沙克哈特曼波前传感器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙克哈特曼波前传感器可以用于激光光束质量诊断,激光整形,光学元件和光学系统检查,大气扰动测量,实时控制,以及高功率激光器系统等各个领域。由于它易操作,便于实时探测,而且可以直观地显示波前畸变分布,因而受到学者的广泛关注。科学家哈特曼于1900年首次提出了Shack—Hartmann波前探测技术,后来科学家沙克对其进行了改进,将原来的哈特曼光阑换成微透镜阵列,从而大大提高了探测精度和光能利用率。然而,由于受到背景暗电平,高斯白噪声等因素的干扰,传统的质心算法误差较大,无法得到精确的结果,从而影响到相位图像。另外,由于工艺制作上的约束,其微透镜尺寸大小一直是限制其分辨率的一个瓶颈。它的探测精度以及分辨率的高低,对于整个光学系统的工作性能,将产生非常重要的影响。
     本文主要尝试对沙克哈特曼波前传感器光学系统所面临的一些技术问题进行研究,并探讨了沙克哈特曼波前传感器在细胞探测上的应用。论文的主要内容及贡献如下:
     一、初步建立了沙克哈特曼光波传感器的模拟系统,并采用数值模拟方法,分别使用平面波和高斯光束对其进行模拟照射,还计算了不同斜率的高斯光束照射下,通过标准的传统一阶矩质心算法实际测得的斜率,从而验证了本模拟系统的可靠性。接着,在传统一阶矩算法的基础上,使用高阶矩算法、加阈值的一阶矩算法等不同的质心探测方法进行了改进,比较了它们在各种条件下的测量误差与探测精度;同时,还发现各种质心算法的测量精度与畸变程度、以及图像信噪比等实验参数有关。
     二、搭建了沙克哈特曼传感器的硬件平台,利用空间光调制器产生了各种涡旋光场,并在远场探测到了其强度信息。我们还分析了传统探测算法存在的问题,分别提出了相关匹配算法和混合重心法。我们详细介绍了这两种方法的原理,并将空间光调制器上光涡的位置分别在水平方向和垂直方向平移,分别用这两种方法探测光涡的精确位置。我们对这两种方法进行了比较,从而能在很短的运行时间内,将沙克哈特曼传感器的分辨率从原来的微透镜尺寸级别提高到像素级别。
     三、将沙克哈特曼波前传感器应用于细胞探测上,用它搭建了定量相位显微镜光学平台。通过我们的改进,光学系统被大大简化,而且由于避免了使用干涉时引入的噪声,从而使探测精度提高。为了测试其对复杂结构样本的成像能力,我们将其应用于多层样本折射率分布的探测,包括单层聚苯乙烯微珠、双层聚苯乙烯微珠等。我们还将产生的三维折射率图像进行了三维可视化处理,搭建了VTK平台,使用了面绘制中的MarchingCube算法和体绘制的Raycasting算法,从而实现了三维相位图像的三维可视化和人机交互。
The Shack Hartmann wavefront sensor(SHWS) has been widely applied in laser beam quality diagnosis, laser shaping, optics and optical system diagonals, atmospheric turbulence measurement and real-time control, high power laser system and other fields. Due to the advantages such as easy operation, short response time, and convenience to comprehend the wavefront modes., it received extensive attention of scholars. In1900,Hartmann for the first time proposed the Shack-Hartmann wavefront detection technology. After that, Shack replaced the original Hartmann diaphragm with micro lens array, which greatly improved the detection precision and light energy utilization. However, due to the background level, Gaussian white noise and other factors, the traditional centroid algorithm error is large, which leads to inaccurate results, and finally affect the phase image. In addition, due to the constraints of the production process, the micro lens size has always been a bottleneck of restricting its resolution. Its detection accuracy and resolution, is important for the performance of the whole optical system.
     We focus on some technology problem that the SHWS optical system has faced, and discuss its application on cell detection. The main contents are as following:
     Firstly, we constructed a SHWS simulation system, and utilized different centroid detection methods, such as higher moment centroid method, the threshold weighted pixel average algorithm, and compared the detection error and detection accuracy in different situation.
