可识别潮流转移的广域后备保护及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电力需求的快速增长,西电东送、南北互供、全国联网工程的实施,一个超大规模的全国互联电网正在形成;并且,伴随着我国电力工业市场化的进程,各区域电网之间的功率交换将越来越频繁,输电线路的负担也日益加重。如果由于故障等因素,某些重负荷关键线路一旦被切除,随之引起的潮流转移与后备保护不合理动作的多米诺效应,很有可能引发连锁跳闸事件,甚至导致大停电事故,给社会和经济带来难以估量的损失。为此,论文将广域信息引入后备保护,研究能够识别潮流转移的广域后备保护新原理与预防连锁跳闸控制策略。
     通过分析网络拓扑结构与参数对支路间潮流转移的影响,提出了能反映支路间潮流转移关系的潮流转移因子的数学描述与定义;分别推导并提出了在不计及支路对地导纳和计及支路对地导纳两种情况下潮流转移因子的矩阵计算公式,分析并归纳了潮流转移因子矩阵的基本特征;通过分析多支路切除时潮流转移的虚拟折返过程,推导并提出了多支路切除事件时潮流转移因子的计算公式,并证明了其正确性,建立了完备的潮流转移因子理论体系。
     在潮流转移因子理论的基础上,针对支路切除后的电力系统暂态过程,分别提出了发生单支路与多支路切除事件时的潮流转移识别暂态算法,并构建了广域后备保护的实现方案。在分析节点注入电流变化引起支路电流变化对应关系的基础上,引入了网络相关度系数矩阵;提出了适用于系统暂态过程的支路电流计算方法与潮流转移识别算法。通过对网络相关度系数矩阵的分析,提出了潮流转移识别暂态算法中广域同步测量系统(WAMS)测点的选取原则。
     针对潮流转移引起电网中支路过载的问题,分别提出了基于网络相关度系数的快速切机、切负荷控制策略和基于最优化方法的发电机、负荷调节控制策略。前者采取等量切机、切负荷控制方案,根据网络相关度系数矩阵,提出了最佳切机、切负荷控制点的选取原则,最佳切机、切负荷量的计算方法及控制策略流程;方案中控制量的计算简单、快速,同时不会引起电网中其它正常支路的过载,保证了快速控制措施的有效性。后者以负荷损失最小为目的,将最优化方法应用于发电机、负荷调节中;并提出了该最优化模型的简化方法和求解策略流程,从而大大缩短了最优解的搜索过程。这两种控制均利用WAMS的量测量作为控制的反馈信息,构成闭环控制方式,能够在保证控制成本和负荷损失最小的同时,达到根除因支路过载引起连锁跳闸的目的。
With the rapid growth of load demand and the execution of strategy we called“power transmitting from west to east, mutual complementary between north and south and national power grid interconnection”, a super large-scale nationwide power network is shaping in our country. Furthermore, with the deregulation of power industry, power flow exchanges occur more frequently among those interconnected power grids. Besides, the load of transmission lines is increasing. Once some key lines with heavy load condition are tripped after fault, cascading trips, even catastrophic blackout are possibly triggered for the domino offect of flow transferring and irrational activation of backup protection. This would result in enormous loss of society and economy. By introducing the wide area information into backup protection design, novel wide area backup protection and control system to prevent cascading trips is proposed in this dissertation.
     Based on the impact of network topology and parameters on flow transferring between branches in the network, the mathematical description and definition of flow transferring relativity factor (FTRF) are presented, which can reflect the flow transferring relationships between branches in power network. The matrix calculation formulas of FTRF are separately deduced and proposed under the condition of phase-to-ground admittance in consideration or not. The characteristics of the FTRF are summarized as well. By analyzing refraction and reflection process of flow transferring, the calculation formula of FTRF for multi-branches chain removal event is deduced. Moreover, the calculation formula is proved according to the definition of FTRF. Therefore a sound FTRF theory frame is founded.
     Based on FTRF theory, as the transient period after the condition of single branch removal or multi-branches removal event is concerned, the transient flow transferring identification algorithms are presented. Moreover, a wide area backup protection design scheme is also proposed separately. Based on the relationship of node injection currents and branch currents, network correlation coefficient matrix is introduced; and a wide area measurement system (WAMS) based flow transferring identification algorithm with limited measurement points to distinguish flow transferring in transient period is presented. The principle of measurement point selection is proposed based on analyzing the characteristic of network correlation coefficient.
