用户名: 密码: 验证码:
CH_3Br和CH_2Cl_2分子紫外激光光解离动力学的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当分子、原子、离子或自由基在同时吸收n个光子从下态共振跃迁到中间态后再吸收m个光子使其电离的过程中,由于下态和中间态的多光子共振吸收使得产生的离子信号强度比相应的非共振多光子电离得到的离子信号强度有很大的增强,因此该过程称之为共振增强多光子电离(n+m)REMPI。共振增强多光子电离(RBMPI)技术一直在研究分子、原子、离子或自由基的高电子激发态的能级结构中发挥重要作用,特别是在激光出现之后的近几十年中,由于激光所具有的高强度,不仅使得REMPI技术探测待研究体系的高激发态或里德堡态的性质成为现实,而且具有很高的信噪比,同时由于激光所特有的高相干性,可以实现对研究体系进行特定量子态的选择。使得REMPI技术获得了新生,不仅体现在该技术本身得到了迅速的发展,而且该技术所应用的研究领域得到很大的拓展,例如该技术在原子、分子、离子或自由基的高激发态光谱和光解离、电离动力学、单原子探测、原子和分子的激光同位素分离、燃烧过程的诊断和分析、复杂分子体系间的电子、振动能量转移过程等研究领域中,发挥着很重要的作用,并已成为这些研究领域的前沿研究课题。由此可见,无论在基础领域还是应用领域,研究不同体系的REMPI和MPI具有很重要的学术价值和很强的应用前景。
     近年来含卤素化合物的光解离动力学研究受到了较多关注,主要因为研究结果表明在同温层中绝大部分的活性卤素原子来源于卤素
    
    化合物的光解离,而这些活性卤素原子对臭氧层损耗的贡献超过
    10%,在所有到达同温层的澳的化合物中,CH3Br是主要成分,所有
    可提供澳的化合物中cH3B:提供了54%的活性澳。因此对开展含卤
    素化合物特别是含澳化合物光解离动力学的研究具有很重要的意义,、
    本论文用共振增强多光子电离一时间飞行质一潜等实验技术研究了澳甲
    烷和二氯甲烷分子的多光子解离或电离的动力学过程,对多光子解离
    或电离产物的产生机理进行了分析和讨论,得到到了一些有意义的实
    验结果。全文共分五章,其主要内容如下。
     第一章简述了REMPI技术的应川背景、发展、特点和应用领域。
    第二章介绍了REMpl技术的基本原理,包括选择定则、电子态的光
    解离机理、描述REMpl过程的速率方程以及分子Rydberg态的性质。
    第三章主要介绍了本文中采用的REMPI一TOF一MS实验装置和实验研
    究方法。并简要介绍了质谱仪的质量分辨和空间分辨的原理。第四章
    主要报道了对澳甲烷分子在279.5一287nm范围内的共振增强多光子电
    离一解离过程的实验研究结果和分析结果,主要研究内容有:(l)实
    验测定了溟甲烷分子的共振增强多光子电离的TOF质谱和分质量的
    REMPI谱。(2)对实验测定的TOF质潜进行了定标归类,对实验测
    定分质量的REMPI谱进行了初步标识和分析,并首次发现了Br的两
    条禁戒跃迁谱线,归属为“2、4尸沐2和5P‘凡2 04尸2只2。(3)通过对
    实验测定的 TOF质谱和分质量的REMPI谱的分析,讨论了滨甲烷分
    子的多光子共振解离一电离通道以及碎片的解离通道,分析结果表明
    澳甲烷分子的主要解离通道是该分子先多光子解离,然后是解离碎
    
    片的进一步解离或多光子.匕离。第五一草主要报道了对二氯甲烷分子在
    279.5一287nm范围内的共振增强多光子解离一电离过程的实验研究结
    果和分析结果,主要研究内容有:(l)实验测定了二氯甲烷分子的共
    振增强多光子电离的TOF质谱和分质量的REMPI谱。(2)…对实验测
    定的TOF质谱进行了定标归类,对实验测定分质量的REMPI谱进行
    了初步标识和分析。(3)通过对实验测定的TOF质谱和分质量的
    REMPI谱的分析,讨论了二氯甲炕分子的多光子共振解离一电离通道
    以及碎片的解离通道,分析结果表明澳甲烷分子的主要解离通道是该
    分子先多光子解离,然后是解离碎片的进一步解离或多光子电离。
Atoms, moleculae or radicals can be excited to rovibratiofral levels of the selected states by the absorption of n-laser photons, then the parent ion can be produced by the absorption of another m-laser photons. Compared with the non-resonant absorption, the ion signal intensity of resonant absorption can be increased drastically due to resonant absorption between the intermidate state and the lower state, which being used as the basis to record the REMPI (Resonance Enhanced Multiphoton lonization) spectrum.ln noting that ion yield is dependent on rovibrational levels in the neutral excited state, the spectrum recorded is thus characteristic of this state. REMPI technique plays an important role in detecting high energetic excited electronic states of atoms, molecules and radicals. In particular, when the higher power laser is used as excited resource, we can detect high energetic excited electronic states or Rydberg states of molecules and radicals, and can obtain the signal better. Besides, we can select t
    he special quanta states of molecules and radicals due to the coherence of the laser. Because of this, not only REMPI technique has been developed quickly, but also its application has been extensively enlarged. For example, it can be used to study the spectroscopy of high excited electronic states of molecules and radicals, photodissociation or photoionization dynamics, single atom detection, laser isotope separation, combustion diagnose and electronical vibrational
    
