高压线路保护动作特性分析及新原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网规模越来越庞大,电压等级越来越高,如何可靠地保证电网安全稳定运行,是我国电网日益面临的严峻挑战。近年来美国、欧洲相继发生大停电事故,充分说明了寻求更加安全、可靠的电网保护控制措施是当前电力行业的一个重要课题。论文结合电力系统生产运行实际,围绕现有继电保护领域存在的一些难点和热点问题,开展了多方面的深入研究。
     研究提出了一种新的差动保护动作行为分析方法,该方法可以评估任一种比例差动判据在各种可能的运行条件下的动作性能,利用这种分析方法,详细分析了ABB公司两种标积制动判据的安全性和灵敏性。
     在对全电流差动判据和故障分量电流差动判据的比较方面,论证了在多种内部故障的情况下,故障分量电流差动保护的灵敏性和安全性明显优于全电流比例差动保护;在相电流差动保护和线电流差动保护的比较方面,论证了相电流差动保护在反应接地故障、尤其是单相接地故障时的综合灵敏度比线电流差动保护有所提高,因此,采取零序差动等补偿措施的做法是有意义的。
     详细研究了采样值差动判据的动作性能,给出了动作电流倍数与电流采样初相角存在的对应函数关系,并论证了采样值差动保护中关于模糊动作区上下界的结论。
     电力系统振荡期间,需要有效快速闭锁距离保护以免误动,但是对振荡过程中发生的三相对称故障,又需要快速识别并解除对距离保护的闭锁。通过研究振荡过程中系统频率及其变化规律,提出了一种面向继电保护的全过程系统振荡模型,在此基础上,提出了一种基于三相有功及三相无功变化率的距离保护振荡闭锁新方法,基于该方法,在振荡的各个阶段,距离保护都能可靠地被闭锁;而对称故障发生后,该方法能够快速动作,不受系统参数、故障时刻、故障位置等因素的影响。
     研究提出了一种适应工程要求的自适应振荡闭锁新策略,在各种系统振荡的情况下,本策略均具有足够的安全性,当振荡中发生区内故障时,除了高阻接地故障,其灵敏度在各种现有策略中是最高的。
     在广域保护方而,研究提出了一种分层电力系统区域保护系统,与现有的主保护后备保护协同工作,构成强化后的电网第一道防线,此区域保护系统的动作速度介于保护和后备保护之间,进一步提高了整个保护系统的安全性。针对距离保护Ⅲ段和过保护因潮流转移引起误动的问题,提出了自适应调节保护定值的方法,仿真计算结果明该调节方法简单有效,既可以避免由于潮流转移引起的误动作,又可以在线路发生障时不失去远后备保护的功能。
     最后对全文的研究成果进行了总结,并提出了今后进一步的研究方向。
In view of the scale-up of power grids and rise of the voltage levels, how to guarantee the safe and stable operation of power grid is turning to be a more and more serious challenge to power grids. In recent years, the successive blackouts in America and Europe have adequately proved the significance of searching for secure and reliable protective measures for the purpose of safety and reliability of power system operation. Therefore, a series of difficulties and issues existing in the field of protective relaying are investigated. Taking the actual operation scenario into account, in-depth studies from various aspects are conducted.
     In this dissertation, a novel method is put forward to analyze the performance of differential protection, which is able to evaluate any kind of percentage differential criteria under any operating scenarios. What's more, the security and sensitivity of two scalar product restraint criteria are analyzed by use of this method.
     In comparison with the security and sensitivity between phase current based differential criterion and fault component current based differential criterion, it can be proved that in the condition of many internal faults. The performance of fault component based differential protection is superior to the other one. At the same time, it can be disclosed that in the condition of earth faults, especially single-phase earth fault, phase current differential protection is superior to phase current based criterion in terms of integrated sensitivity. Therefore, some enhancement like zero-sequence differential compensation is worth adopting.
     According to the performance analysis of instantaneous-value based differential criterion, the corresponding functional relation between the multiple of operating current and initial phase angle of sampled current is disclosed. Furthermore, the study on the fuzzy operating area of instantaneous-value differential protection is demonstrated as well.