     In order to mitigate the overload caused by flow transferring, two kinds of controlstrategies are presented in this dissertation. One is fast generator tripping and load shedding control strategy based on network correlation coefficient; the other is generator and load adjustment control strategy based on optimization planning theory. The former adopts an equal-quantum generator tripping and load shedding control scheme. According to the characteristic of network correlation coefficient, the principle of control nodes selection of load shedding and generator tripping and the calculation method of control quantum are proposed. The algorithm of the former control strategy is simple and fast. At the same time, since the equal-quantum control scheme would not result in overload of other healthy branches, the validity of the control strategy is guarantied. The latter control strategy, which aims at minimizing the loss of load, applies optimization planning theory into generator and load adjustment. A novel simplified approach and solving strategy of the optimization model is proposed to speed the searching process. Both two kinds of control strategies integrate the on-line measurements of WAMS, and then can guaranty minimum control cost and eradicate cascading trips simultaneously.
引文
[1] 王梅义. 大电网系统技术[M]. 北京: 中国电力出版社, 1995: 1-100.
    [2] 卢强, 梅笙伟. 现代电力系统灾变防治和经济运行若干重大基础研究[J]. 中国电力, 1999, 32(10):25-28.
    [3] 杨卫东, 徐政, 韩祯祥. 电力系统灾变防治系统研究的现状与目标[J]. 电力系统自动化, 2000, 24(1): 7-12.
    [4] 曾德文. 全国联网安全稳定及其相互影响研究[J]. 中国电力, 2001, 34(11): 28-33.
    [5] 郭永基. 加强电力系统可靠性的研究和应用——北美东部大停电的思考[J]. 电力系统自动化, 2003, 27(19): 1-5.
    [6] 鲁宗相. 电网复杂性及大停电事故的可靠性研究[J]. 电力系统自动化, 2005, 29(12): 93-97.
    [7] 李蓉蓉, 张晔, 江全元. 复杂电力系统连锁故障的风险评估[J]. 电网技术, 2006, 30(10): 18-23.
    [8] Vassell G S. Northeast Blackout of 1965[J]. IEEE Power Engineering Review, 1991, 11(1): 4-8.
    [9] Chemanoff A, Corroyer C. The Power System Failure of Dec 19, 1978[J]. RGE, 1980, 2(4): 1-10.
    [10] 刘昊. 电网连锁故障分析方法研究[D]. 北京: 华北电力大学硕士学位论文, 2005: 1-30.
    [11] Kearsley R. Restoration in Sweden and Experience Gained from the Blackout of 1983[J]. IEEE Power Engineering Society Summer Meeting, Mexico City, Mexico, Jul 1986, 1986(1): 1-6.
    [12] 何大愚. 美国西部电力系统发生大面积停电事故[J]. 中国电力, 1995, 28(4): 60.
    [13] 王梅义. 有感于美国西部电网大停电[J]. 电网技术, 1996, 20(9):43-46.
    [14] Taylor C W, Erickson D C. Recording and Analyzing the July 2 Cascading Outage[J]. IEEE Computer Applications in Power, 1997, 10(1): 26-30.
    [15] Aggarwal R, Daschmans R, Schellberg R, Venkatasubramanian V, Yirga S. Validation Studies of the July 2, 1996 WSCC System Disturbance Event[R]. America: Operating Capability Study Group, Western Systems Coordinating Council, July 1997: 1-50.
    [16] Kosterev D, Yirga S, Venkatasubramanian V. Alidation Report of the August 10, 1996 WSCC Disturbance[R]. America: Operating Capability Study Group, Western Systems Coordinating Council, March 1997: 1-50.
    [17] Kosterev D N, Taylor C W, Mittestadt W A. Model validation for the August 10, 1996 WSCC Outage [J]. IEEE Trans on Power Systems, 1999, 14(3): 967-979.
    [18] 卢卫星, 舒印丝, 史连军. 美国西部电力系统 1996 年 8 月 10 日大停电事故[J]. 电网技术, 1996, 20(9): 40-42.
