西北太平洋环流及其对我国近海环流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了MOM2.0模式的差分格式以及开边界情形的改进,
    较好地模拟了西北太平洋环流的季节变化和黄海冷水团环流结构。
     第三章计算了北太平洋环流的季节变化,模式先从年平均温盐场
    开始积分,积分8a后基本上达到动力平衡态,再以月平均海表面条
    件积分4a后达到季节平衡态。结果表明:1)PN断面黑潮流量冬季
    为29.0×10~6m~3/s(SV),夏季为32.2×10~6m~3/s(SV),这与Sverdrup
    关系相反,这主要是由于风应力涡度零线随季节变化而导致北赤道流
    在菲律宾以东的分叉线春夏季偏南而秋冬季偏北。2)由于层化影响,
    东海黑潮夏季较冬季表层流速明显地强化。3)在台湾以东,黑潮明
    显地分为黑潮主流与东分支,主流穿过苏澳海脊进入东海,然后经吐
    噶喇海峡进入日本以南海域,东分支则流向琉球群岛以东海域,然后
    也进入日本以南海域与前一个分支相汇合。4)与网格相关的
    Smagorinsky方案要比采用常数更能反映中尺度结构。
     第四章采用1997年7月的水文资料,计算了西北太平洋21.875
    °N~35.125°N、120.875°E~137.125°E范围的环流,主要结果
    如下:在此期间,1)黑潮在台湾以东并不存在东分支流向琉球群岛
    以东海域;2)东海黑潮的流量约为30×10~6m~3/s(SV),日本以南黑潮
    流量最大约为70×10~6m~3/s(SV);3)在21.875°N~25°N之间大
    约有15×10~6m~3/s(SV)的流量向西流去。速度分布与流函数分布均
    表明这一支向西的海流大约在冲绳岛西南分为3支,主要分支转向东
    北沿冲绳岛以东海域向东北流去;4)琉球海流主要来自上述西向海
    流。
     第五章通过理论分析及数值模拟研究了底边界混合和地形热累积
    效应对黄海夏季斜压结构的影响。黄海的垂向混合系数为
    10~100cm~2/s。结果表明:1)不同强度的潮混合,导致黄海冷水团
    
    
    的温度分布完全不同,较强的潮混合造成了海底附近直立型温度分
    布。黄海的热传导特征时间尺度为几天。2)黄海冷水团的水平环流
     9
    在垂直方向上分为两层,上层为气旋式环流,其流速较强而厚度较厚,
    下层为反气旋式环流,流速较弱而厚度较簿(约10。20m人 二者的
    相对强弱与底边界混合的强弱关系不大。垂向积分环流则为气旋式
    的。3)黄海冷水团环流受温度分布影响,而后者受环流的平流效应
    的影响则较小。
     论文的主要创新有三点:
     1.发现 PN断面黑潮流量的夏季略强于冬季的原因主要是因
     为风应力涡度零线随季节变化而导致北赤道流在菲律宾以东的
     分叉线春夏季偏南而秋冬季偏北。从动力学上阐述了PN断面
     黑潮流量季节变化的机制。
     2.在 1997年 7月黑潮在台湾以东并不存在东分支流向琉球 +
     群岛以东海域:在21.875“*~25“N之间大约有15x10_Vs
     的流量向西流去。速度分布与流函数分布均表明这一支向西的
     海流大约在冲绳岛西南分为3支,主要分支转向东北沿冲绳岛
     以东海域向东北流去:琉球海流在此期间主要来自上述西向海
     流。
     3.不同强度的潮混合,导致黄海冷水团的温度分布完全不
     同,较强的潮混髓成了海底附近直立型温度分布。黄海的热
     传导特征时间尺度为几天:黄海冷水团的水平环流在垂直方向
     上分为两层,上层为气旋式环流,其流速较强而厚度较厚,下,
     层为反气旋式环流,流速较弱而厚度较薄哟 10~20m),二者
     的相对强弱与底边界混合的强弱关系不大。垂向积分环流则为
     气旋式的。黄海冷水团环流受温度分布影响,而后者受环流的
     平流效应的影响则较小。
The seasonal change of the circulation of Northwest Pacific and the
     circulation structure of Yellow Sea Cold Water Mass (YSCWS) in summer are
     studied with Modular Ocean Model (MOM2.O).
     In Chapter three the seasonal change of the circulation of Northwest
     Pacific is investigated. The annual forcing are used to integrate the model till
     8 years. After that, monthly forcing are used to integrate the model for another
     4 years when the seasonal equilibrium has reached for the upper layers.
     The model results show that: 1) The Volume Transport (VT) of Kuroshio
     changes in the East China Sea from 29.0 X 106m3/s in winter to 32.2 X
     I 06m3/s in summer, which is in contrast with the Sverdrup relation. One of the
     main cause of the seasonal change of VT of Kuroshio in the East China Sea is
     that there is seasonal changes of position of the zero-line of curl ~ (~ is the wind
     stress), which then cause the seasonal shift the bifurcation position of North
     Equator Current in the Phillippine Coast. 2) The comparison between the
     surface velocity in the East China Sea in summer and winter shows the
     intensification of the former, which is in consistence with the observation. 3)
     The Kuroshio east of Taiwan bifiircates into two branches: the main stream
     and eastern branch. The main stream flows northward into the East China Sea,
     and the eastern branch flows northeastward to the region east of Okinawa
     Islands. 4) The Smagorinsky scheme is capable to simulate the mesoscale
     phenomena.
     In Chapter four, based on the CTD data during July of 1997 from the cruise
     of China-Japan Cooperative Study on the Subtropical Circulation and the data
     of the same period of Global Temperature Salinity Profile Program (GTSPP)
     Real-time Data Sets, MOM2.0 is used to calculate the circulation for the
    
