitatis Zhejiangensis ,1988, 14:256-263 (in Chinese).
    155. He Z. L., Yuan K. N. and Zhu Z. X. Assessing the fixation and availability of phosphate sorbed onto variable-charge surface using an isotopic exchange method. Journal of Soil Science, 1991, 42: 661-669.
    156. Heckrath G., Brookes P.C. and Poultion P.R. et al Phosphorous leaching form soils containing different phosphorous concentrations in the broadbalk experiment. Journal of Environment Quality, 1995,24:904-910
    157. Hedley M J , Stewart J W B and Chauhan B S . Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation. Soil Science. Society of American Jounal 1982, 46:970-975
    158. Hedley M.J., Stewart W.B. and Chauhan B.S. 1982 Changes in inorganic and organic soil phosphorous fractions induced by cultivation practices and by laboratory incubation. Soil Science Society of American Journal, 46:970-976.
    159. Hsu P.H. and Jackson M.L. Inorganic phosphate transformations by chemical weathering in soil as influenced by pH. Soil Science,1960,90:16
    160. Illmer P , Barbaato A and Schineer F . Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms, Soil Biology.and Biochemistry, 1995, 27:265-270
    
    
    161. Illmer P, Schineer F . Solubilizatioh of inorganic phosphates by microorganisms isolated from forest soils [J]. Soil Biology.and Biochemistry, 1992, 24: 389-395
    162. Insam H , Mitchell C C , Dormaar J F . Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biology.and Biochemistry, 1991, 23:459-464
    163. Insam H , Parkinson, D and Domsch, K H . Influence of macroclimate on soil microbial biomass, Soil Biology.and Biochemistry, 1989, 21 (2) : 211-221
    164. Insam H. Developments in soil microbiology since the min 1960s. Geoderma, 2001, 100:389-402
    165. Jawson M.D., Franzluebbers A.J. Galusha D.K. Soil fumigation within monoculture and rotation: response of corn and mycorrhizae. Agronomy Journal, 1993, 85:1174-1180
    166. Jenkinson D S and Parry L N. The nitrogen cycle in the Broadbalk wheat experiment, a model for the turnover of nitrogen through the soil microbial biomass. Soil Biology.and Biochemistry 1989,21:535-541
    167. Jenkinson D. S. and Powlson D. S. The effects of biocidal treatments on metabolism in soil-I . Fumigation with chloroform. Soil Biology and Biochemistry. 1976, 8: 167-177
    168. Jenkinson D.S., Hart P.B.S., Payner J.H. and Parry L.C., Modelling the turnover of organic matter in long-term experiments at Rothamsted, In: Soil organic matter dynamics and soil productivity, J.Ⅱ. Cooley(ed), 1987,INTECOL Bullitin 15, 1-8
    169. Jenkinson D.S.Studies on the decomposition of plant materials in soil. Ⅱ partial sterilization of soil and the soil biomass. Journal of Soil Science, 1966, 17: 280-302.
    170. Jiang B-F and Gu Y-C A suggested fractionation scheme of inorganic phosphorus in calcarous soils. Fertilizer Research, 1989, 20:159-165.
    171. Joergensen K..G. Microbial biomass phosphorous in soils of beech (Fagus sylvtica L.) forests, Biology and Fertility of Soils, 1995,19:215-219
    172. Jogensen S.E. An eutrophication model fora lake. Ecological Modelling, 1976, (2) :147-165
    173. Jones J.P. et al., phosphorous sorption isothems for fertilizer P needs of sweet corn (Zea mays) grown on a high phosphorous fixition soil. Communication in Soil Science and Plant Analysis. 6:465-477
    174. Jugsujinda A.,Krairapanond A.,Patrick W.H.Jr. Influence of extractable iron, aluminium and manganese on P-sorption in flooded acid sulfate soils. Biology and Fertility of Soils, 1995,20:118-124
    175. Knight W. G. Oxalate effects on solution phosphorus in a calcareous soil, Arable Soil Research and Rehabilitation,, 1991 , 56:489-494.