    [19] 何大愚. 对于美国西部电力系统的 1996 年 7 月 2 日大停电事故的初步认识[J]. 电网技术, 1996, 20(9):35-39.
    [20] 陈建业, 王仲鸣. 1996 年夏季美国西部电力系统停电事故[J]. 国际电力, 1998, 3(2):52-56.
    [21] U.S.-Canada Power Systems Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada[R]. America: April, 2004: 1-200.
    [22] 薛禹胜. 综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J]. 电力系统自动化, 2003, 27(18): 1-5.
    [23] 印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [24] 徐航,张启平,励刚,黄志龙,周坚. 美加“8·14”大停电教训和启示——兼谈华东电网化解“8·29”和“9·4”重大风险[J]. 华东电力, 2003, 32(9): 1-13.
    [25] 韩水, 苑舜, 张进珠. 国外典型电网事故分析[M]. 北京: 中国电力出版社, 2005: 1-100.
    [26] 供用电编辑部. 意大利 2003 年 9 月 28 日大停电简介[J]. 供用电, 2003,20(6): 3-5.
    [27] Corsi S, Sabelli C. General blackout in Italy Sunday September 28, 2003 [C]. IEEE Power Engineering Society General Meeting, June 2004, 2004(2): 1691-1702.
    [28] 蓝毓俊. 2003 年世界上几起大停电事件的经验教训和启示[J]. 电力设备, 2004, 5(12): 67-70.
    [29] 甘德强, 胡江溢, 韩祯祥. 2003 年国际若干停电事故思考[J]. 电力系统自动化,2004,28(3):1-4.
    [30] Phadke A G, Thorp J S. Expose Hidden Failures to Prevent Cascading Outages[J]. IEEE Computer Application in Power, 1996, 9(3): 20-23.
    [31] Pourbeik P, Kundur P S, Taylor C W. The Anatomy of a Power Grid Blackout - Root Causes and Dynamics of Recent Major Blackouts[J]. IEEE Power and Energy Magazine, 2006, 4(5): 22 – 29.
    [32] Tamronglak S, Horowitz S H, Phadke A G, Thorp J S. Anatomy of Power System Blackouts: Preventive Relaying Strategies[J]. IEEE Trans on Power Delivery, 1996, 11(2): 708-715.
    [33] Horowitz S H, Phadke A G. Boosting Immunity to Blackouts[J]. IEEE Power and Energy Magazine, 2003, 1(5): 47-53.
    [34] 王梅义. 电网继电保护应用[M]. 北京: 中国电力出版社, 1999: 1-200.
    [35] 贺家李, 宋从矩. 电力系统继电保护原理[M]. 北京: 中国电力出版社, 1994: 1-150.
    [36] 杨奇逊, 黄少峰. 微型机继电保护基础[M]. 北京: 中国电力出版社, 2005: 1-100.
    [37] 陆延昌. 继电保护和自动化技术的进步[J]. 继电器, 2004, 24(8):30-33.
    [38] 王梅义. 维护电网安全的基本策略[J]. 电网技术, 1997, 21(2): 36-40.
    [39] 何大愚.对美国西部系统 1996 年两次大事故的后续认识(分层分析)[J].中国电力,1998,31(5):37-40.
    [40] 王宁. 继电保护及安全自动装置存在问题分析及措施[J]. 华北电力技术,2004, 34(7):50-53.
    [41] Xu H M, Bi T S, Huang S F, Yang Q X. Study of Wide-area Backup Protection for Power Systems [C]. 2005 International Conference of Electrical Engineering, Kunming, July 2005, 2005(1): 1-6.
    [42] 卢强, 董新洲. 继电保护与电力系统灾变防治[J]. 继电器, 2005, 33(14):1-6.
    [43] Xu H M, Bi T S, Huang S F, Yang Q X. Study on Wide Area Backup Protection to Prevent Cascading Trips Caused by Flow Transferring [C]. 2005/2006 IEEE Transmission and Distribution Conference & Exposition, Dallas, TX, USA, May 2006, 2006(1): 833-838.