    
    energy transfer. No matter in basic field or in applied field, the study of REMPI and MPI in different systems has comprehensively scientific values and large scope for future applications.
    In recent years, the photodissociation of chloride and bromide has attracted much attention because these species play a key role in the depletion of the stratospheric ozone. It is said that the active bromine and chlorine in stratosphere mainly comes from photodissociation of chloride and bromide, and the active bromine and chlorine is an important factor in stratospheric ozone depletion. So photodissociation dynamics of chloride and bromide is very important in study of stratospheric ozone depletion. In this paper, using REMPI-TOF technique, multiphoton dissociation/ionization dynamics of dichloromethane and methyl bromide has been carried out. The mechanism of multiphoton dissociation/ionization has also been discussed, and obtained some valuable results. This essay is divided for five chapters. The main contents are listed as following.
    In chapter one, the MPI technique and its development, background, character and applied fields are presented. In chapter two, the basic principles of MPI technique are introduced including the selected rules, Rydberg states etc. In chapter three, the REMPI-TOF-MS equipment and the experimental method are introduced. In chapter four, the
    
    REMPI-TOF-MS of methyl bromide are investigated in the Wavelength range between 279.5-287nm. The main results are : (1) The T0F-MS of methyl bromide are identified. (2) The possible mechanism of dissociation/ionization is also discussed. (3) Four REMPI spectrum are identified. They are the spectrum of C and CH3. (4) Two forbidden transition spectrum of Br are found for the first time, which had been identified as (5) The formation of clusters found in our experiment is analyzed. It is proposed that the main dissociation channel is non-resonant photodissociation of parent molecule , followed by the further photodissociation or photoionization of the fragments. In chapter five, the spectrum of dichloromethane are investigated. (1) The TOF-MS of dichloromethane are identified. (2) The possible mechanism of dissociation/ionization is analyzed. (3) It is also proposed that the main dissociation channel is non-resonant photodissociation of parent molecule followed by the further photodissociation or photoionizati
    on of the fragments.
引文
1. M.Goope rt-Mayer, ann.Phys. 1931, Lpz9-273
    2. F.V. Bunkin and A.M.Prokhorov, Sov.Phys.JETP,1964,19-739
    3. L.V. Keldishi, Zh, Eksp. Teor, Fiz,1964,47-1945.
    4. P.D. Maker, R.W.Terhung and C.W.Savage,Quantum Electronics(Columbia Univ Press,New York, 1964, p1559)
    5. G.S. Voronov, N.B.Delone Pis'ma Zh. Eksp.Teor. Fiz, 1965,1-42
    6. N.K.Bereshetskaya,G.S.Voronov, G.A.Delone, et. al., Sov. Phys. J ETP(Engl,Transl.),1970,31-407
    7. P.M.Jonsone, M.R.Berman, and D.Zakham, J.Chem.Phys., 1975(62): 2500
    8. G.Petty, C.Tai and F.W.Dalpy.,Phys.Rev.Lett.1975,34: 1207
    9. Nieman G.C.Colson S.D.J.Chem.Phys, 1979,71(2): 571
    Glownia J. H. et al. J.Chem.Phys., 1980,73: 4296
    10. Johnson P.M. J. Chem. Phys.,1975,62: 4562 J.Chem.Phys.,1978
    Johnson P.M.J.Chem.Phys., 1976,64: 4143
    11. D.H.Parker, S.J.Sheng and M.A.El-Sayed, J.Chem.Phys.,,1976,65: 5534
    12. M.B.Robin and N.A.Kueblc, J. Chem. Phys., 1978, 69: 806
    13. S.V.Andreyev, V.S.Antonov, I.N.Knyazev, et al Chem Phys lett, 1977 45: 166
    14. U.Bosel, H.J.Neusser and E.W.Schlag,Z.Naturforsch, 1978, A33: 1546
    15. L.Zandee,R.B.Bernstein and D.A.Lichtin, J.Chem.Phys., 1978,69: 3427
    16. E.W.schlag, ZEKE spectroscopy, Cambrig Univ Press 1997 p20
    17. Letokhov V S et al. Prog Quan Electron, 1977, 5: 739
    18. M.G.H.Boogarts,G.V.Helden and G.Meijer, J.Chem. Phys., 1996,105(19): 8556
    19. C.Klimcak and J.Wessel, Appl. Phys.Lett. 1980, 37: 138
    20. M.N.R.Ashfold and J.D.Howe,Annu.Rev.Phys.Chem.,1994,45: 57
    21. M.N.R.Ashfold,S.G.Clement,J.D.Howe and C.M.Western, J. Chem.Soc.Faraday Trans.,1993,89(8): 1153
    22. McClain W.M.J.Chem.Phys., 1976,55: 2264
    23. J.Ph.Berger, J.Baker and S.Couris, J.Chem.Phys., 1996,105(15): 6147
    