     Also, we set up a SHWS optical system platform and produces all kinds of vortex light field. After that, we analyzed the problems existing in the traditional detection algorithm, and proposed the correlation matching method and hybrid centroiding method. We can increase the resolution from the level of lenslet size to that of pixel size in a short time.
     Thirdly, the SHWS was applied in cell detection. We set up a quantitative phase microscope optical platform using SHWS. Through our improvement, the optical system will be greatly simplified, and the detection accuracy was improved. In order to test its imaging ability, we applied it in multi-layer sample detection of the refractive index distribution, including monolayer polystyrene beads, double polystyrene beads, etc. We also set up a VTK platform to process the produced three-dimensional refractive index images. We used MarchingCube algorithm and Raycasting algorithm, respectively, to realize the visualization of the three dimensional phase image and human-computer interaction.
引文
[1]Roggemann. M.C, B.M.Welsh. Imaging though the atmosphere [J]. CRC, Boca Raton, FL,1996.
    [2]蒋志凌.哈特曼波前传感器特性和应用研究[D].中科院武汉物理与数学研究所:2005.
    [3]D. R. Neal, J. Copland, and D. Neal. Shack-Hartmann sensor precision and accuracy [J].Proc. SPIE,2002,4779:148-160.
    [4]姜文汉.哈特曼波前传感器的应用.量子电子学报[J],1998,15(2):229-235.
    [5]Jiang Wenhan. Hartmann-Shack wavefront sensing and wavefront control algorithm. Adaptive Optics and Optical Structures [J], SPIE,1271.
    [6]A.Shevchenko, S.C.Buchter, N.V.Tabiryan. Self-focusing in a nematic liquid crystal for measurements of wavefront distortions. Optics Communications [J], 2004,232:439-442.
    [7]Vincent Michau, Gerard Rousset, Fiancis Mendez, Hartmann-Shack wavefront sensor for laser diode testing [J]. SPIE,1989,1131:160-167.
    [8]J. Queneuille, F. Druon, A. Maksimchuk, G. Chriaux, G. Mourou, K. Nemoto. Second-harmonic generation and wave-front correction of a terawatt laser system [J]. Opt.Lett.,2000,25(7):508-510.
    [9]Li Huang. Application of H-S wavefront sensor for quality diagnosis of optical system and light beam[C].ICO-16 Satellite Conference on Active and Adaptive Optics, Garching/Munich, Germany.1993, Aug.2-5.
    [10]M.Rocktaschel, H.J.Tiziani, Limitations of the Shack-Hartmann sensor for testingoptical aspherics, Optics and Laser Technology,2002,34:631-637.
    [11]N. Takeuchi, T.Mitsuhashi, M. Itch. Wavefront distortion measurement of a SR extraction mirror for the beam profile monitor using Shack-Hartmann method[J]. IEEE,1998:859-861.
    [12]Jiang Lingtao. High resolution measurement for optical effect of atmosphere turbulence[J]. SPIE,2828.
    [13]M.C.Roggeman, B.Welsh, Imaging through turbulence [J].Boca Raton, FL: CRCPress 1996.
    [14]F.Roddier, Variations on a Hartmann theme [J]. Optical Engineering,1990,29 (10):1239-1242.
    [15]Byron M.Welsh, Brent L.Ellerbroek. Michael C.Roggemann. Fundamental performance comparison of a Hartmann and a shearing interforometer wavefrontsensor [J]. Applied Optics,1995,34(21):4186-4195.
    [16]Frdric Druon, Gilles Chriaux, Jrme Faure, John Nees, Marc Nantel, Anatoly Maksimchuk, Grard Mourou, Jean Christophe Chanteloup, Gleb Vdovin. Wave-frontcorrection of femtosecond terawatt lasers by deformable mirrors [J]. Opt.Lett.,1998,23(13),1043-1045
    [17]Geun Young Yoon, Takahisa Jitsuno, Masahiro Nakatsuka, Shack-Hartmann wavefront measurement with a large F-number plastic microlens array [J]. AppliedOptics,1996,35(1):188-192
    [18]J. Courtial, D. A. Robertson, K. Dholakia et al.. Rotational Frequency shift of a light Beam [J]. Phys. Rev. Lett.,1998,81 (22):4828-4830
    [19]Ram Oron, Nir. Davidson, Asher A. Friesem et al.. Efficient formation of pure helical laser beams [J]. Opt. Commun.,2000,182(1-3):205-208.