    176. Kouno K, Lukito H.P. et al, Microbial biomass P dynamics in soil. Trans 15th World Congress
    
    of Soil Science, Acapulco, Mexico, 1994, V4b:85-86
    177. Kouno K, Tuchiya Y and Ando T . Measurement of soil microbial biomass Phosphorus by an anion exchange membrane method. Soil Biology and Biochemistry. 1995,27(10) : 1353-1357
    178. Krairapanond A., Jugsujinda A.,Patrick W.H. Jr Phosphorous sorption characteristics in acid sulfate soils of Thailand:Effect of uncontrolled and controlled soil redox potential (Eh) and pH. Plant and Soil, 1993,157:227-237
    179. Kumar V.,Gilkes R.J.and Bollang M.D.A. Phosphate fertilizer placement and tillage system on phosphorous distribution in soil. Communication in Soil Science and Plant Analysis, 1992,23(13-14) :1462-1477
    180. Ladd J.N., Amato M., Zhou L. K., Differential effects of rotation, plant residues and nitrogen fertilizer on microbial biomass and organic carbon in Australian Alfisol. Soil Biology and Biochemistry, 1994,26:957-962.
    181. Lavnoff D.B.,Reddy K.R.and Robinson S. Chemical fractionation of organic phosphorous in selected histosol. Soil Science, 1998, 163(1 ):36-45
    182. Li H.X., Zhang X.M. and Liu Y.J. Soil components affecting phosphate sorption parameters of acid soils in Guandong province. Pedosphere, 2000,10:317-321
    183. Li X.L., George E., Marschner H. Extension of the phosphorous depletion of zone in a VA mycorrhizal white clover in a calcareous soil. Plant and Soil, 1991,136:41-48
    184. Lopez-Henandez D. et al. The effect of some organic anions on phosphate removal from acid and calcareous soils. 1979, Soil Science 128, 321-326.
    185. Lopez-Pineiro A., Garcia-Navarro A., Phosphate fractions and availability in vertisols of south-western Spain. Soil Science, 2001,166(8) :548-565
    186. Lopez-Pineiro A.,Navarro Carccia Phosphate sorption in vertisols of southwestern Spain. Soil Science, 1997,162:69-77
    187. Louw H A and webley D M . The bacteriology of the root region of the oat plant grown under-controlled pot culture conditions , Journal of Applied. Bacteria., 1959, 22(2) : 216-226
    188. Magid J. Vegetation effects on phosphorous fractions in set-aside soils. Plant and Soil, 1993,149:111-119
    189. Mahapatra J.C. and Patrick Jr Inorganic phosphate transformation in waterlogged soil. Soil Science, 1969,107:285-288
    190. Masasha Uwasawa, Prapit Sangton, Wisit Cholitkl Behavior of phosphorous in paddy soils of Thailand. 11 Fate of phosphorous during rice cultivation in some representative soils. Soil Science and Plant Nutrition, 1988,34(2) : 183-194
    191. McGill W.B., Camnon K.R., Robertson J.A., Cook F.D. Dynamic of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations, Journal of
    
    Soil Science, 1986,66:1-19
    192. Mckenzie R.H., Stewart J.W.B., Dommaar J.F. Long-term crop rotation and fertilizer effects on phosphorous transformations in a chernozemic soil. Canadian Journal of Soil Science, 1992,72:569-579
    193. McLaughlin J R , Ryden J C and Sysers J K , Sorption of inorganic phosphate by iron-aluminum-containing components, Journal of soil science, 1981, 32: 365-377
    194. McLaughlin M J , Alston A M and Martin J K . Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soils. Soil Biology and Biochemistry, 1986, 18(4) : 437-443
    195. McLaughlin M J and Alston A M . The relative contribution of plant residues and fertilizer to phosphorus nutrition of wheat in pasture/cereal system, Soil Research. 1986,24:517-526
    196. Nagarajah S. et al Desorption of phosphorus from kaolinites by citrate and bicarbonate. Soil Science Society of American Proceedings, 1968, 32:507-512.
