高压电网有限广域智能保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压电网继电保护作为电网安全不可缺少的第一道防线,近年来其技术的发展面临电力系统高速发展的挑战,主要来自以下几个方面:基于超、特高压远距离交、直流混合输电技术的超大规模互联电网其运行工况更为复杂和安全稳定问题更为严峻;具有分布式电源、微网接入特征的统一坚强智能电网将呈现更为灵活多样的运行方式;各种形式的自然灾害造成电网结构或运行工况发生非预设性改变甚至系统肢解破坏传统保护的配合模式。学界普遍认为,应对这一系列难题的基本思路之一是突破传统保护仅利用单一被保护元件信息的局限,研究发展基于广域信息的广域继电保护。
     近年来,各种广域保护原理、模式乃至试验系统的研究受到广泛关注并取得了长足的进步,而当前现代通信技术、智能测控技术和数字化变电站技术的发展为广域保护提供了必需的技术基础,尤其是正在全世界开展的智能电网建设又为广域保护的应用提供了契机。本文在当前研究成果的基础上,围绕广域保护工程化应用中深层次的技术原理与实现方案展开研究和论述:基于电网继电保护功能及配合要求,提出一种利用电网有限范围广域信息并融合智能技术的高压电网有限广域智能保护,并研究解决保护系统结构、保护分区原理、保护跳闸策略以及智能保护算法等多方面的问题。
     利用广域信息来改善保护对系统变化的适应与配合可归纳为两种方式:一种是通过获取当前电网信息和集中整定计算,然后实时在线整定,其困难表现在大量信息传输与快速整定计算方法上;而另外一种则是利用实时广域信息直接实现保护配合与动作,无需传统意义的整定计算。本文研究的高压电网有限广域智能保护属于后者,其主要特点是基于有限广域信息和智能化方法,即利用保护配合关心的最小范围的广域信息并通过智能技术处理直接进行拓扑识别、故障识别,跳闸判定而实现保护的配合与有选择性动作。为此,本文首先在对比分析多种广域保护构成模式基础上建立了一种分区域集中决策的有限广域保护的系统结构,处理变电站之间的信息互联,保证保护功能故障识别和动作决策性能。论文对充分利用目前主保护纵联通道传输广域保护信息进行了探讨,这对广域保护的工程化应用尤为重要。
     对于结构复杂的实际大型电网,合理的保护分区是基于分区域集中决策的广域继电保护工程应用中需要重点解决的关键技术之一。论文基于图论技术提出了有限广域智能保护系统的保护分区理论,对保护分区的主要问题:信息域的制定与保护主站的选择进行了研究。提出了根据决策性能、通信能力与保护功能来确定的信息域,以及节点的度的系统主站选取标准,通过实例分析验证了保护分区原则与方法的可行性。
     论文结合网络结构与变电站主接线方式研究了有限广域智能保护系统的跳闸策略,后备保护进行故障识别、相应主保护失效时,保障在最小范围内切除故障,实现保护的选择性的系统协调配合机制。结合保护关联域讨论故障的关联域模式识别,提出了由保护配合要求界定的配合子站选取思想,保证了子站间清晰的后备保护职责。
     故障元件识别是有限广域智能保护系统的核心和基础,如何提高故障元件识别的准确性,特别是在由于传感器故障、信息判断错误等原因引起的广域信息部分缺失或出错情况下的正确性,防止保护系统的拒动、误动,是有限广域智能保护工程应用中需要重点解决的关键问题。论文对有限广域智能保护的保护算法进行了深入研究,提出了基于两种不同原理的广域继电保护算法。形成有限广域智能保护原理双重化配置,进一步改善有限广域智能保护系统的整体性能。
     第一种方法是基于遗传算法的智能保护算法,利用遗传算法构建电网故障识别模型,通过主保护动作、故障方向、测量阻抗判断三组电网信息的期望函数,利用各类电气量间的逻辑关系,实现准确故障识别。多种类电网信息的利用与遗传算法优异的鲁棒性,使算法不仅具备良好的准确性、可靠性,尤其具备优异的信息容错性能,是人工智能技术在广域继电保护原理研究领域的初步探讨。
     第二种方法是基于信息融合的关联方向比较保护算法。该算法以基于关联方向比较原理的广域继电保护算法为故障识别判据,提出基于进化模型的信息融合技术作为辅助性措施,实时纠正故障方向信息以改善判据应对坏数据能力不足,并为今后故障信息冗余与容错识别技术提供了基础性研究。
     作为广域智能保护实现技术的重要组成部分,论文对有限广域智能保护的通信系统基本模式进行研究,利用网络通信仿真软件Network Simulator对通信网络性能进行仿真与分析,仿真结果验证了基于SDH广域通信的可行性。
     最后,论文对所作的工作进行了总结,并对本课题的发展趋势进行了展望。
High voltage grid relay protection is indispensable as power grid security and stability first defending line, and the technology has been challenged by development of power system. Operation condition would be more complicated and security and stability problem would be more austere in large-scale interconnected power grid of high and ultra high voltage and transmission system of AC and DC technology. Flexible and multiplex operation mode is need in Smart Grid with character of distributed generation and microgrid. Traditional relay protection coordination would be destroyed in non-presupposed operation mode changed of structure power grid and catastrophe accidents of power grid. Generally, research of wide area protection based on wide area information is an effectual way to deal with the problem of power grid protection.