    [20]E. Abramochkin, N Losevsky, V. Volostnikov. Generation of spiral-type laser beams [J]. Opt. Commun.,1997,141:59-64.
    [21]H. He, M. E. Friese, N. R. Heckenberg et al.. Direct observation of transfer of angular momentum to absorptive particlesfrom a laser beam with a phase singularity [J]. Phys. Rev. Lett.,1995,75(5):826-829.
    [22]G. A. Swartzlander, Jr, C. T. Law. Optical vortex solitons observed in Kerr nonlinear media [J]. Phys. Rev. Lett.,1992,69 (17):2503-2506.
    [23]Zhigang Chen, Mordenchai Segev, Daniel W. Wilson et al.. Self-trapping of an optical vortex by use of the bulkphotovoltaic effect [J]. Phys. Rev. Lett.,1997, 78(15):2948-2951
    [24]Polo Di Trapani, Walter Chinaglia, Stefano Minardi et al.. Observation of quadratic optical vortex solitons [J]. Phys. Rev. Lett.,2000,84(17):3843-3846.
    [25]Graham Gibson, Johannes Courtial, Miles J. Padgett et al.. Free- space information transfer using light beams carrying orbital angular momentum [J]. Opt. Exp.,2004,12(22):5448-5456.
    [26]C.S. Buer, K.T. Gahagan, G.A. Swartzlander Jr., and P.J. Weathers, Differences inoptical trapping prompt investigations of Agrobacterium surface chacteristics, Journal of Industrial Microbiology and Biotechnology [J].1998:21,233-236.
    [27]C.S. Buer, K.T. Gahagan, G.A. Swartzlander Jr., and P.J. Weathers, "Insertion of Microscopic Objects Through Plant Cell Walls Using LaserMicrosurgery,Biotechnology and Bioengineering [J].1998:60,348-355.
    [28]K.T. Gahagan. Trapping of Low-index Microparticles inan Optical Vortex [J]. J. Opt. Soc.Am,1998,1992(15):524-534.
    [29]G. A. Swartzlander, Jr, C. T. Law. Optical vortex solitons observed in Kerr nonlinear media [J]. Phys. Rev. Lett.,1992,69 (17):2503-2506
    [30]A. G. Truscott, M. E. J. Friese, N. R. Heckenberg et al.. Optically written waveguide in an atomic vapor [J]. Phys. Rev. Lett.,1999,82(7):1438-1441.
    [31]Ram Oron, Nir. Davidson, Asher A. Friesem et al.. Efficient formation of pure helical laser beams [J]. Opt. Commun.,2000,182(1-3):205-208.
    [32]D. R. Neal, D. M. Topa and J. Copland. The effect of lenslet resolution on the accuracy of ocular wavefrontmeasurements [J]. SPIE,2001,4245:78-91.
    [33]W. Southwell. Wave-front estimation from wave-front slope measurements[J]. J. Opt. Soc. Am.,1980,70(8).
    [34]T.J.Kane, B.Welsh, C.S. Gardner. Wavefront detector optimization for laser guided adaptive telescope [J]. SPIE,1998,1114:160-171.
    [35]W. Jiang, H. Xian, F. Shen. Detecting error of Shack-Hartmann wavefront sensor [J].SPIE,1997,3126,534-544.
    [36]H. Suzuki, J. Suzuki, T. Matshushita, and S. Wakabayashi. Error analysis of a Shack-Hartmann wavefront sensor [J].SPIE,1995,2443:798-805.
    [37]R.Irwan, R.G.Lane. Analysis of optimal centroid estimation applied to Shack-Hartmann Sensing [J]. Appl.Opt.,1999,38(32):6737-6743.
    [38]G.Cao, X.Yu. Accuracy analysis of a Hartmann-Shark wavefront sensor operated with a faint object[J]. Opt.Eng.,1994,33(7):2331-2335.
    [39]W.Jiang, H.Xian, and F.Shen, Detecting error of Shack-Hartmann Wavefront Sensor[J]. China J.Quantum Electron.1998,15(2):218-227
    [40]韩玉晶.光学涡旋场的产生方法、衍射特性及其应用研究[D].山东师范大学:2006.