    197. Nicolas Belanger, Benoit Cote, Francois Courchesne et al., Simulation of soil chenmistry and nutient availability in a forested ecosystem of southern Quebec-I. Reconstruction of the timeseries files of nutrient cycling using the MAKEDEP model. Environmental Modelling and Software, 2002, 17:427-445
    198. Oberson A , Friesen D K , Morel C and Tiessen H . Determination of phosphorus released by chloroform fumigation from microbial biomass in high P absorbing tropical soils. Soil Biology and Biochemistry. 1997, 29(9-10) : 1579-1583
    199. Obserson A , Besson J M , Maire N , et al. Microbiological processes in soil organic phosphorus transformations in conventional and biological cropping systems, Biology and Fertility of Soils , 1996, 21: 138-148
    200. Obserson A , Fardeau J C , Bessob J .M et al . Soil dynamics cropping systems managed according to conventional and biological agricultural methods. Biology and Fertility of Soils, 1993,16:111-117
    201. Ocio J. A., Martine J. and Brookes P. C. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil. Soil Biology and Biochemistry, 1991,23:656-659
    202. Parfitt R. L. and Atkinson R. J. Phosphate adsorption on goethite (α-FeOOH ). Nature 264, 740-742.
    203. Parfitt R. L. Anion adsorption on soils and soil materials. Advances in Agronomy, 1978, 30: 1-50.
    204. Paul E.A. and Voroney R.P., Field interpretation of microbial biomass activity measurements, Jn: Microbial Ecology, Klug M.J. and Reddy C.A. (eds), ASM, Washington D.C., 1985, pp
    
    509-514
    205. Perrott K W, Sarathchandra S U and Waller J E , Seasonal storage and release of phosphorus and potassium by organic matter and microbial biomass in high producing pastoral soil. Australia Journal of Soil Research. 1990, 28: 593-608
    206. Peterson G.W.and Corey R.B. A modified Chang-Jackson procedure for routine fractionation of inorganic soil phosphates. Soil Science Society of American Proceedings, 1966,30:563-565
    207. Pote D.H., Daniel T.C.Nicols et. al. Relationship between phosphorous levels in three Ultisols and phosphorous concentration in runoff. Journal of Environmental Quality, 1999, 28:170-175
    208. Powlson D. C. and Jenkinson D. S., The effects of biocidal treatment on metablism in soil. Ⅱ. Gamma irradiation, autoclaving, air-drying and fumigation, 1976, Soil Biology and Biochemstry, 8: 179-188
    209. Rao A.N.,Reddy K.S.,Takkar P.N. Residual effects of phosphorous applied to soybean or wheat in asoybean-wheat cropping system on a typic halpustert. Journal of Agricultural Science, 1996, 127:325-330
    210. Reeve N.G., Sumner M.E. Effects of aluminium toxity and phosphorous fixation on crop growth on oxisol of Natal. Soil Science Society of American Proceedings, 1970,34:263-267
    211. Ren S., Wang R., Mang, X. and Liu Y., Investigation of soil microbial biomass and populations in swamp lands os Sanjiang Plain in China. Trans. 15th World Congress, Soil Science, Acapulco, Mexico, 1994, V4b:64-65
    212. Rodriguez D, Goudriaan J., Oyazabal M. Phosphorous nutrition and water stress tolerance in wheat plants. Journal of Plant Nutrition, 1996,19( 1 ):29-39
    213. Rubaek Gitte H. and Sibbesen Erik Soil phosphorous dynamics in a long-term field experiment at Askov. Biology and Fertility of Soils, 1995,20:86-92
    214. Ryan J.,Hasan H.M.,Bassina et al. Availability and transformation of applied phosphorous in calcareous Lebanese soils. Soil Science Society of American Journal, 1985,49:1215-1220
    215. Sakamoto K., Hodono N., and Yoshida T., Relationship between the size and the physiological properties of the soil microbial biomass. 15th World Congress, Soil Science, Acapulco, Mexico, 1994, V4b:62-63
    216. Sample E.C. et al. The Role of Phosphorous in Agriculture. Published by Soil Science Society of America, US, 1980,274-288
    217. Sander F.E., Tinker P.B. Mechanism of absorption of phosphate from soil by endogene mycorrhizs.Nature, 1971,233:278-279
    218. Sarathchandra S U, Perrott K W and Upsell M P . Microbiological and biochemical characteristics of a range of New Zealand soils under pasture, Soil Biology and Biochemistry. 1984,16:177-183
    
    
    219. Schindler D.W. The evolution of phosphorous limitation in lakes. Science, 1977,195:260-262
    220. Schnnor J.L. A steady state eutrophication model for lakes. Water Research, 1980, (14) :1651-1665
    221. Sharif M , Chaudhly M F and latif A . Suppression of superphosphate-phosphorus fixation by farmyard manure. Ⅱ. Some studies on mechanisms. Soil Science and Plant Nutrition. 1974, 20: 395-401
    222. Sharpley A. N. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Science Society of American Journal, 1985, 49:905-911.