    [44] IEEE Std. C37.113-1999, IEEE Guide for Protective Relay Applications to Transmission Lines[S]. America: Power Systems Relaying Committee of the IEEE Power Engineering Society, 1999: 1-100.
    [45] 国家电力调度通信中心.电力系统继电保护规程汇编(第二版)[S].北京:中国电力出版社,2000: 1-200.
    [46] 李营, 张全. 超高压电网后备保护问题探讨[J]. 中国电力, 2000, 33(5): 80-82.
    [47] 刘玉俊. 高压电网后备保护问题[J]. 内蒙古科技与经济, 2004, 9(8): 65-66.
    [48] 毛锦庆, 屠黎明, 邹为华, 聂娟红. 从加强主保护简化后备保护论变压器微机型继电保护装置[J]. 电力系统及其自动化, 2006, 30(16): 1-6.
    [49] 隋凤海. 变电站故障的远后备保护[J]. 电力系统及其自动化, 1999, 23(20): 27-28.
    [50] 曹明坤. 重视后备保护保证电网安全[J]. 电力设备, 2003, 4(5): 5-9.
    [51] 孟恒信. 关于 220kV 及以上主网远后备保护的思考[J]. 华北电力技术, 2005, 37(2): 36-38.
    [52] Horowitz S H, Phadke A G. Third Zone Revisited [J]. IEEE Transactions on Power Delivery, 2006, 21(1): 23-29.
    [53] 周小谦. 我国“西电东送”的发展历史、规划和实施[J]. 电网技术, 2003, 27(5): 1-5.
    [54] 赵遵廉. 中国电网的发展与展望[J]. 中国电力, 2004, 37(1): 1-6.
    [55] 刘振亚. 加快建设坚强国家电网 促进中国能源可持续发展[J]. 中国电力, 2006, 39(9): 1-3.
    [56] 舒印彪. 我国特高压输电的发展与实施[J]. 中国电力, 2005, 38(11): 1-8.
    [57] 张运洲, 吕健. 我国未来同步电网的战略构想[J]. 中国电力, 2006, 39(3): 5-7.
    [58] 吴敬儒, 邱言文. 确保国内生产总值翻两番的 2001~2020 年电力工业发展研究[J]. 电网技术, 2003, 27(4):1-6.
    [59] 叶雷. 2020 年中国电力可持续发展战略研究[J]. 中国电力, 2003, 36(10): 1-7.
    [60] EPRI. System Disturbance Stability Studies for WSCC[R]. America: EPRI Final Report, EPRITR2108256, 1997: 1-200.
    [61] 薛禹胜. 电力市场稳定性与电力系统稳定性的相互影响[J]. 电力系统自动化, 2002, 26(21): 1-6.
    [62] IEEE Power Engineering Society. IEEE Std C37.118-2005, IEEE Standard for Synchrophasors for Power Systems[S]. America: IEEE Power Engineering Society, 2005: 1-100.
    [63] 国家电力调度通信中心. 电力系统实时动态监测系统技术规范(试行版修改稿)[S]. 北京: 国家电力调度通信中心, 2005: 1-50.
    [64] Phadke A G. Synchronized Phasor Measurements - A Historical Overview[C]. Asia Pacific: IEEE/PES Transmission and Distribution Conference and Exhibition, 2002, 2002(1): 476-479.
    [65] 韩英铎, 王仲鸿, 林孔兴, 等. 电力系统中的三项前沿课题——柔性输电技术,智能控制,基于 GPS 的动态安全分析与监测系统[J]. 清华大学学报, 1997, 37(7): 1-6.
    [66] 周孝信. 研究开发面向 21 世纪的电力系统技术[J]. 电网技术, 1997, 21(11): 11-15.
    [67] Bhargava B. Synchronized Phasor Measurement System Project at Southern California Edison Co[C]. IEEE Power Engineering Society Summer Meeting, July 1999, 1999(1): 16-22.
    [68] Kosterev D N, Taylor C W, Mittelstadt W A. Model Validation for the August 10, 1996 WSCC System Outage[J]. IEEE Trans Power Syst, 1999, 14(3): 967–979.
    [69] 蔡运清, 汪磊, Morison K, Kundur P, 周逢权, 郭志忠. 广域保护(稳控)技术的现状及展望[J]. 电网技术, 2004, 28(8): 20-25.