     During the power swing, the effective and quick blocking scheme for distance protections is required to avoid unwanted tripping. On the other hand, the rapid recognition for the three-phase symmetric fault is needed to unblock the distance protection. By studying the system frequency and the regular pattern of it during the power swing, an overall process power swing model for relay protection study is implemented. Based on this model, a novel method for power swing blocking in distance protection by means of the change rate of three-phase active power and reactive power is put forward. The simulation test results show that the distance protection can be blocked reliably in any period of the power swing by using this method. When symmetric faults occur, it can unblock the distance protection rapidly, which is immune to the influence of factors such as system parameters, fault occurring moment and fault position, etc.
     A novel strategy for self-adapting swing blocking meeting the engineering demands is proposed. It is proved as secure enough under any circumstance of power swings. When faults occur during the power swings, the sensitivity of this strategy is the highest among the available strategies as long as the fault resistance is not very high.
     In the aspect of wide-area protection study, a kind of regional protection system based on layered power system is put forward to cooperate with the existing main protection and back-up protection. The speed of this protection system is between the main protection and back-up protection, which increases the security of the whole protection system. Aiming at solving the problem of the Zone III of distance protection, as well as the overcurrent protection unwanted tripping caused by load flow transferring, a method of self-adaptive adjustment of setting is proposed. It is verified with the PSASP based simulation that this adjusting method is simple and effective, which could avoid unwanted action tripping by load flow transferring. Meanwhile, the functionality of remote back-up protection can be reserved when the faults occur on the adjacent lines. Finally, the achievements of this dissertation are concluded and the future work is prospected.
引文
[1]葛耀中.数字计算机在继电保护中的应用[J].继电器,1978,22(3):9~12.
    [2]杨奇逊.微型机继电保护基础[M].北京:中国电力出版社,1998,42~50.
    [3]沈晓凡,粟小华,周春霞.750kV输电线路对继电保护的影响.电力设备[J],2006,7(1):18~19.
    [4]Malik. O. P, Dash. P. K, Hope. G. S. A Unified Approach to Diferential and Impedance Protection[J]. IEEE Power Engineering Society Winter Meeting,1979: 132~138.
    [5]毕天妹,于艳莉,黄少锋等.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化2005,29(15):30~34.
    [6]WUF, ZHANGXP, GODFREYK, et al. Small signal stability analysis and optimal control of a windturbine with doublyfed induction generator[J]. IEEE Proceedings Generation Transmission and Distribution,2007,1(5):751~760.
    [7]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定分析建模和仿真[J].电网技术,2004,28(1):38~41.
    [8]Voloh, B. Kasztenny, C. B. Campbell. Testing line current differential relays using real-time digital simulators[C].2001 IEEE/PES Transmission and Distribution Conference and Exposition,2001(1):516~521.
    [9]J. Yang, X. Yin, D. Chen, et al. Study on the operating characteristic of sampled value differential protection[C]. IEEECCECE2003(1):2003,335~338.
    [10]陈德树,尹项根,张哲.再谈采样值保护的一些问题[J].电力自动化设备,2000,120(4):1~3.
    [11]洪良山.普通纵差与故障分量纵差保护的分析比较[I].电力自动化设备,1997,19(3):7~10.
    [12]贺家李.电力系统继电保护技术的现状与发展[J].中国电力,1999,32(10):38~40.
    [13]朱声石.高压电网继电保护原理与技术[M].北京:中国电力工业出版社,第2版,1995,235~239.
    [14]Rockerfeller. Fault Protection With Digital Computer. IEEE Trans on PAS,1969, 24(3):65~70.
    [15]I. F. Motrison. Prospect sofon-line Computer Control in Trans[J]. IE Australia, 1997,13(2):234~236.
    [16]焦邵华,刘万顺,张振华.系统振荡中不对称故障的选相方法[J].华北电力大学学报,1999,26(2):6~11.
    [17]JiaoShaohua, LiuWanshun, ZhangZhenhua. A new approach to select the fault phase of unbalance fault during power swing[J]. Journal of North China Electric Power University,1999,26(2):6~11.