    223. Sharpley A.N. and Smith S.J. Fractionation of inorganic phosphorous in virgin and Cultivated soils. Soil Science Society of American Jounal, 1994, 9:127-130
    224. Shen Q., Xu S. and Shi R., Effect of incorporation of wheat straw and urea into soil on biomass nitrogen and nitrogen-supplying characteristics of paddy soil. Pedosphere, 1993, 3:201-205.
    225. Shields J. A., Paul E. A. and Lowe W. E. Factors soils by dichromate mixyures. Trans. 4th Int. Cong. Soil influencing the stability of labelled microbial materials in soils. Soil Biology and Biochemistry, 1974, 6: 31-37
    226. Sibanda H. M. and Young S. D. Competitive adsorption of humus acids-and phosphate on goethite, gibbsite and two tropical soils. Journal of Soil Science, 1986, 37:197-204.
    227. Sibanda H. M. and Young S. D., Competitive adsorption of humus acids and phosphate on geothite, gibbsite and two tropical soils. Journal of Soil Science, 1986, 37, 197-204.
    228. Smith, J L and Paul E A. The significance of soil microbial biomass estimated, In: Soil Biochemistry, Bollage J.M. and G.Stotzky (eds), Marcel Dekker, Inc New York, 1991,359-396
    229. Sparks D.L. Soil Physical Chemistry. Boca Raton,Florida: CRC Press, 1986,85-144
    230. Sparling G P, Whale K N and Ramsey A J . Quantifying the contribution from the soil microbial biomass to extractable P level of fresh and air-dried soils. Australia Journal of Soil Research, 1985,23:613-621
    231. Sparling G.P. and West A. W. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells.Soil Biology and Biochemistry, 1988,20:337-343
    232. Sparling G.P., Feltham C.W., Reynolds J., West A.W. and Singleton P. Estimation of soil microbial C by a fumigation extraction method: use of high organic matter content and a reassessment of the KEC-factor, Soil Biology and Biochemistry, 1990, 22: 301-307
    233. Srivastava S C and Singh J S . Carbon and phosphorus in soil biomass of some tropical soils of India, Soil Biology and Biochemistry, 1988, 20(5) : 743-747
    234. Srivastava S C, Microbial C, N and P in dry tropical soils: Seasonal changes and influence of
    
    soil moisture. Soil Biology and Biochemistry 1992,24: 711-714
    235. Srivastava S. C., Microbial C, N and P in dry tropical soils: Effects of alternate land-use and nutrient flux, Soil Biology and Biochemistry, 1992, 24:711-714.
    236. Srivastava, S C and Singh J S , Microbial C, N and P in dry tropical soils: Effects of alternate land-uses and nutrient flux, Soil Biology and Biochemistry 1991, 23(2) : 117-124
    237. Sun X. Effect of material transport from arable lands on waters. In Material Cycling in Pedosphere in Relation to Agriculture and Environment, ed. Zhao Q., 1995, pp233-242. Jiangsu Science and Technology Press, Nanjing.