    
    24. Gobeli DA,Yang JJ,and EL-Sayed MA.Chem.Rev.85: 529
    25 V.S.Letokhov, Laser Photoionization Spectroscopy, Acadmic,Orlando,1987,p11
    26 G.S.Hurst,M.G.Payne,S.D.Kramer and J.P.Young,Rev, Mod.Phys., 1979,51: 767
    27. D.A.Lichtin,L.Zandee et. al, in "Laser and Chemical Analysis", Eds., G.M.Hieftje,F.E.Lytle and J.C.Travins,Humana Press: Clifton NJ, 1980.p1
    28. U.Boesl,H.Nagel,C.Weickhardt, R. Frey and E.W.Schlag,in "the Encyclopedia of Environmental Analysis and Remediation" Ed.R.A.Meyers, John Wiley & Sons, Inc., 1998
    29. C.Welckhardt,U.Boesl and E.W.Schlag,Anal.Chem., 1994, 66: 1062
    30. V.S.Antonov, V.S.Letokhov and A.N.Shibanov, Opt.Comm., 1981, 38: 182
    31. C.Welckhardt,U.Boesl and E.W.Schlag,Anal.Chem., 1994,66: 1062
    32. Castaldi M, Senkan S M. Journal of the Air and Management Association, 1998, 48: 77-81
    33. Heger H. Zimmermann R,Dorfner R et al. Analytic Chemistry, 1999,71: 46-57
    34. R.Zimmennann,H.T.Heger, A.Kettrup and U.Boesl,Rap.Comm.Mass Spectr., 1997,11: 1095
    35. G.Radhakrislman,D.Ng and R.C.Ester, Chem.Phys.Lett., 1981, 84: 260
    36. W.R.Simpson,A.J.Orr-Ewing and R.N.Zare,Chem.Phys.Lett., 1993, 212: 163
    D.F.Varley and P. J.Dagdigian,J.Phys.Chem., 1995,99: 9843
    37. Mohamed S.N.Al-Kahali, Robert J. Donovan, Kenneth P.Lawly, and Trevor Ridley, J.Chem.Phys. 104(5) 1833
    38. D.F.Varley and P.J.Dagdigian,J.Phys.Chem., 1995,99: 9843
    39. P.B.Armentrout and T. Baer, J.Phys. Chem., 1996,100: 12866
    40. L.Fleck,R.J.Beuhler and M.G.White, J. Phys.Chem., 1997,106(9: 3813)
    41. S.Wurm,P.Feulner and D.Menzel, J. Phys.Chem., 1996,105: 6673
    42. Lin SH, Fujimara Y, Neusser Hj, Schlag EW.1984.Multiphoton Spectroscopy of molecules, New York: Academic
    43. Dixon R N, Bayley J M, and Ashfold M N R. J.Chem. Phys., 1984, 84: 21
    