    
    
     5
    
    
    
    
    
    
    
    
    
     region of 21.8750 N~-?5.1250 N,120.8750 E~?37.1250 E. Both
     Diagnostic and Robust Diagnostic simulations are done. The result of
     Diagnostic simulations is more reliable. The main feature of the circulation 7
     pattern in this season is as below: 1) The Kuroshio east of Taiwan does not
     split into two branches as usual. 2)The VT of Kurosbio in the East China Sea
     is about 30X 106m3/s. The VT south of Japan is about 70X 106m3/s. 3) There
     is a westward flow at 21.875 N~-?50 N comes from 137~ E with a VT of
     15 X 1 06m3/s(SV). It splits into three branches south of Okinawa Islands, the
     main branch flows northeastward east of Ry黭y?guntO. 4) The Ry黭y?
     Current comes mainly from the above westward flow.
     In Chapter five theoretic solution of one dimensional heat transfer equation
     and a numerical simulation of 3D baroclinic circulation by MOM2.O are found
     to analyze the influence of bottom boundary mixing and the Topographic Heat
     Accumulation Effect (THAE) to the baroclinic structure of the YSCWS in
     summer. The vertical eddy viscosity of Yellow Sea is about 10條OOcm2/s. Our
     results show: 1) for different tidal mixing, the YSCWS shows different
     temperature distribution. Strong bottom boundary mixing makes the doming
     thermocline. The time scale of heat transfer is about a few days, while the
     circulation response in a longer time scale. 2) The circulation of YSCWS has
     a two4ayer structure. The circulation in the upper layer is cyclonic, while it is
     anticyclonic in the lower layer, and is thinner (about 10?0 meter) and weaker
     than the upper layer. The vertical integrated circulation is cyclonic. The
     strength of the bo
引文
1 Lee J, C, and K. T, Jung. Application of eddy viscsity closure models for the M_2 tide and tidal currents in the Yellow Sea and East China Sea. Continental Shelf Res. 1999, 19:445~475
    2 赫崇本,汪圆祥,雷宗友.黄海冷水团的形成及其性质的初步探讨,海洋与湖沼.1959,29(1):11~15
    3 管秉贤.黄海冷水团的水温变化以及环流特征的初步分析,海洋与湖沼,1963,5(4),255~284
    4 袁业立.黄海冷水团环流,海洋与湖沼,1979,23(1):7~13
    5 袁业立,李惠卿.黄海冷水团环流结构及生成机制研究,I.O阶解及冷水团的环流结构,中国科学,1993,23B,93~103
    6 Yuan, Y, C, and J, L, Su. A two-layer circulation model of the East China Sea. Proceedings of International Symposium on Sedimentation on the Continental Shelf, With Special Reference to the East China Sea. Beijing, China Ocean Press, 1983,364~374
    7 缪经榜,刘兴泉,薛亚.北黄海冷水团形成机制的初步探讨.I.模式解.中国科学,1990,20B(12):1312~1321
    8 Hu Dunxin. Chinese study in physical oceanography in the Southern Yellow Sea, Yellow Sea Res.1990, (3,): 13~20
    9 苏纪兰,黄大吉.黄海冷水团的环流结构,海洋与湖沼,1995,26(5):1~7
    10 Endoh S. Diagnostic study on the vertical circulation and the maintenance mechanisms of the cyclonic gyre in lake Biwa. J. Geophys Res, 1986,91:869~876
    11 Choi, B, H, and H, J, Lie, Physical oceanography program of the East China Sea and the East Sea (Japan Sea) dynamics in Korea. Proceeding of PORSEC 92. 1992, 1-28.
    12 Takahashi, S, and T, Yanagi. A numerical study on the formation of circulations in the Yellow Sea during summer. La mer, 1995,33:135~147.
    13 Schwab, D, W, P, Oconnor and G, L, Mellor. On the net cyclonic circulation in large lakes. J. Phys Oceanogr, 1995,25:1516~1520
    14 Davidson, F, J, M, R, J, Greatbatch, and A, D, Goulding. On the net cyclonic circulation in large lakes, J. Phys Oceanogr 1998, 28:527~534
    15 汤毓祥,邹娥梅,李兴宰,李载学.南黄海环流的若干特征,海洋学报,2000,22(1): 1~16
    16 Cummins, P, F, and M, G, G, Foreman. A numerical study of circulation driven by mixing over a submarine bank, Deep Sea Res, 1998,45:745~769
    17 Yuan Y,C, Liu Y, G, M, Y, Zhou et al. The circulation in the Yellow and East China Seas during the period of cyclone development in June of 1999, International Workshop on the Circulation and AirSea Interaction in the Yellow and East China Seas, with Special attention to the Cyclone Outbreaks, KORDI, Korea, 2000, 27~28
    18 Stommel, H, and G, Veronis. Barotropic response to cooling. Journal of Geophysical Research, 1980, 85(C11): 6661~6666.
    19 Emery K, O, and ,G,T, Csanady. Surface circulation of lakes and nearly land-locked seas. Proc Natl Acad Sci USA. 1973, 70: 87~97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700