    [18]YangQX. Fault identification during power swings with symmetrical component[C]. Proceedings of EMPD' 98 1998 International Conference on Energy Management and Power Delivery 1998,67(2):1214~1220.
    [19]GaoZD, WangGB. A new power swing block indistance protection based on a microcomputer principle and performance analysis[C].1991 International Conference on Advance sin Power System Control Operation and Management, HongKong, 1991:623~628.
    [20]沈国荣.区分振荡与短路的新原理[J].电力系统自动化,1990,14(1):2~8.
    [21]尹项根,曾克娥.电力系统继电保护原理与应用[M].武汉:华中科技大学出版社,2001:123~125.
    [22]索南加乐,葛耀中,王定安等.一种不受电压过零点影响的新型频率测量方法[J].电力系统及其自动化学报,1996,8(4):19~21.
    [23]Karlsson D, Henmmingsson M, Lindahl S. Wide area system monitoring and control-terminology, phenomena, and solution implementation strategies. Power and Energy Magazine, IEEE Volume 2, Issue 5, Sept. -Oct.2004:68~76
    [24]PHADKEAG, THORPJS. Expose Hidden Failures to Prevent Cascading Outages. IEEE Computer Applicationin Power,1996,9(3):20~24.
    [25]JCTan, PACrossley, I Hall, J Farrell. Evaluation of Uncertain tie sin the Back-up Protection Expert System for a Transmission Network. Power Engineering Society Summer Meeting,2000.
    [26]王晓茹.利用Agent实现新的电网后备保护[J].电力系统自动化,2005,29(21):57~61.
    [27]续建国.两种方向距离继电器的动作特性[J].电力系统自动化,2002,26(13):63~65.
    [28]苏斌,董新洲,阿德南等.方向高频保护的动作行为第二部分:复故障情况下方向高频保护的动作行为分析[J].电力系统及其自动化学报,2003,15(2):9~13.
    [29]舒印彪,张文亮,周孝信等.特高压同步电网安全性评估[J].中国电机工程学报,2007,27(34):1~6.
    [30]OinisC, MichelM, FrancoiseB. Wavelets:a new tool for the resonant grounded power distribution systems relaying[J]. IEEE Trans on Power Delivery,1996, 11(3):1301~1308.
    [31]Ota Y, Nakamura K, Fujita H, et al. PMU based midterm stability evaluation of wide-area power system[J]. IEEE Trans on Power Systems,2002,17(2):378-382.
    [32]华中工学院.电力系统继电保护原理与运行[M].北京:水利电力出版社,1981,8~12.
    [33]罗姗姗,张源会.一种分相式电流差动微波保护新判据[J].电力系统及其自动化学报.1995,7(1):49~58.
    [34]贺家李,薛士敏,郭征.输电线微机自适应分相纵差保护方法[P].中国专利,ZL2004100190040,2004,231~235.
    [35]P. M. Anderson. Power system Protection[M]. IEEEPress, N. Y, USA,127.
    [36]ABB保护与控制公司.REL561技术说明书,451~468.
    [37]高厚磊,江世芳,贺家李.输电线路新型电流差动保护的研究[J].电机工程学报,1999,8(10):67~72.
    [38]吴崇昊,陆于平,徐光福等.适用于母线保护的电子互感器采样频率转换算法.电力系统自动化.2007,31(3):79~82.
    [39]M. Mikrut, W. WinklerandB. Witek. Performance of differential protection for three-winding power transformers during transient CT's saturation. Fourth International Conferenceon Development sin Power Protection.1989,66~69.
    [40]N. T. Stringer, L. Lawhead, T. Wilkerson, et al. Real-time transient testing and performance of transformer differential relays[C]. Conference Record o fthe 1995 IEEE Industry Applications Conference,1995,2:1142~1150.
    [41]N. T. Stringer, L. Lawhead, T. Wilkerson, et al. Testing and performance of transformer differential relays[J]. IEEE Industry Applications Magazine,41997, 33(4):1540~1547.
