模块化电力系统仿真模型研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统数字仿真是计算机科学、计算数学、控制理论和电力专业应用技术等综合的学科,其实质是通过数学模型来研究系统在规定时间内的工作特征,即用模型来研究系统。电力系统仿真属于连续系统仿真(时间域的动态过程仿真),所以数学模型通常包括元件的动态描述和电路的数学描述,也就是说数学模型主要由微分方程与网络方程组成。建模的任务除了推导出精细的数学模型外,还要根据仿真目的选定各元件模型的形式、规模以及相互间的联系。建立模型是为仿真服务的,模型可以考虑得很精细,但在相应的仿真应用中,计算量也相应提高,有时甚至很难实现,所以根据仿真目的进行建模假设和模型简化是一项很重要的工作。
     本文对电力系统仿真模型的模块化研究与开发主要
    
     太原理工大学硕士学位论文
    包括建立数学模型、实现数学模型的算法化、建立模块
    化仿真模型和根据仿真目的进行仿真试验或培训等。
     建立电力系统数学模型的任务是根据系统仿真目的
    和系统原型与模型的数学相似原则来构造模型的数学描
    述。本文主要研究的数学模型包括,发电机系统、原动
    机系统、系统网络与故障、静态和动态负荷、潮流计算
    在建立数学模型的过程中,充分考虑到数学模型的适用
    与简化条件,确定数学模型的规模;对于由若干子系统
    组成的系统,尽量保证整个系统数学模型的统一性,例
    如系统的统一坐标系;对系统模型有明确逻辑关系的数
    学描述,做到灵活性与扩充性的统一;对各个数学模型
    的建立有利于计算机算法的实现。
     实现数学模型的算法化是根据仿真目的选择相应的
    数学模型和计算机语言,从而实现模型的算法。在算法
    实现过程中,选择数值稳定性高、误差可以控制、计算
    工作量少和尽可能节省内存空间的算法。
     建立模块化仿真模型时,本文通过模型算法的模块
    化平台一仿真支撑系统BLINK,把算法进行单独的模块
    
     太原理工大学硕士学位论文
    化处理,通过算法来构造仿真模块,实现模块的搭建和
    组合。
     本文通过建立电力系统数学模型和模型算法,运用
    BLINK仿真支撑系统进行模型算法的模块化处理方法,
    可以提高仿真模型的开发速度,可为模型在仿真的进一
    步应用打下良好的基础。最后,本文运用所建立的电力
    系统仿真模型,对一个实际的电力系统进行了动态仿真,
    通过仿真结果也可看出对系统模型的模块化处理可以加
    快模型仿真的速度和效率,这也将成为大规模电力系统
    仿真的实现途径。
The figure simulation of power system is a complex subject of computer science and computational mathematics and control theory and power system application technology. Its essential is that it study work characteristic of system in a definite-time by mathematical model. In other words, it studies system by the models. The figure simulation of power system belong to a continuous system simulation, so, mathematical models generally include a dynamic description of elements and a mathematic description of circuits. Namely, it comprises differential equation and network equations. Base on simulation purposes, in addition to deducing a careful
    
    
    mathematical model, the tasks of modeling involve selection styles and scales and interrelations of all kinds of elements. The aim of establishing the models are serves simulation. The models can consider extra fine, but in relevant applications of simulation, corresponding computational complexity enhance also. Sometimes, the models are very difficult to realize. So, it is a very important work for modeling assumption and the models reduction.
    The text's main works involve to establishing mathematical models and come true models' algorithmization and found blocking simulation models and simulation application.
    The tasks of establish mathematical models of power system bases on similarity principle to construct mathematic description of the models. Main mathematical models include generator system and prime mover system and network and failure and load of static and dynamic and
    
    tidal current calculation. In process of establishing the models, we need think over the models condition of application and reduction. To the system composing subsystem, assure hole hog mathematical models, for example, unified coordinate system, etc. System models have explicit logical relation to mathematic description. The models' constitution should be propitious to realize computer algorithm. Mathematical models algorithmization can realize easily through choosing corresponding models and computer language. In the course of algorithmization, we should select arithmetic with high numerical stability and controlling error and computational effort little and saving memory space.
    The text recurs to blocking platform, i.e., power system simulation support system BLINK. BLINK system is capable of treating separate blocking to arithmetic. It can realize models' build and combination. And recurring to BLINK system can carry through blocking problem. The
    