     The research of wide area protection principle and experiment system has been concerned widely, and necessary technology is provided with development of communication technology, intelligent measurement and control technology and digital substation, especially, Smart Grid should accelerate the application of wide area protection. Therefore, limited wide area protection system of centralized decision by area division was presented in this paper, combining with current wide area protection development and practical engineering application. And this paper gives a detail discuss on structure, principle and method of protected zone division, tripping strategy and intelligent protection principle.
     This paper brings forward a limited wide area intelligent protection system based on abundant power network information and intelligent technology by analyzing the practical application of wide area protection and further combining it with the recent development of power network. The system consists of some limited systems by covering with the wide area power grid, and forms the grid protection including integrated backup protection. The selection of protection is realized by exact fault judgment and power network structure, not for traditional multi section delay, so it avoids the accident of load transfer essentially.
     The principle and method of protected zone division has been researched by using graph theory. It is made up of not only information region, which is decided by wide area communication capability and expectant control range, but also selection of main substation which is decided by the degree of nodes in system. It is a feasible but not optimal way to deal with protected zone division for actual power grid, but it is fit for practical engineering and complicated loop power network.
     This paper makes some analysis and research on tripping strategy with connection mode in practical engineering, chooses tripping strategy by considering whole power grid not depending on action delay. Protection associated region is made use of identifying associated mode and selection of seed substation, which assures the backup protection duty for substations. At the same time, intelligent failure protection is provided with the function of breaker failure protection, and it is advancement for system intelligence.
     The basis and kernel of limited wide area intelligent protection system is fault identification, and it is very important to improve the identification veracity for engineering application. This paper gives an intelligent protection principle based on genetic algorithm, and it is a primary research for artificial intelligence application in protection. Conformation for regularization fitness function is good for intelligence principle standardization and expanding. Intelligence protection principle is made up of three expectation functions of main protection action information, fault direction information and impedance information, and the protection principle based on genetic algorithm has good accuracy and robustness, especially, excellent fault-tolerance capability by using logic relation of kinds of power grid information.
     In order to improve the capability of longitudinal direction comparison principle, this paper brings on a study of information fusion based on evolution model for assistant. This principle should be configured for the second protection principle of limited wide area intelligent protection, and it is useful to improve the capability of protection system, and this chapter also does some research on multiple criterion logic with two different protection principles.
     A communication system for wide area protection is mentioned in this chapter, and some simulation results for capability of communication system is educed by using Network Simulator. The simulation is about communication in different network environment and repetitious router transmitting, and compares communication delay and packet loss rate. The simulation results provide warrant for the selection of limited wide area radius.
     Finally the achieved research is concluded and future perspective on development of limited wide area intelligent protection is highlighted.
引文
[1]吴烨,张素心.中国电力工业的发展及远景[J].发电设备,1997,10:31-38.
    [2]赵庆波,张正陵,白建华.能源资源格局与“一特三大”电力发展战略[J].能源基地建设,2007,40(12):1-5.
    [3]舒印彪,刘泽洪,袁骏.2005年国家电网公司特高压输电论证工作综述[J].电网技术,2006,30(5):1-12.
    [4]赵兴勇,张秀彬.特高压输电技术在我国的实施及展望[J].能源技术,2007,28(1):52-54.