    [41]Sheldon Green ed. Fluid Vortices [J].Kluwer Academic Publishers, Dordrecht, Netherlands,1995.
    [42]L. Davis, Natural Disasters. Facts on File Science Library [J].Facts on File, new York,2002.
    [43]V. L. Ginzburg and L. P. Pitaevskii. On the theory of superfluidity [J]. Sov. Phys. JETP,1958,7:858-861.
    [44]A. L. Fetter. Vortices in an Imperfect Bose Gas. Ⅰ [J]. The Condensate, Phys. Rev. A,1965,138:429-437.
    [45]R. J. Donnelly. Quantized vortices in Helium Ⅱ [J]. Cambridge University Press, NewYork,1991.
    [46]L. P. Pitaevskii. Vortex lines in an imperfect Bose gas [J]. Sov. Phys. JETP,1961, 13:451-454.
    [47]L.M. Pismen. Vortices in Nonlinear Fields [J]. Oxford Science Publications ClarendonPress, Oxford,1999.
    [48]P. Coles, "Cosmology," The Origin and Evolution of Cosmic Structure [J]., Wiley&Sons, New York,1995.
    [49]陆璇辉.涡旋光束和光学涡旋.激光与光电子学进展[J].2008,45(1):50-56.
    [50]D. Rozas, C. T. Law, G. A. Swartzlander et al.. Propagation dynamics of optical vortices[J]. J. Opt. Soc. Am. B,1997,14(11):3054-3065.
    [51]L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw et al.. Orbital angular momentum of light and the transformation ofLaguerre- Gaussian laser modes[J]. Phys. Rev. A,1992,45(11):8185-8189.
    [52]H. He, M. E. Friese, N. R. Heckenberg et al.. Direct observation of transfer of angular momentum to absorptive particlesfrom a laser beam with a phase singularity [J]. Phys. Rev. Lett.,1995,75(5):826-829.
    [53]D. M. Palacios, I. D. Maleev, A. S. Marathay et al.. Spatial correlation singularity of a vortex field[J]. Phys. Rev. Lett.,2004,92(14):143905.
    [54]G. A. Swartzlander, Jr., J. Schmit. Temporal correlation vortices and topological dispersion[J]. Phys. Rev. Lett.,2004,93(9):093901.
    [55]S. M. Barnett and L. Allen. Orbital angular momentum and nonparaxial light beams [J]. Opt. Commun.,1994,110:679-688.
    [56]L. Allen, M. W. Beijersbergen, R. J. Spreeuw and J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phy. Rev. A.45(11),1992:8185-8189,.
    [57]J. Courtial, D. A. Robertson, K. Dholakia et al.. Rotational Frequency shift of a light Beam [J]. Phys. Rev. Lett.,1998,81 (22):4828-4830
    [58]Ram Oron, Nir. Davidson, Asher A. Friesem et al.. Efficient formation of pure helical laser beams [J]. Opt. Commun.,2000,182(1-3):205-208.
    [59]E. Abramochkin, N Losevsky, V. Volostnikov. Generation of spiral-type laser beams [J]. Opt. Commun.,1997,141:59-64.
    [60]H. He, M. E. Friese, N. R. Heckenberg et al.. Direct observation of transfer of angular momentum to absorptive particlesfrom a laser beam with a phase singularity [J]. Phys. Rev. Lett.,1995,75(5):826-829.
    [61]G. A. Swartzlander, Jr, C. T. Law. Optical vortex solitons observed in Kerr nonlinear media [J]. Phys. Rev. Lett.,1992,69 (17):2503-2506.
    [62]Zhigang Chen, Mordenchai Segev, Daniel W. Wilson et al.. Self-trapping of an optical vortex by use of the bulkphotovoltaic effect [J]. Phys. Rev. Lett.,1997, 78(15):2948-2951
    [63]Polo Di Trapani, Walter Chinaglia, Stefano Minardi et al.. Observation of quadratic optical vortex solitons [J]. Phys. Rev. Lett.,2000,84(17):3843-3846.
    [64]Graham Gibson, Johannes Courtial, Miles J. Padgett et al.. Free-space information transfer using light beams carrying orbital angular momentum [J]. Opt. Exp.,2004,12(22):5448-5456.