    [42]ROUCOL, ZMORAJL. Dynamic patterns and model order reduction in small signal models of doublyfed induction generator for windpower applications//Proceedings of IEEE Power Engineering Society General Meeting, Universidad Pontificia Comillas, Jun 18-22,2006, Madrid, Spain:8~12.
    [43]王维俭.发电机变压器继电保护应用[M].北京:中国电力出版社,1998,6~25.
    [44]葛耀中.电流差动保护动作判据的分析与研究[J].西安交通大学学报,1980,14(2):1~10.
    [45]E. S. Jin, Y. C. Kang, S. H. Kang, et al. Design and evaluation of a current differential relay fortransformer protection. Eighth IEE International Conferenc eon Development sin Power System Protection,2004(1).1152~155.
    [46]H. Weng, X. Lin, P. Liu. Studies on the Operation Behavior of Differential Protection During a Loaded Transformer Energization[J]. IEEE Transactions on Power Delivery,2007,22(3):1386~1391.
    [47]Technical Instruction Manual of RCS-978 Series Power Transformer protections[M]. NARIrelayElectricCo. Ltd,2001.
    [48]Siemens AG.7UT51V3.0 Instruction Manual:Numerical Differential Protection Relay for Transformers, Generators, MotorsandBranchPoints,1995.
    [49]王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社,1998,7~12.
    [50]X. Lin, Q. Tian, M. Zhao. Comparative Analysison Current Percentage Differential Protections Using a Novel Reliability Evaluation Criterion[J]. IEEE Transactions on Power Delivery,2006,21(1):66~72.
    [51]李毅军.对故障分量原理的微机型发变组差动保护装置在运行中一些问题的探讨[J].继电器,1996,20(4):55~62.
    [52]Mc CleerP J, Fir M. Anew technique of differential relaying:the delta-differential relay[J]. IEEE,1982,101(10):4164-4170.
    [53]朱声石.关于数字式比率制动差动继电器[J].电力自动化设备,1998(1):7~10.
    [54]李岩,陈德树,张哲等.超高压长线电容电流对差动保护的影响及补偿对策仿真分析[J].继电器,2001,29(6):6~9.
    [55]林湘宁,何战虎,刘世明等.复式电流比例差动保护判据的可靠性评估[J].中国电机工程学报,2001,21(7):98~102.
    [56]VILLAMAGNAN, CROSSLEYA. A CT saturation detection algorithm using symmetrical components for current differential protection[J]. IEEE Trans on Power Delivery,2006,21(1):38~45.
    [57]高厚磊,江世芳,贺家李.输电线路新型电流差动保护的研究[J].中国电机工程学报,1999,19(8):49~53.
    [58]廖泽友,鲍伟廉,杨维那等.高压线路电流差动保护的现状及其前景展望.继电器,1999,27(1):4~7.
    [59]陆于平,等.微机发电机差动保护[J].电力自动化设备,1999,32(2):6~10.
    [60]李毅军.对故障分量原理的微机型发变组差动保护装置在运行中一些问题的探讨[J].继电器,1996(4):55~62.
    [61]北京哈德威四方公司.CST200B系列数字式变压器保护装置说明书,1998.9.
    [62]李光琦.电力系统暂态分析[M].北京:水利电力出版社,1989,5~8.
    [63]陈德树,马天浩,刘沛.采样值电流差动微机保护的一些问题[J].电力自动化设备,1996,60(4):3~8.
    [64]袁荣湘,陈德树.一种新型差动保护的研究[C].第七届全国继电保护学术研讨会论文集,1998:55~60.
    [65]袁荣湘,陈德树,马天皓等.采样值电流差动保护原理的研究.电力自动化设备,2000,20(1):1~3.
    [66]高厚磊.利用故障分量瞬时值的电流纵差保护新判据.电力系统自动化,2000,24(16):21~24.
    [67]赵永彬,陆于平.基于故障分量的变压器浮动比率差动保护[J].电力系统自动化,2007,31(13):83~87.
    [68]胡玉峰,陈德树,尹项根.采样值差动及其应用[J].电力系统自动化,2000,24(10):40~44.