    [5]EPRI.Technical and System Requirement of Advanced Distribution Automation.EPRI Alto,CA,2004.1010915.
    [6]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9):1-4.
    [7]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):1-9.
    [8]朱声石.高压电网继电保护原理与技术[M].北京:中国电力出版社,2005.
    [9]张保会,尹项根,电力系统继电保护[M].北京:中国电力出版社,2005.
    [10]贺家李.电力系统继电保护原理第三版[M].北京:水利电力出版社,1994.
    [11]Miroslav Begovic,Damir Novosel,Daniel Karlsson,er al.Wide-area protection and emergency control.Proceeding of IEEE Power,2005,5:876-891.
    [12]薛禹胜.综合防御由偶然故障演化为电力灾难[J].电力系统自动化,2003,27(18):1-5.
    [13]易俊,周孝信.电力系统广域保护与控制技术[J].电网技术,2006,30(8):7-14.
    [14]张保会.加强继电保护于紧急控制系统的研究提高互联电网安全防御能力.中国电机工程学报[J],2004,24(7):1-6.
    [15]曹国臣,蔡国伟,王海军.继电保护整定计算方法存在的问题与解决方案[J].中国电机工程学报,2003,23(10):51-56.
    [16]Harmand Y.Analysis of a voltage collapse-incident and proposal for a time-based hierarchical containment scheme.GIGRE session paper,1990,2:38-39.
    [17]Kurita A,Sakurai T.The power system failure on July 23,1987 in Tokyo. Proceeding of the 27th conference on decision and control,Austin,Texas.1990,12.
    [18]刘有飞,蔡斌,吴素农,等.电网冰灾事故应急处理及反思[J].电力系统自动化,2008,32(8):10-13.
    [19]侯慧,尹项根,陈庆前,等.中国南方地区500kV主网架2008年雪灾受损的分析与思考[J].电力系统自动化,2008,32(11):12-15
    [20]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(9):14-18.
    [21]蔡运清,汪磊,Kip Morison,等.广域保护(稳控)技术的现状及展望[J].电网技术,2004,28(8):20-25.
    [22]Bertil Ingelsson,Per-Olof Lindstrom,Daniel Karlsson et al.Wide-Area Protection Against Voltage Collapse.IEEE Computer Applications in Power,1997,10(2):30-35.
    [23]从伟,潘贞存,丁磊,等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29-33.
    [24]Serizawa Y,Myoujin M,Kitamura K et al.Wide-area current differential backup protection employing broadband communications and time transfer systems.IEEE Trans on Delivery,1998,13(4):1046-1052.
    [25]Jampala A K,Venkata S S,Damborg M J.Adaptive Transmission protection.Concepts and Computational Issues IEEE Trans on PWRD,1989,4(1):51-65.
    [26]Tan J C,Crossley P A,Mclaren P G,et al.Application of a wide area backup protection expert system to prevent cascading outages.IEEE Trans on Delivery,2002,17(2):350-380.
    [27]何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识[J].电网技术,1996,20(9):35-39.
    [28]U.S-Canada Power System Outage Task Force.Final report on the August 14,2003blackout in the United States Canada.
    [29]张保会,姚峰,周德才,等.输电断面安全性保护及其关键技术研究[J].中国电机工程学报,2006,26(21):1-7.
    [30]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995.
    [31]段献忠,杨增力,程逍.继电保护在线整定和离线整定的定值性能比较[J].电力系统自动化,2005,29(19):58-61.
    [32]樊唯钦.数字化变电站的发展与应用[J].电网技术,2006,30(1):97-100.
    [33]袁季修.变电站综合自动化系统的内容及功能要求和配置[J].电力系统自动化,1995,19(10):18-21.
    [34]IEC Std 61850-1,Communication networks and systems in substations-Part 1:Introduction and overview,2003.
    [35]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,25(1):7-11.
    [36]EPRI.Power delivery system and electricity markets of the future.EPRI,Palo Alto,CA,2003.1009102.
    [37]Paul Haase.Intelligrid:A smart network of power.EPRI Journal,2005:17-25.
    [38]The National Energy Technology Laboratory.A systems view of the modern grid.Pittsburgh,PA,USA:NETL,2007.
    [39]Ackermann T,Knyzkin V.Interaction between distributed generation and the distribution and the distribution:operation asperts.IEEE/PES,transmission and Distribution Conference and Exhibition.Yokohama,Japan:Asia Pacific,2002:1357-1362.