    last dynamic simulation's example shows effectiveness of blocking modeling. In future, the blocking modeling will can be an effective implement and method for large-scale power system simulation.
引文
[1] 陈礼义,顾强,电力系统数字仿真及其发展[M],电力系统及其自动化,1999,25(22):2-36
    [2] 黄家裕,电力系统数字仿真[M].北京:水利电力出版社 1995:60-85
    [3] 汤涌,电力系统数字仿真技术及发展[M],电力系统及其自动化,2002.26(17):66-70
    [4] 肖天元,张烟云,陈加栋,系统仿真导论[M],北京:清华大学出版社,2000:1-35
    [5] Smith J M, Mathematical Modeling & Digital Simulation for Engineers & Scientists. Wiley & Sons Inc, 1997: 75-98
    [6] 石岩,杨万开,汤涌,电力系统全数字实时仿真技术的发展及其在我国电力系统的应用,中国电力科学研究院,1999.2
    [7] Baldwin C J, Byerly B T, Recent advances in the digital simulation of power system, PCSS, 1984: 12-30
    [8] 夏道止,电力系统分析(下册)[M].北京:中国电力出版社,1996:33-37
    [9] 倪以信,陈寿孙,张宝霖,动态电力系统理论和分析[M],北京:清华大学出版社,2002:45-97
    [10] I.M.Canay, Determination of Model Parameters of Synchronous Machines, IEEE Proc.,1983.3,130B(2)
    [11] Concordia C, Synchronous machines, N, Y: Wiley, 1991: 1-45
    [12] IEEE Committee Report, Excitation system model for power system stability study, IEEE Trans, on PAS, feb. 1981, 494-509
    [13] IEEE Committee, Excitation system dynamic characteristics, IEEE Trans, on PAS,Jan./feb. 1993: 29-32
    
    
    [29]吴际舜,电力系统稳态分析的计算机方法,上海:上海交通大学出版社,1992:75-84
    [30]宋文南,李树鸿,张尧,电力系统潮流计算[M],天津:天津大学出版社,1990:1-60
    [31]Stott B, Power System Dynamic Response Calculation. Proceedings, IEEE, 1979, 67(2)
    [32]陈亚民,电力系统计算程序及其实现[M],北京:水利水电出版社,1995:38-71
    [33]Dommel H W, Tinney, W F, etc., Further developments in Newton's method for power system applications, IEEE W. M. paper, 1997: 24-41
    [34]潘志宏,张宏斌,张伯明,.新一代DTS中的动态仿真程序,清华大学学报(自然科学版),1999,39(9):17-21
    [35]郎兵,动态潮流模型在电网调度仿真系统中的应用,北方交通大学学报,2002,26(4):83-87
    [36]马用光,智能化建模,仿真环境研究与实践[D].北京:华北电力大学,1977:1-45
    [37]Lubkeman D L, Object-Oriented Development of Software Systems for Power System Simulation. IEEE Trans on Power Systems, 1997, 12(2): 358-376
    [38]Alan B A., Compilation of Simulation, IEEE, 1999, 33(2): 61~63
    [39]于荣生,马景义,300MW火电机组模块化数学模型和仿真(J)华北电力学院学报,1994(1)
    [40]Hans R. Frankhauser et al, Advanced simulation techniques for the analysis of power system dynamics, IEEE Computer Application in Power, Oct 1990: 31-36
    [41]唐世林,电站计算机仿真技术[M].北京:科学出版社,1996:55-81
    [42]C. Evard, A. Bihain, Powerful Tools for Various Types of Dynamic Simulation Studies of Power System, Proceedings, POWERCON'98, Beijing, 1998
    
    
    [14]西安交通大学等编,电力系统计算[M],北京:水利电力出版社,1978:1-84
    [15]熊光楞,肖田元,张燕云,连续系统仿真与离散事件系统仿真[M],北京:清华大学出版社,1991:1-50
    [16]熊光楞,数字仿真算法与软件[J],北京:宇航出版社,1991:1-50
    [17]IEEE Committee Report, Dynamic models for steam and hydro-turbine in power studies,IEEE Trans, on PWRS, May.1995, 6(2): 374-390
    [18]沈祖诒,水轮机调节[M],北京:水利电力出版社,1988:1-60
    [19]熊光楞,沈被娜,宋安澜,控制系统仿真与模型处理[M],北京:科学出版社,1993:48-71
    [20]陈珩,电力系统稳态分析[M],北京:水利电力出版社,1987:41-63
    [21]卢强,孙元章,电力系统非线性控制[M],北京:科学出版社,1993:23-40
    [21]张伯明,杨健,一个规范化的计算机故障分析计算方法,清华大学学报,1995,35(2):32-38
    [21]周荣光,电力系统故障分析[M],北京:清华大学出版社,1988:62-88
    [22]刘万顺,电力系统故障分析[M],北京:水利电力出版社,1986:108-119
    [23]张伯明,陈寿孙,高等电力网络分析[M],北京:清华大学出版社,1996:167-197,282-304
    [24]Berg, Power system load representation, Proe, IEE 120(3), 1983: 344-348
    [25]鞠平,电力系统中负荷研究——建模和分析:[博士论文],杭州,浙江大学出版社,1988,8(4):45-49
    [26]沈善德,电力系统辨识[M],北京:清华大学出版社,1993:230-253
    [27]Vaahcad E., W.W. Price, Dynamic load modeling in large stability studies, IEEE,1988;TPS-3
    [28]贺仁睦,负荷建模在电力系统计算中作用及其发展,华北电力学院学报,1985,9(3):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700