    238. Syers J.K., Smillie G.W., Williams J.D.H. Calcium fluoride formation during extraction of calcareous soils lake sediments. Soil Science Society of American Proceedings, 1972,36:20-25
    239. Tarafdar J.C., Marschner H. Phosphatase activity in the rhizosphere and hyposphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorous. Soil Biology and Biochemistry,1994, 26:387-395
    240. Vance E D, Brookes P C, and Jinkenson D S. An Extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987,19: 703-707
    241. Verburg P.S.J. and Johnson D.W. A spreadsheet-based biogeochemical model to estimate nutrient cycling processes in forest ecosystems. Ecological Modelling, 2001, 141:185-200
    242. Verma L.P.,Singh A.P.and Srivastva M.K. Relationship between Olsen-P and inorganic P fraction in soil. Journal of Indian Society of Soil Science, 1991, 39:361-362
    243. Voroney R. P. and Pual E. A. Determination of k_C and k_N in situ for calibration of the chloroform fumigation-incubation method, Soil Biology and Biochemistry,1984, 16: 9-14
    244. Waksman S. A. and Starkey R. L. Partial sterilization of soil, Microbiological activities and soil fertility: Ⅱ. Colloid Science, 1923, 16:247-268
    245. Wesremann D. T. Lime effects on phosphorus availability in a calcareous soil. Soil Science Society of American Journal, 1992,56:489-494.
    246. Williams J.D.H., Syers J.K., Harris R.F. et al. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Science Society of American Proceedings, 1971, 35:250-255
    247. Williams J.D.H., Syers J.K.and Walker T.W., Fractionation of soil inorganic'phosphate by a modification of Chang and Jackson's procedure. Soil Science Society of American Proceedings, 31:739-749
    248. Witter E, Martnsson A M and Garica F V . Size of the microbial biomass in a long term experiment as affected by different N-fertilizers and organic manure, Soil Biology and Biochemistry, 1993, 25: 659-669
    249. Wu J, He Z L and Wei W X . Quantifying microbial biomass phosphorus in acid soils. Biology and Fertility of Soils. 2000, 32: 500-507
    
    
    250. Wu J., Joergensen R.G., Pommerening B., Chaussod R., and Brookes P.C. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biology and Biochemistry. 1990,22(8) : 1167-1169
    251. Xiong L.M., Lu Y.K. An evaluation of the agronomic potential of partially acidulated rock phosphates in calcareous soil. Fertilizer Research, 1994, 38:205-212
    252. Yamuremye R, Dick R. P.. Organic amendents and phosphorus sorptions by soils. Advances in Agronomy, 1996,56:139-185.
    253. Yang X., Werner W. and Sun X. Effect of organic manure on solubility and mobility of different phosphate fertilizers in red soils. Fertilizer Research,1994, 38, 233-238.
    254. Yatazawa M. Agro-ecosystems in Japan. In: Cycling of Nutrients in Agricultural Ecosystems (M. J. Frissel ed.). Amsterdam: Elsevier. 1978, 167-179.
    255. Yuan G.,Lavkulich I.M. Phosphate sorption in relation to extractable iron and aluminium in spodosols. Soil Science Society of American Jounal, 1994, 58:343-346
    256. Zhang T. and Zhao Q. Rehabilitation and sustainable management of degraded agroecosystem in Southern China. In Pedosphere, ed. Zhao Q., 1994, pp.89-93. Nanjing University Press, Nanjing.
    257. Zhang Y. S., Werner W. and Sun X., Phosphorus sorption and desorption in the paddy soils as affected by organic manure and cellulose. Agribiological Research, 1993, 56(4) :286-294.
    258. Zhang Y. S., Werner W. Scherer H. W. and Sun X., Effects of organic manure on organic phosphorus fractions in two paddy soils. Biology and Fertility of Soil, 1994, 17:64-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700