    [40]Peng F Z.Editional special issue on distributed power generation.IEEE Trans on Power Electronics,2004,19(5):1157-1159.
    [41]余贻鑫.面向21世纪的智能配电网[J].南方电网技术研究,2006,11(2):14-16.
    [42]Massoud Amin.Special issue on emergy infrastructure defense systems.Proceedings of the IEEE.2005,5:855-860.
    [43]Hao Li,Rosenwald G W,Juhwan Jung,et al.Strategic power infrastructure defence.Proceedings of the IEEE.2005,5:918-933.
    [44]Anderson P M,Lereverend B K.Industry experience with special protection schemes.IEEE Trans on Delivery,1996,11(3):1166-1179.
    [45]Taylor C W,Erickson D C,Martin K E,et al.WACS-wide area stability and voltage control system:R&D and online demonstration.Proceedings of the IEEE.2005,5:892-906.
    [46]别朝红,王锡凡.复杂电力系统类连锁反应事故可靠性评估初探[J].电力系统自动化,2001,25(15):25-28.
    [47]刘兵.基于三道防线的广域保护系统及算法研究[J].广东电力,2005,18(6): 5-10.
    [48]Ramaswami R,Damborg M,Venkata S.Coordination of Directional overcurrent relays in transmission systems-a subsystem approach.IEEE Trans on Delivery,1990,5(1):64-70.
    [49]吕颖,吴文传,张伯明,等.电网定值在线整定系统的开发与实践[J].电网技术,2008,32(8):15-20.
    [50]徐慧明,毕天姝,黄少锋,等.基于潮流转移因子的广域后备保护方案[J].电网技术,2006,30(15):65-71.
    [51]徐慧明,毕天姝,黄少锋,等.计及暂态过程的多支路切除潮流转移识别算法研究[J].中国电机工程学报,2007,27(16):24-30.
    [52]苗世洪,刘沛,林湘宁,等.基于数据网的新型广域后备保护系统实现[J].电力系统自动化,2008,32(10):32-36.
    [53]吴科成,林湘宁,鲁文军,等.分层式电网区域保护系统的原理和实现[J].电力系统自动化,2007,31(3):72-77.
    [54]丁力,苗世洪,刘沛,等.一种新型的电力系统广域网后备保护[J].继电器,2006,34(6):1-5.
    [55]王冬青,苗世洪,林湘宁,等.基于光纤网的后备保护系统的研制[J].电网技术,2006,30(7):77-81.
    [56]从伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报,2006,26(21):8-14.
    [57]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):87-93.
    [58]F.Namdari,S.Jamali and P.A.Crossley.Power differential based wide area protection.Electric Power Systems Research,2007,77(12):1541-1551.
    [59]Y.Tomitam,C.Fukui,H.Kudo,et al.A cooperative protection system with an agent model.IEEE Trans on Delivery,1998,13(4):1060-1066.
    [60]Su Sheng,K.K.Li,Zeng Xiangjun,et al.Agent-Based Self-Healing Protection System.IEEE Trans on Delivery,2006,21(2):610-618.
    [61]从伟,潘贞存,赵建国,等.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(5):91-96.
    [62]苏盛,段献忠,曾祥君,等.基于多Agent的广域电流差动保护系统[J].电网技术,2005,29(14):15-19.
    [63]苏盛,LI K K.广域电流差动保护区划分专家系统[J].电网技术,2005,29(3):55-58.
    [64]王晓茹,K M Hopkinson,J S Thorp,等.利用Agent实现新的电网后备保护[J].电力系统自动化,2005,29(21):57-62.
    [65]童晓阳,王晓茹,汤俊.电网广域后备保护代理的结构和工作机制研究[J].中国电机工程学报,2008,28(13):91-98.
    [66]王慧芳,何奔腾.输电线路集合保护及其实现[J].电网技术,2005,29(14):49-53.
    [67]王慧芳,何奔腾.利用状态量信息的集合保护规范化判据研究[J].中国电机工程学报,2008,28(22):81-86.
    [68]林霞,高厚磊.新型广域后备保护方案的研究[J].继电器,2005,33(7):84-88.
    [69]尹项根,汪旸,张哲,等.应对电网灾变的有限广域智能保护系统[J].电力科学与技术学报2008,23(4):13-18.