    [70] Karlsson D, Hemmingsson M, Lindahl S. Wide Area System Monitoring and Control - Terminology, Phenomena, and Solution Implementation Strategies[J]. IEEE Power and Energy Magazine, 2004, 2(5): 68-76.
    [71] 常乃超, 兰洲, 甘德强, 倪以信. 广域测量系统在电力系统分析及控制中的应用综述[J]. 电网技术, 2005, 29(10): 46-52.
    [72] 兰州, 倪以信, 甘德强. 现代电力系统暂态稳定控制研究综述[J]. 电网技术, 2005, 29(15): 40-50.
    [73] 易俊, 周孝信. 电力系统广域保护与控制综述[J]. 电网技术, 2006, 30(8): 7-12.
    [74] 袁季修. 防御大停电的广域保护和紧急控制[M]. 北京: 中国电力出版社, 2007: 100-200.
    [75] 中国电力科学研究院系统研究所. 跨区电网动态稳定监控系统可行性研究[R]. 北京: 中国电力科学研究院, 2004: 1-50.
    [76] 王英涛,印永华,蒋宜国,等.我国实时动态监测系统的发展现状及实施策略研究[J].电网技术, 2005, 29(11): 44-48.
    [77] 许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景[J].电网技术,2005,29(2):45-49.
    [78] 李丹,韩福坤,郭子明,等.华北电网广域实时动态监测系统[J].电网技术,2004,28(23):52-56.
    [79] 王兆家, 岑宗浩, 陈汉中. 华东电网多功能功角实时监测系统的开发及应用[J]. 电网技术, 2002, 26(8): 73-77.
    [80] Min Y. Phasor Measurement Applications in China[C]. Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition 2002, 2002, 2002(1): 485-489.
    [81] Naduvathuparambil B, Valenti M C, Feliachi A. Communication Delay in Wide Area Measurement Systems[C]. IEEE Proceedings of the Thirty-fourth Sourtheastern Symposium on System Theory, 2002, 2002(1);118-122.
    [82] Chaudhuri B, Majumder R, Pal B. Wide-Area Measurement-Based Stabilizing Control of Power System Considering Signal Transmission Delay[J]. IEEE Trans on Power Systems, 2004, 19(4): 1971-1979.
    [83] Xie X R, Xin Y Z, Xiao J Y, Wu J T, Han Y D. WAMS Applications in Chinese Power Systems[J]. IEEE Power and Energy Magazine, 2006, 4(1): 54-63.
    [84] 胡志祥,谢小荣,肖晋宇,童陆园. 广域测量系统的延迟分析及其测试[J]. 电力系统自动化, 2004, 28(15): 39-43.
    [85] 肖晋宇, 谢小荣, 李建, 张涛, 罗建裕, 王小英, 吴玉林. 电网广域动态安全监测系统及其动态模拟试验[J]. 电网技术, 2004, 28(6):5-9.
    [86] 李刚, 王少荣, 程时杰. 广域电网同步状态监测系统中的实时通信[J]. 电网技术, 2004, 28(18): 39-43.
    [87] 崔沅,程林,孙元章,黎雄,彭疆南,钟志安,张剑云. 电力系统实时决策系统中的实时通信[J]. 电力系统自动化, 2002, 26(8): 6-10.
    [88] 严登俊,袁洪,高维忠,吴峰,鞠平. 利用以太网和 ATM 技术实现电网运行状态实时监测[J]. 电力系统自动化, 2003, 27(10): 67-70.
    [89] 江全元, 邹振宇, 曹一家, 韩祯祥. 考虑时滞影响的电力系统稳定分析和广域控制研究进展[J]. 电力系统自动化, 2005, 29(3): 1-7.
    [90] 季坤, 王克英, 蔡泽祥. 广域测量系统中 PMU 的通信方案[J]. 电力系统自动化, 2005, 29(3): 77-80.
    [91] Tan J C,Crossley P A,Kirschen D,et al.An Expert System for the Back-up Protection of a Transmission Network[J].IEEE Trans on Power Delivery, 2000, 15(2): 508-514.