    [69]郭征,贺家李.有串补电容输电线纵联差动保护原理[J].天津大学学报,2005,38(3):195~200.
    [70]肖仕武,刘万顺,黄少锋.基于相关度的发电机采样值差动保护.电力系统自动化,2003,27(17):59~63.
    [71]段建东,张保会,陈坚等.电流行波差动式母线保护的研究[J].电力系统自动化,2004,28(9):43~48.
    [72]H. W. Dommel.电力系统电磁暂态计算理论.北京:水力电力出版社,1986.
    [73]张保会,姚峰,周德才等.输电断面安全性保护及其关键技术研究[J].中国电机工程学报,2006,26(21):1~7
    [74]闵勇,丁仁杰,任勇等.电力系统全网同步监测系统.清华大学学报(自然科学版),1997,37(7):86~88.
    [75]张艳霞,贺家李,王笑然等.反映全相和非全相状态下各种故障的方向元件[J].中国电机工程学报,1995,15(6):429~434.
    [76]王梅义.高压电网继电保护运行技术[M].北京:电力工业出版社,1981:7~10
    [77]熊小伏,陈星田,夏莹等.面向智能电网的继电保护系统重构.电力系统自动化, 2009,33(17):33~37.
    [78]赵志华,张保会,李瑞生.超高压线路保护的几点设想[J].继电器,1999,27(1):1~13.
    [79]Z.格哈德.世界继电保护和变电站控制技术的进展[J].水利水电快报,2000,21(1):29~31.
    [80]贺家李,葛耀中.超高压输电线路故障分析与继电保护[M].北京:科学出版社,1987:6~28.
    [81]孔繁鹏,葛耀中.一种用于测试保护的系统振荡模型[J].电力系统自动化.1995,19(8):38~42.
    [82]许庆强,索南加乐.振荡时电力系统瞬时频率的实时测量[J].中国电机工程学报,2003,23(1):51~54.
    [83]XuQingqiang, SuonanJiale. Real-time measurement of power system instantaneous frequency while power system Swings[J]. Proceedings of the CSEE,2003,23(1): 51~54.
    [84]Chamla M, Libennan S. Ultra high speed relay for EHV/UHV transmission Lines-development, design and application[J]. IEEE Trans on Power Apparatus And Systems,1978,97(6):2104~2116.
    [85]余锐,熊小伏.互联系统振荡造成保护误动的分析及其对策[J].电网技术,2002,26(8):78~81.
    [86]YuRui, XiongXiaofu. Analysis of maloperation of protective relaying caused by system oscillationan ditscounter measure[J]. Power System Technology,2002,26(8): 78~81.
    [87]张保会,张毅刚.基于本地量的振荡解列装置原理研究[J].中国电机工程学报,2001,21(12):69~72.
    [88]鲍小鹏,张举.应用模糊集理论识别电力系统振荡中不对称故障的新方法[J].电网技术,2004,28(12):25~29.
    [89]PaoXiaopeng, Zhangju. A new approach to identify unsymmetrical fault occurred during power system oscillation by use offuzzy settheory[J]. Power System Technology,2004,28(12):25~29.
    [90]焦邵华,刘万顺,杨奇逊.用模糊集理论识别电力系统振荡中短路的研究[J].中国电机工程学报,1998,18(6):443~448.
    [91]JiaoShaohua, LiuWanshun, YangQixun. Study on the discrimination between faults and power swings based on fuzzy set[J]. Proceedings of the CSEE,1998,18(6): 443~448.
    [92]林湘宁,刘沛,程时杰.电力系统振荡中轻微故障识别的小波算法研究[J].中国电机工程学报,2000,20(3):39~44.
    [93]贺家李,宋从矩,超高压输电线路故障分析与继电保护[M].北京:科学出版社,1987:5~8.
    [94]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992,35~38.
    [95]葛耀中.继电保护技术的新进展[J].继电器,1998,26(1):4~7.
    [96]LinXiangning, LiuPei, ChengShijie. Researches on fault identification during fast power swings with wavelet transform based algorithm[J]. Proceedings of the CSEE, 2000,20(3):39~44.