    [65]C.S. Buer, K.T. Gahagan, G.A. Swartzlander Jr., and P.J. Weathers, Differences inoptical trapping prompt investigations of Agrobacterium surface chacteristics, Journal of Industrial Microbiology and Biotechnology [J].1998:21,233-236.
    [66]C.S. Buer, K.T. Gahagan, G.A. Swartzlander Jr., and P.J. Weathers, "Insertion of Microscopic Objects Through Plant Cell Walls Using Laser Microsurgery, Biotechnology and Bioengineering [J].1998:60,348-355.
    [67]K.T. Gahagan. Trapping of Low-index Microparticles inan Optical Vortex [J]. J. Opt. Soc. Am,1998,1992(15):524-534.
    [68]G. A. Swartzlander, Jr, C. T. Law. Optical vortex solitons observed in Kerr nonlinear media [J]. Phys. Rev. Lett.,1992,69 (17):2503-2506
    [69]A. G. Truscott, M. E. J. Friese, N. R. Heckenberg et al.. Optically written waveguide in an atomic vapor [J]. Phys. Rev. Lett.,1999,82(7):1438-1441.
    [70]Ram Oron, Nir. Davidson, Asher A. Friesem et al.. Efficient formation of pure helical laser beams [J]. Opt. Commun.,2000,182(1-3):205-208.
    [71]M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen et al.. Helical-wavefront laser beams produced with a spiralphaseplate [J]. Opt. Commun., 1994,112(5-6):321-327.
    [72]E. Abramochkin, N Losevsky, V. Volostnikov. Generation of spiral-type laser beams [J]. Opt. Commun.,1997,141:59-64.
    [73]Filippus Stefanus Roux. Branch-Point diffractive optics [J]. J. Opt. Soc. Am. A, 1994, 11(8):2236-2243.
    [74]N. R. Heckenberg, R. McDuff, C. P. Smith et al.. Laser beams with phase singularities [J]. Opt. Quant. Electron.,1992,24(9):951-962.
    [75]J. Masajada, Synthetic holograms for optical vortex generation-image evaluation [J]. Optik,1999,110(12):554-558.
    [76]E. Abramochkin, V. Volostnikov. Spiral- tipe beams:optical and quantum aspects [J]. Opt. Commun.,1996,125(4-6):302-323.
    [77]L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw et al.. Orbital angular momentum of light and the transformation ofLaguerre- Gaussian laser modes[J]. Phys. Rev. A,1992,45(11):8185-8189.
    [78]T. Ackemann, E. Kriege, W. Lange. Phase singularities via- nonlinear beam propagation in sodium vapor [J]. Opt. Commun.,1995,115(3-4):339-346.
    [79]Guy Indebetouw, Daniel R. Korwan. Model of vortices nucleation in a photorefractive phase-conjugate resonator [J]. J. Mod. Opt.,1994, 41(5):941-950
    [80]N. B. Baranova, A. V. Mamaev, N. F. Pilipetslii et al.. Dislocation of the wave-front of a speckle- inhomogeneous field [J]. Jetp. Lett.,1981,33:195-199
    [81]J. F. Nye, M. V. Berry. Dislocation in wave trains [J]. Proc. R. Soc. London Ser. A,1974,336:165-190
    [82]M. W. Beijersbergen, L. Allen, H. Vanderveen, J. P. Woerdman:Astigmatic Laser Mode Converters and Transfer of Orbital Angular-Momentum[J]. Optics Commun.1993,96:123-132.
    [83]J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, The production of multiringed Laguerre-Gaussian modes by computer-generated holograms[J]. J. Mod. Opt. 45,1998:1231-1237.
    [84]J. Durnin, J. J. Miceli, J. H. Eberly, Diffraction -free beams[J]. Phy. Rev. Lett., 1987,58:1499-1501.
    [85]J. Durnin. Exact solutions of nondiffraction beams. Ⅰ. The scarlar teory[J]. JOSA A,1987,4:651-654
    [86]J. Durnin, J. J. Miceli, Jr. and J. H. Eberly. Diffraction-free beams[J]. JOSA A. 1986,3,128
    [87]J. Arlt, K. Dholakia, J. Soneson and E. M. Wright. Optical diploe traps and atomic waveguides based on Bessel light beams[J]. Phys. Rev. A,2001, 63:063602,.