    [92] Tan J C, Crossley P A, Hall I, et al. Intelligent Wide Area Back-up Protection and It's Role in Enhancing Transmission Network Reliability[C]. IEE Seventh International Conference on Developments in Power System Protection, April 2001, 2001(1): 446-449.
    [93] Tan J C, Crossley P A, Mclaren P G, Gale P F, Hall I, Farrell J. Application of a Wide Area Backup Protection Expert System to Prevent Cascading Outages[J]. IEEE Trans On Power Delivery, 2002, 17(2): 375-380.
    [94] Tan J C,Crossley P A,Gale P F,et al.Control of the Central Sectionaliser in a Wide Area Back-up Protection Expert System [C].Power Engineering Society General Meeting,IEEE, Tornto,Ont Canada,2003,2003(2):595-600.
    [95] Tan J C, Crossley P A, Hall I, et al. Evaluation of Uncertainties in the Backup Protection Expert System[C]. Proceedings of IEEE Power Engineering Society Summer Meeting, July 16–21, 2000, 2000(3): 1338 - 1343.
    [96] Tan J C,Crossley P A,Mclaren P G,et al.Sequential Tripping Strategy for a Transmission Network Back-up Protection Expert System[J].IEEE Trans on Power Delivery,2002,17(1):68-74.
    [97] 熊小伏, 周家启, 赵霞, 杨运国. 快速后备保护研究[J]. 电力系统自动化, 2003, 27(11): 45-47.
    [98] 马磊, 王增平, 马静. 基于本地多信息的后备保护研究[J]. 继电器, 2006, 34(4): 6-9.
    [99] Wang D Q, Miao S H, Lin X N, Liu P, Wu Y X, Yang D. Design of a Novel Wide-area Backup Protection System[C]. IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005, 2005(1): 1-6.
    [100] 王冬青, 苗世洪, 林湘宁, 刘沛. 基于光纤网的后备保护系统的研制[J]. 电网技术, 2006, 30(7): 77-81.
    [101] 王慧芳, 何奔腾. 输电线路集合保护及其实现[J]. 电网技术, 2005, 29(14): 49-53.
    [102] Wang X R, Hopkinson K M, Thorp J S et a1. Developing an Agent-based Backup Protection System for Transmission Networks[C]. Proceedings of Internationa1 Conference on Power Systems and Comminication Systems Infrastructures for the Future, Beijing, 2002, 2002(1):1-6.
    [103] 王晓茹, Hophinson K M, Thorp J S, Giovanini R, Birman K, Coury D. 利用Agent 实现新的电网后备保护[J]. 电力系统自动化, 2005, 29(21): 57-61.
    [104] Serizawa Y,Myoujin M,Kitamura K,et al.Wide-area Current Differential Backup Protection Employing Broadband Communications and Time Transfer Systems[J].IEEE Trans on Power Delivery,1998,13(4):1046-1052.
    [105] Serizawa Y,Imamura H,Kiuchi M.Performance Evaluation of IP-based Relay Communications for Wide-area Protection Employing External Time Synchronization[C].Power Engineering Society Summer Meeting,IEEE,Vancouver, BC, Canada,2001,2001(2):909-914.
    [106] Serizawa Y,Myoujin M,Sugaya N,et al. Experimental Examination of Wide-area Current Differential Backup Protection Employing Broadband Communications and Time Transfer Systems[C]. IEEE PES 1999 Summer Meeting, Edmonton, Canada, July 1999, 1999(1): 1-6.
    [107] 林霞, 高厚磊. 新型广域后备保护方案的研究[J]. 继电器, 2005, 33(7): 84-88.
    [108] Kangvansaichol K,Crossley P A.Multi-zone Current Differential Protection for Transmission Networks[C]. 2003 IEEE PES Transmission and Distribution Conference, Dallas, Texas, 2003, 2003(1): 359-364.
    [109] Kangvansaichol K , Crossley P A . Multi-zone Differential Protection for Transmission Networks[C] . Eighth IEE International Conference on Developments in Power System Protection,Amsterdam, Netherlands, 2004, 2004(1):428-431.
    [110] Tang J, McLaren P G. A Wide Area Differential Backup Protection Scheme for Shipboard Application[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1183 – 1190.