    [97]张艳霞,刘天绪,王荣琴.基于希尔伯特变换的电力系统振荡中再故障的识别方法[J].中国电机工程学报,2005,26(6):36~41.
    [98]杨俊新,马进,陶华.基于电力系统混合仿真的低频振荡误差校正策略[J].电力系统自动化,2010,42(8):51~56.
    [99]ZhangYanxia, LiuTianxu, WangRongqin. Research on the Application of Hilbert Transformation in MicroProcessor-Based Relay Protection[J]. Proceedings of the CSEE,2005,26(6):36~41.
    [100]郝思鹏,薛禹胜,唐茂林,李建.通过轨迹特征根分析时变振荡特性[J].电力系统自动化,2009,27(22):56~59.
    [101]谢葆炎.关于国外线路保护振荡闭锁方案的分析评价[J].电力系统自动化,1989,13(4):12~18.
    [102]沈国荣.区分振荡与短路的新原理[J].电力系统自动化,1990,14(1):7~12.:
    [103]张晓春,魏松,张家安.SEL-311C距离保护振荡闭锁运行分析[J].湖北电力,2003,27(4):19~21.
    [104]陈志梅.系统振荡又发生故障时距离保护的动作行为分析[J].电力学报,1999,14(1):68~71.
    [105]许正亚.电力系统故障分析[M].北京:中国水利电力出版社,1993,34~37.
    [106]OhuraY, MatsudaT, SuzukiM, et al. A Digital Distance Relay Using Negative Sequence Current[J]. IEEE Trans on Power Delivery,1990,5(1):79~84.
    [107]KaseT, SonobeY, AmohH, et al. A New Method for Detection of Faults During Power Swing Conditions for a Distance Relay[A].8th IEEE International Conference on Development sin Power System Protection. AmSterdam(Netherlands): 2004.437~440.
    [108]许正亚.输电线路新型距离保护[M].北京:中国水利水电出版社,2002.
    [109]郁惟慵,范广军,迟忠君.基于模糊集合理论的电力系统振荡与短路的识别[J].继电器,2002,30(3):4~7.
    [110]焦绍华,刘万顺,杨奇逊等.用模糊集合理论识别电力系统振荡中的短路的研究[J].中国电机工程学报,1998,18(6):443~448.
    [111]MechraouiA, ThomasDWP. A New Blocking Principle with Phase and Earth Fault Detection During Fast Power Swings for Distance Protection[J]. IEEE Trans on Power Delivery,1995,10(3):1242~1248.
    [112]MechraouiA, ThomasDWP. A New Distance Protection Scheme Which can Operate During Fast Power Swings[A].6th International Conference on Development sin Power System Protection. Nottingham(Britain):1997.206~209.
    [113]CONG Wei, PAN Zhen-cun, YUN Zhi-hao, et al. The method of detecting a synchronous power swing based on the variation of active power[C]. London:IEE 5th International Conferenceon Power System Management and Control 2002.297~302.
    [114]TAYLORCW, HANERJM. A new out of step relay with the rate of resistance augmentation[J]. IEEE Trans on Power Apparatus and Systems, PAS 102,1983, 3:631~639.
    [115]许继集团有限公司.WXH-801/802数字式微机线路保护装置技术说明书,2000.10.
    [116]苏盛, K. K. Li.广域电流差动保护区划分专家系统[J].电网技术,2005,29(3):55~58.
    [117]胡志祥,谢小荣.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39~43.
    [118]熊小伏,周家启,赵霞.快速后备保护研究[J].电力系统自动化,2003,27(11):45~47.
    [119]郭征,贺家李.三端线路光纤保护的研究[J].电力系统自动化,2003,27(10):57~59.
    [120]高湛军,潘贞存,丛伟.基于光纤以太网的纵联保护通信方案[J].电力系统自动化,2005,29(1):57~60.
    [121]STamronglak, SHHorowitz, AGPhadke. An atomy of Power System Blackouts: PreventiveRelayingStrategies. IEEE Transactions on Power Delivery,1996,11(2): 708~715.