    [88]Yin J P, et al., Doughnut-beam-induced Sisyphus cooling in atomic guiding and collimation[J]. J. Opt. Soc. Am B,1998,15(8):2235.
    [89]M.W.Beijersbergen,R.P.C.Coerwinkel,and J.P. Woerdman.Helical-wavefrontlaser beams produced by a spiral phase plate[J]. Opt. Comm.,1994,112:321-327.
    [90]G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen and M. J. Padgett.Thegeneration of free-space Laguerre-Gaussian modes at millimetre-wave frequenciesby use of a spiral phaseplate[J]. Opt. Comm., 1996,127:183-188.
    [91]J. Arlt, K. Dholakia, Generation of high-order Bessel beams by use of an axicon[J]. Opt. Commun.,2000,177:297-301.
    [92]M. W. Beijersbergen, L. Allen, H. Vanderveen, J. P. Woerdman:Astigmatic Laser Mode Converters and Transfer of Orbital Angular-Momentum[J]. Optics Commun,1993,96:123-132.
    [93]J. Arlt, K. Dholakia, L. Allen and M. J. Padgett.The production of multiringed Laguerre-Gaussian modes by computer-generated holograms[J]. J. Mod. Opt., 1998,45:1231-1237.
    [94]N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White.Generation of optical phase singularities by computer-generated holograms [J]. Opt. Lett.,1992,17: 221-223.
    [95]Cheng-Shan Guo, Xuan Liu, Xiuyun Ren, Hui-Tian Wang. Optimal Annular Computer-Generated Holograms for Generation of Optical vortices[J]. J. Opt. Soc. Am. A,2005,22(2):385-390.
    [96]R. M. Jenkins, J. Banerji, A. R. Davies, The generation of optical vortices and shapepreserving vortex arrays in hollow multimode waveguides [J]. J. Opt. A, 2001,3:527-532.
    [97]M. L. M. Balistreri, J. P. Korterik, L. Kuipers and N. F. Hulst. Local observations of phase singularities in optical fields in waveguide structures [J]. Phys. Rev. Lett.,2000,85:294-297.
    [98]Arlee V. Smith and Darrell J. Armstrong. Generation of vortex beams by an image-rotating optical parametric oscillator[J]. Opt. Exp.,2003, 11(8):868-873.
    [99]R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon and E. Hasman. The formation of laser beams with pure azimuthal or radial polarization[J]. Applied Physics Letters,2000,77:3322-3324.
    [100]J. M. Vaughan and D. V. Willetts. Interference properties of a light beam having a helical wave surface [J].Opt. Comm.,1979,30:263-267.
    [101]R. Oron, N. Davidson, A. A. Friesem, F. Hasman:Efficient formation of pure helical laser beams[J]. Optics Communications,2000,182:205-208.
    [102]E. Abramochkin, V. Volostnikov, Opt. Commun.,1991,83(123).
    [103]C. Tamm, C. O. Weiss, J. Opt. Soc. Am. B 1990,7(1034).
    [104]M. W. Beijersbergen, L. Allen, H. Vanderveen, J. P. Woerdman:Astigmatic Laser Mode Converters and Transfer of Orbital Angular-Momentum [J]. Optics Commun.,1993,96:123-132.
    [105]J. Arlt, K. Dholakia, Generation of high-order Bessel beams by use of an axicon[J]. Opt. Commun.,2000,177:297-301.
    [106]N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White, Generation of optical phase singularities by computer-generated holograms [J]. Opt. Lett.1992,17: 221-223.
    [107]V. Yu. Bazhenov, m.V. Vasnetsov, and M.S. Soskin, Laser beams with screw dislocations in their wavefronts [J]. Pis'ma Zh. Eksp. Teor. Fiz. 1990,52:1037-1039.
    [108]Jennifer E. Curtis and David G. Grier.Structure of optical vortices [J]. Phys. Rev.Lett.2003,90,133901.
    [109]Jennifer E. Curtis, Brian A. Koss, and David G. Grier. Dynamic Holographic Optical Tweezers [J]. Opt. Commun.,2002,207:169-175.