    [111] 苏盛, Li K K, Chan W L, 曾祥君, 段献忠. 广域电流差动保护区划分专家系统[J]. 电网技术, 2005, 29(3): 55-58.
    [112] Su S, Li K K, Chan W L, Zeng X J, Duan X Z. Agent-based Wide Area Current Differential Protection System[C]. Fourtieth IAS Annual Meeting, Conference Record of the Industry Applications Conference, 2005, 2005(1):: 453 – 458.
    [113] Su S, Li K K, Chan W L, Zeng X J, Duan X Z. Agent-based Self-healing Protection System[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 610 – 618.
    [114] 丛伟, 潘贞存, 赵建国, 李宪忠, 张新萍. 基于电流差动原理的广域继电保护系统[J]. 电网技术, 2006, 30(5): 91-95.
    [115] 肖位枢. 图论及其算法[M]. 北京: 航空工业出版社, 1993: 1-200.
    [116] Damborg M J, Kim M, Huang J, Venkata S S, Phadke A G. Adaptive Protection as Preventive and Emergency Control[C]. IEEE Power Engineering Society Summer Meeting, July 2000, 2000(2): 1208 – 1212.
    [117] Amin M. Toward Self-healing Energy Infrastructure Systems[J]. IEEE Computer Applications in power, 2001, 14(1): 20-28.
    [118] 朱永利, 宋少群. 基于广域网和多智能体的自适应协调保护系统的研究[J]. 中国电机工程学报, 2006, 26(16): 15-20.
    [119] Coury D V, Thorp J S, Hopkinson K M, Birman K P. An Agent-based Current Differential Relay for Use with a Utility Intranet[J]. IEEE Transactions on Power Delivery, 2002, 17(1): 47-53.
    [120] 陈艳霞, 尹项根, 张哲, 曾祥君, 李岩, 陈德树. 基于多 Agent 技术的继电保护系统[J]. 电力系统自动化, 2002, 26(12): 48-53.
    [121] R K Boel, G Jiroveanu. Model-Based Fault Section Detection and Diagnosis in Electrical Power Network[C]. Proceedings of 6th IPEC Conference, Singapore, 2003, 2003(1): 1-6.
    [122] Giovanini R, Coury D V, Hopkinson K M, Thorp J S. Improving Local and Backup Protection Using Wide Area Agents[C]. Eighth IEE International Conference on Developments in Power System Protection, April 2004, 2004(2): 738-741.
    [123] Novosel D, Begovic M M, Madani V. Shedding Light on Blackouts[J].IEEE Power & Energy Magazine, 2004, 2(1): 32-43.
    [124] 苏盛, 段献忠, 曾祥君, 等. 基于多 Agent 的广域电流差动保护系统[J]. 电网技术, 2005, 29(14): 15-19.
    [125] 陈振宇, 梁强. 基于多代理系统的继电保护[J], 继电器, 2005, 33(3): 40-42.
    [126] 童晓阳 王晓茹 汤俊. 基于组织的多 Agent 广域服务的模型研究[J]. 计算机工程与应用, 2006, 42(17): 194-198.
    [127] 徐慧明, 毕天姝, 黄少锋, 杨奇逊. 基于 WAMS 的潮流转移识别算法[J]. 电力系统自动化, 2006, 30(14): 14-19.
    [128] 徐慧明, 毕天姝, 黄少锋, 杨奇逊. 基于潮流转移因子的广域后备保护方案[J]. 电网技术, 2006, 30(15): 65-71.
    [129] 邱关源主编. 电路[M]. 北京:高等教育出版社,1989: 1-100.
    [130] 张伯明, 陈寿孙. 高等电力网络分析[M]. 北京:清华大学出版社,1996: 1-300.
    [131] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京:清华大学出版社,2002: 1-300.
    [132] 张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6.
    [133] 丛伟,潘贞存,丁磊,高湛军.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29-33.
    [134] 薛禹胜. 时空协调的大停电防御框架(一)——丛孤立防线到综合防御[J]. 电力系统自动化, 2006, 30(1): 8-16.
    [135] 薛禹胜. 时空协调的大停电防御框架(三)——各道防线内部的优化和不同防线之间的协调[J]. 电力系统自动化, 2006, 30(3): 1-10.