    [122]刘永奇,谢开.从调度角度分析8.14美加大停电[J].电网技术,2004,28(8):11~15.
    [123]周孝信,郑健超.从美加东北部电网大面积停电事故中吸取教训[J].电网技术,2003,27(9):5~9.
    [124]孙光辉,沈国荣.加强电网三道防线确保我国电力系统的安全.中国科协2004年学术年会电力分会场暨中国电机工程学会,2004年学术年会论文集:464~468.
    [125]Tan JC, Crossley PA, Mclaren PGetal. Application of awide area backup protection expert system top revent cascading outages[J]. IEEE Trans on Power Delivery,2002,17(2):375~380.
    [126]Daniel Karlsson, MortenHemmingsson, StureLindahl. Wide area system monitoring and control-terminology, phenomena, and solution implementation strategies. IEEE power&energy magazine,2002,34(2):12~15.
    [127]Dziedusako J W. Moderntren dsinline and net work protection system[A]. Seventh International Conference on Development sin Power System Protection[C].2001: 177~180.
    [128]Christian Rehtanz, Joachim Bertsch. WideArea Measurement and Protection System for Emergency Voltage Stability Control. IEEE,2002.
    [129]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(9):14~17.
    [130]曾祥君,郭自刚.继电保护的新发展——广域保护[J].大众用电[J],2004,8:43~44.
    [131]M. Begovic. Wide Area Protection and Emergency Control[J]. IEEE PSRC Working Group C-6 Report,2001.
    [132]J. C. Tan, P. A. Crossiey, D. Kirschen, et al. An expert system for the back-up protection of a transmission network. IEEE Trans on Power Delivery,2000, 15(2):508~513
    [133]丛伟,潘贞存,丁磊等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29~33.
    [134]丛伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报.2006,26(21):8~14
    [135]刘兵.基于“三道防线”的广域保护系统及其算法研究[J].广东电力,2005,18(6):5~10.
    [136]Serizawa Y, Myoujin M, Kitamura K, et al. Wide-area current differential backup protection employing broadband communications and time transfer systems[J]. IEEE Trans on Power Delivery,1998,13(4):1046~1052.
    [137]WangXR, Hopkinson KM. Developing anagent-based backup protection system for transmission networks[A]. Power System and Communication Infrastructures for the Future[C],2002:153~157.
    [138]BertilI, Per-OlofL, DanielKetal. Wide-area protection against voltage collapse [J]. IEEE Computer Application in Power System,1997,10(4):30-35.
    [139]MehmetK, JoachimB, Lekva, et al. Enhanced transmission utilization with an integrated measurement, protection and control system[J]. IEEE Trans on Power Systems,2000,7(2):837~842.
    [140]Brandwajn V. Efficient bounding method for linear contingency analysis. IEEE Trans on Power System,1988,3(1):38-43.
    [141]丁力,苗世洪,刘沛等.一种新型的电力系统广域网后备保护[J].继电器,2006,34(6):1~5.
    [142]熊小伏,周家启,赵霞等.快速后备保护研究[J].电力系统自动化,2003,27(11):45~47.
    [143]盛万兴,杨旭升.多Agent系统及其在电力系统中的应用[M].中国电力出版社,2007:87~92.
    [144]印永华,郭剑波,赵建军等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8~11.
    [145]何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21): 1~5.
    [146]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9)1~6.
    [147]吴笃贵,徐政.基于相量量测得电力系统谐波状态估计(Ⅱ)—可观性、质量评估与算例研究[J].电工技术学报,2004,19(3):76~81.
    [148]Xu Huiming, Bi Tianshu, Huang Shaofeng, et al. Study of wide-area back-up Protection for power systems[C].2005 International Conference of Electrical Engineering,2005.
    [149]徐慧明,毕天妹,黄少锋等.基于潮流转移因子的广域后备保护方案[J].电网技术,2006,30(15):65~71.
    [150]陈振宇,王钢,李海锋等.基于智能多代理技术的广域电网协调保护系统.电网技术,2008,32(5):42~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700