    [110]Jennifer E. Curtis and David G. Grier. Modulated optical vortices [J]. Opt. Lett. 2003,28:872-874.
    [111]C. Rockstuhl, A. A. Ivanovskyy, M. S. Soskin, M. G. Salt, H. P. Herzig, and R. Dandliker. High-resolution measurement of phase singularities produced by computer-generated holograms [J]. Opt.Commun.,2004,242:163-169.
    [112]D.L. Fried and J. L. Vaughn.Branch cuts in the phase function [J]. Appl. Opt., 1992,31(15):2865-2882.
    [113]M. Chen,F. S. Roux, and J. C. Olivier. Detection of phase singularities with a Shack-Hartmann wavefront sensor [J]. J. Opt. Soc. Am. A,2007, 24(7):1994-2002.
    [114]F. Zernike. Phase contrast, a new method for the microscopic observation of transparent objects. Part Ⅰ. [J]. Physica,1942,9(7):686-698.
    [115]G. Nomarski. Microinterferometre differentiel a ondes polarisees [J]. J Phys Radium,1955,16:95-115.
    [116]H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari and M. S. Feld. Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry [J]. Optics Letters,2004,29(20):2399-2401.
    [117]T. Ikeda, G. Popescu, R. R. Dasari and M. S. Feld. Hilbert phase microscopy for investigating fast dynamics in transparent systems [J]. Optics Letters,2005, 30(10):1165-1167.
    [118]R. Barer. Refractometry and Interferometry of Living Cells [J]. Journal of the Optical Society of America,1957,47(6):545-556.
    [119]W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari and M. S. Feld. Tomographic phase microscopy [J]. Nature Methods,2007,4(9):717-719.
    [120]N. Lue, W. Choi, G. Popescu, K. Badizadegan, R. R. Dasari and M. S. Feld. Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion [J]. Optics Express,2008,16(20):16240-16246.
    [121]F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet and B. Rappaz. Living specimen tomography by digital holographic microscopy:morphometry of testate amoeba [J]. Optics Express, 2006,14(16):7005-7013.
    [122]T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda and Y. Suzuki, 3-Dimensional Microscopy by Optical-Scanning Holography [J]. Optical Engineering,1995,34(5):1338-1344.
    [123]Haixing Yan, She Chen, Shushan li, Numerical simulation investigations of the effects of noise and detection error in an adaptive optics system [J]. SPIE,2002, 4494:144-155.
    [124]Z. L. Jiang, S.S. Gong, Y. Dai, Numerical Study of centroid detection accuracy for Shack-Hartmann Wavefront Sensor [J]. Optics & Laser Technology,2006,38: 614-619.
    [125]Z.L.Fu, Methods for image threshold selection [J]. Computer Applications, 2000,20(5):37-39.
    [126]Xia Ai-li.An improved centroid detection method based on higher momentfor Shack-Hartmann wavefront sensor [J]. SPIE,2010,7850.
    [127]D.Marcos, A.Richard, G.Lane.Wavefront slope estimation [J]. J.Opt.Soc.Am.A., 2000,17(7):1319-1324.
    [128]Scott A. Sallberg, Byron M.Welsh, M.C.Roggemann, Maximum a posteriori estimation of wavefront slopes using a Shack-Hartmann wavefront sensor [J]. J. Opt.Soc.Am.A,1997,14(6):1347-1354.
    [129]Kin A. Winick, Cramer-Rao lower bounds on the performance of change-coupled-device optical position estimators [J]. J.Opt.Soc.Am.A,1986, 3(11):1809-1815.
    [130]S.A.Sallburg, B.M.Welsh, Maximum a posteriori estimation of a Shack-Hartmann Wavefront sensor [J]. J.Opt.Soc.Am.A.1997,14(6): 1347-1353.
    [131]满祥锟.哈特曼波前传感器的Matlab仿真.电子科技[J].2009,22(5):17-18.
    [132]胡战利.基于VTK的医学图像三维重建及交互研究[D].哈尔滨工程大学:2008.
    [133]熊俊.活体细胞多维图象科学可视化方法的研究[D].华中科技大学:2004.
    [134]石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社:1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700