    [70]Wang Yang,Yin Xianggen,Wen Minghao,et al.The Research of Regional Intelligent Protection Based on Regional Power System Information,Proceedings DRPT 2008 International Conference,Nanjing,China 2008:2071-2075.
    [71]汪旸,尹项根,赵逸君,等.基于遗传算法的区域电网智能保护[J].电力系统自动化,2008,32(17):40-45.
    [72]薛禹胜.时空协调的大停电防御框架(二)广域信息、在线量化分析和自适应优化控制[J].电力系统自动化,2006,30(2):1-10.
    [73]Huang Y C.Condition assessment of power transformers using genetic-based neural networks.IEE Proceedings Science,Measurement and Technology,2003,150(1):19-24.
    [74]Ernesto V,Oscar L,Charon M,et al.An online expert system for fault section diagnosis in power systems.IEEE Trans on Power Systems,1997,12(1):357-362.
    [75]Yang H T,Chang W Y,Huang C L.Power system distribution online fault section estimation using decision tree based neural nets approach.IEEE Trans on Power Delivery,1995,10(1):540-546.
    [76]Narendra K G,Sood V K,Khorasani K,et al.Application of a radial basis function neural network for fault diagnosis in a HVDC system.IEEE Transactions on Power Systems,1998,13(1):177-183.
    [77]Chow M Y,Yee S O,Taylor L S.Recognizing animal caused faults in power distribution systems using artificial networks.IEEE Transactions on Power Systems,1993,8(3):1268-1273.
    [78]Lo K L,Ng H S,Trecat J.Power systems fault diagnosis using Petri Nets.IEE Proceeding Generations,Transmissions and distributions,1997,144(3):231-236.
    [79]李强,徐建政.基于主观贝叶斯方法的电力系统故障诊断[J].电力系统自动化,2002,31(15):46-50.
    [80]周乐荣,韦岗.一种基于UCA体系的网络化远动通信结构[J].电力系统自动化,2004,28(10):65-68.
    [81]朱永利,黄敏,邸剑.基于广域网的电力远动系统的研究[J].中国电机工程学报,2005,25(7):119-124.
    [82]陈树柏.网络图论及其应用[M]、北京:科学出版社,1982..
    [83]梅念,石东源,段献忠.基于图论的电网拓扑快速形成与局部修正新方法[J].电网技术,2008,32(13):35-39.
    [84]Paris M,Beso A.A topology processor that tracks network modifications over time.IEEE Transactions on Power Systems,1988,3(3):992-998.
    [85]董张卓,秦红霞,孙启宏,等.采用面向对象技术和方法的电力系统网络拓扑的快速跟踪(一)[J].中国电机工程学报,1998,18(3):178-181.
    [86]高晓萍,阎欣,单渊达.一种基于因果映射的管理系统拓扑结构识别方法[J].电力系统自动化,1997,21(11):29-31.
    [87]陈星莺,孙恕坚,钱锋.一种基于追踪技术的快速电力网拓扑分析方法[J].电网技术,2004,28(5):22-24.
    [88]贾贵玺,梁斌,贺家李.光纤通讯微机保护系统设计[J].电力系统及其自动化学报,2006,2(18):96-98.
    [89]张启平,曹路,励刚,等.广域测量系统及其在华东电网的应用[J].华东电力,2005,33(1):5-10.
    [90]张玮,潘贞存,赵建国.新的防止大停电事故的后备保护减载控制策略[J].电 力系统自动化,2007,31(8):27-31.
    [91]Renan G,Kenneth H,Dennis V,Coury,et al.A primary and backup cooperative protection system based on wide area agents.IEEE Transactions on Power Delivery,2006,21(3):1222-1230.
    [92]王梅义.电网继电保护应用[M].北京:中国电力出版社,1999.
    [93]曹国臣,韩蕾,祝滨.大电网分布式自适应继电保护系统的实现方法[J].电力系统自动化,2000,24(13):19-22.
    [94]曾耿晖,刘玮.继电保护在线整定系统的探讨[J].继电器,2004,32(17):38-42.
    [95]张广顺,赵巍巍.断路器失灵保护的技术探讨[J].电力设备,2007,8(2):73-75.
    [96]丁书文.断路器失灵保护若干问题分析[J].电力系统自动化,2006,30(3):89-91.
    [97]吴大立.输电线路保护新原理及实现技术研究.华中科技大学博士学位论文,2008.