    [136] 张保会. 电网继电保护与实时安全性控制面临的问题与需要开展的研究[J]. 电力自动化设备, 2004, 24(7): 1-6.
    [137] Rehtanz C, Bertsch J. A New Wide Area Protection System[C]. IEEE Proceedings of Power Tech Conference, Porto, September 2001, 2001(4): 1-6.
    [138] 徐慧明, 毕天姝, 黄少锋, 杨奇逊. 计及暂态过程的多支路切除潮流转移识别算法研究[J]. 中国电机工程学报, 2007, 27(16): 24-30.
    [139] Abrantes H D, Castro C A. New Branch Overload Elimination Method Using Nonlinear Programming[J]. IEEE Power Engineering Society Summer Meeting, July 2000, 2000(1): 231-236.
    [140] 李响, 张国庆, 郭志忠. 基于输电断面 N-1 静态安全潮流约束的联切负荷方案[J]. 电力系统自动化, 2004, 28(22): 42-44.
    [141] 赵晋泉, 江晓东, 李华, 张伯明. 一种基于连续线性规划的静态稳定预防控制方法[J]. 电力系统自动化, 2005, 29(14): 17-22.
    [142] Li G Q, Wang X. A New Active Power Corrective Control Algorithm Based on Sensitivity Method[C]. IEEE Region 10 Conference on Proceedings of Computer, Communication, Control and Power Engineering, 1993, 1993(5): 55-58.
    [143] 邓佑满, 黎辉, 张伯明, 洪军, 雷健生. 电力系统有功安全校正策略的反向等量配对调整法[J]. 电力系统自动化, 1999, 23(18): 5-8.
    [144] 姚峰,张保会,周德才,王立永,谢欢,邹本国,李磊. 输电断面有功安全性保护及其快速算法[J]. 电机工程学报, 2006, 26(13): 31-36.
    [145] 张保会, 姚峰, 周德才, 王立永, 邹本国. 输电断面安全性保护及其关键技术研究[J]. 电机工程学报, 2006, 26(21): 1-7.
    [146] 王建全, 王伟胜, 朱振青, 夏道止, 董金森. 电力系统最优切负荷算法[J]. 电力系统自动化, 1997, 21(3): 33-35.
    [147] Shi B N,Xie X R,Han Y D.WAMS-based Load Shedding for Systems Suffering Power Deficit[C].2005 IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific,Dalian,China,2005, 2005(1):1-6.
    [148] Lu Y,Kao W S,Chen Y T.Study of Applying Load Shedding Scheme with Dynamic D-Factor Values of Various Dynamic Load Models to Taiwan Power System[J].IEEE Trans on Power Systems,2005,20(4):1976-1984.
    [149] Taylor C W. Concepts of Undervoltage Load Shedding for Voltage Stability[J]. IEEE Trans on Power Delivery, 1992, 7(2): 480-488.
    [150] Feng Z H, Ajjarapu V, Maratukulam D J. A Practical Minimum Load Shedding Strategy to Mitigate Voltage Collapse[J]. IEEE Trans on Power Systems, 1998, 13(4): 1285-1291.
    [151] 徐泰山, 牟宏, 邱夕兆, 薛禹胜. 山东电网暂态低电压切负荷紧急控制的量化分析[J]. 电力系统自动化, 1999, 23(21): 9-11.
    [152] 毕兆东, 王建全, 韩祯祥.基于数值积分法灵敏度的快速切负荷算法[J].电网技术, 2002, 26(8): 4-7.
    [153] Rovnyak S M, Mei K J, Li G. Fast Load Shedding for Angle Stability Control [C]. IEEE Power Engineering Society General Meeting, July 2003, 2003(1):1-6.
    [154] 徐慧明, 毕天姝, 黄少锋, 杨奇逊, 马瑞. 基于广域同步测量系统的预防连锁跳闸控制策略[J]. 中国电机工程学报, 2007, 27(19): 24-30.
    [155] 黄玉琤. 继电保护习题集[M]. 北京: 水利电力出版社, 1993: 1-100.
    [156] 解可新,韩健. 最优化方法[M]. 天津: 天津大学出版社, 2004: 1-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700