    [98]潘翀,陈伟根,云玉新,等.基于遗传算法进化小波神经网络的电力变压器故障诊断[J].电力系统自动化,2007,31(13):88-92.
    [99]熊浩,孙才新,陈伟根,等.电力变压器故障诊断的人工免疫网络分类算法[J].电力系统自动化,2006,25(6):57-60.
    [100]杜红卫,孙雅明,刘弘靖,等.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,24(5):52-55.
    [101]Winter G.Genetic algorithmsin engineering and computer scicence.Wiley,1995.
    [102]Forrest S.Genetic algorithms,proceedings of the fifth international conference on genetic algorithms.Morgan Kaufmann Publishers,1993.
    [103]Back T.Evolutionary algorithms in theory and practice.Oxford Univ.Press,1996.
    [104]Cordon O,Herrera F,Hoffmann F,et al.Genetic fuzzy systems-evolutionary tuning and learning of fuzzy knowledge bases.World Scientific,2001.
    [105]Gonzalez A,Perez R.SLAVE.A genetic learning system based on an iterative approach.IEEE Transactions on Fuzzy Systems,1999,7(2):176-191.
    [106]周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1999.
    [107]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [108]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2006.
    [109]陈杰.MATLAB宝典[M].北京:电子工业出版社,2006.
    [110]卫志农,周奕,李阳林,等.基于信息融合理论的动态状态估计讨论[J].电力系统自动化,2008,32(4):103-107.
    [111]Hall D L.Mathematical techniques in multisensor data fusion boston.MA,USA:Artech House,1992.
    [112]何友,王国宏.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [113]胡玉峰,尹项根,陈德树.信息融合技术在电力系统中的应用研究(一)[J].继电器,2002,30(12):1-5.
    [114]胡玉峰,尹项根,陈德树.信息融合技术在电力系统中的应用研究(二)[J].继电器,2003,31(1):17-22.
    [115]Wald L.An European proposal for terms of reference in data fusion.International Archives of Photogrammetry and Remote Sensing,1998(7):651-654.
    [116]Pan Q,Yu X.Essential methods and progress of information fusion theory.Acta Automatica Sinica,2003,29(4):599-615.
    [117]He Yongyong,Chu Fulei,Zhong Binglin.A study on group decision-making based fault multi-symptom-domain consensus diagnosis.Relability Engineering and System Safety,2001,74(4):43-52.
    [118]符玲,何正友,麦瑞坤,等.小波熵证据的信息融合在电力系统故障诊断中的应用[J].中国电机工程学报,2008,28(13):64-69.
    [119]Goldberg D E.Genetic algorithms in search.Optimization and Machine Learning Reading,MA,Addison-Wisely,1989.
    [120]曹宁,胡弘莽.电网通信技术[M].北京:中国水利水电出版社,2003.
    [121]崔际红,王龙娣,施金阳.电力线载波通道继电保护信号传输方式的探讨[J].电力系统通信,2003,19(2):37-39.
    [122]吴云.基于光纤+SDH+IP技术的极端保护及故障信息传输系统[J].电力系统自动化,2004,28(1):88-91.
    [123]Jim Y Cai,Zhenyu Huang,John Hauer,et al.Current status and experience of WAMS implementation in North America.IEEE/PES,transmission and Distribution Conference and Exhibition.Dalian,China:Asia Pacific,2005:1-7.
    [124]罗姗姗,贺家李,周孝信.实时通信在超高压多回路母线保护中的应用[J].中国电机工程学报,1999,19(4):1-3.
    [125]杨丹,吴斌,郝小欣.基于广域网的变电站仿真系统[J].电力系统自动化,2002,26(10):50-53.
    [126]高湛军,潘贞存,卞鹏等.基于IEC 61850标准的微机保护数据通信模型[J].电力系统自动化,2003,27(18):43-46.
    [127]徐雷鸣,庞博,赵耀.NS与网络模拟[M].北京:人民邮电出版社,2003.
    [128]Xu Yunjiao,Sung Lee,Yang Ming,et al.Performance evaluation of NS-2simulator for wireless sensor networks.Canadian Conference on Electrical and Computer Engineering.Vancouver,Canada,2007:1372-1375.
    [129]叶淋,郭媛媛,万鹏,等.基于NS2的EPON网络建模-结构和性能分析[J].浙江大学学报,2007,41(12):1971-1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700