    
    44. Friedrich DM. J.Chem.Phys., 1981, 75: 3258
    45. Pratt S T. Phys.Rev. 1985, 32A: 928
    46. Hudgens J W, DiGuiseppe T G, and Lin M C, J.Chem.Phys.,1983,79: 571
    47. Kittrell C,Cameron S, Buler L, Field R W, and Barrow R F, J.Chem.Phys.,1983, 78: 3623
    48. Ashfold M N R,Dixon R N,Prince J D,and Tutcher B, Molec.Phys. 1985,56: 1185
    49. J.R.Ackerhalt and J.H.Eberly, Phys.Rev.A, 1976,14: 1705
    50. J.R.Ackerhalt and B.W.Shore,Phys.Rev.A, 1977,16: 277
    51. J.H. Eberly, and S.V.O'Neil,Phys.Rev.A,1979,19: 1161
    52. D.H.Parker, In "Ultrasensitive Laser Spectroscopy", Ed.D.S.Kliger, Acadmie Press: New York, 1983, p.233
    53. D.S.Zakheim and P.M.Johason,Chem.Phys.1980,46: 263
    54. C.Fotakis,M.Martin and R.J.Donovan,J.Chem.Soc.Faraday Trans. 1983,78: 1363
    55. T.Natata,M.Suzuki,T.Kondow and K.Kuchitsu,Chem. Phys. 1984, 88: 163
    56. V.S.Letkohov, V.I.Mishin and A.A.Puretaky, Prog.Quantum.Electron, 1977,5: 139; 14
    57. Bernstein R.B.J.Phys.Chem.,198286(7): 1178
    58.马兴孝,孔繁敖,激光化学。合肥:中国科学技术大学出版社,1990,p48.
    59.陆同兴,路轶群,激光光谱技术与原理。合肥:中国科学技术大学出版社
    60. Paker D.H.Ultrasensitive Laser Spectroscopy, Edited by Kliger D. S. Academic Press,1983; p252
    61. D.M.Lubman,Ruaman and R.N.Zare, J.Chem.Phys., 1980, 72: 3034
    62. F.Rebentrost,K.L.Koma and A.Bn-Shaul,Chem.Phys.Lett. 1981,77: 394
    63. F.Rebentrost, and A.Bn-Shaul, J.Chem.Phys., 1981,74: 3255
    64. W.Dietz,H.J.Neusser, U.Boesl and E.W.Schlag, Chem. Phys., 1982, 66: 105
    65. A.B.F.Duncan,Rydberg Series in Atoms and Molecules,Academic Press,New York, 1975
    66. M.N.R.Ashfold,SGClement,JDHowe,et.al,J.Chem.Soc.Faraday trans. 89,1153(1993)
    67. W.C.Wiley, I H Mclaren. Time-of-flight Mass Spectrometer with Improved Resolution.Review of Scientific Istruments. 1955, 26(12): 1150-1157
    
    
    68. Clary D.C.J.Chem. Phys.,1986,84: 4288-4298
    69. J.W.Raymond,L.Oedwards,and B.R.Russel, J.Am.Chem.Soc.96,1708,1974
    70. M.Krauss,J.A.Walker, and V.H.Dibcler, J.Nat.Gur.Stand.A72,281,1968
    71. J.H.D.Eland,R.Frey, A.Kuestler, and B.Brehm, Int.J.Mass Spectrom.Ion Phys.22,155,1976
    72. Y.L.Yung,J.P.Pinto,R.J.Watson, and S.P.Sander,J.Atoms.Sci.37,339(1980)
    73. Scientific Asswssment of Ozone Depletion: 1991(World Meteorolgical Orgganization, Geneva, 1992),p4.15
    74. J.G.Underwood and I.Powis, Phys.Chem. Chem. Phys. 1,747, 2000
    75. Y-J.Jung,M.S.Park,Y.S.Kim,K.-H.Jung,and H.-R.Volpp, J.Chem. Phys., 111,4005,1999
    76. T.K.Kim,M.S.Park,K.W.Lee,and K. -H.Jung,and H.-R.Volpp,J.Chem.Phys., 115,10745, 2001
    77. M.S.Park, T.K.Kim,S.-H Lee, K. -H.Jung,and H.-R.Volpp, J.Chem.Phys.,105,5606, 2001
    78. Theodosia Gougousi,Peter C.Samartzis,and Theofanis N.Kisopoulos, J.Chem.Phys. 108, 14: 5742,1998
    79. "Methyl Brpmide: Its atmospheric science,technology, and economics, "United Nations Environment Program, Nairobi, Kenya, 1992
    80. Yifeng Jiang, Maria R.Giorgi-Arazzi.Richard. Bcrnstern.Chem.Phys. 106: 171,1986
    81. S.J.Garret, D.H.Fairbrother, V.P.Holbert,et al., Chem.Phys.Lett.219: 409,1994
    82. D.H. Fairbrother, K.A.Briggman,Eric Weitz,P.C.Stair, J. Chem.Phys., 101: 3787,1994
    83. M.H.M Janssen,M.Dantus, H.Guo,et al Chem. Phys.Lett. 214: 281,1993
    84. Bailing Zhang, Xiuyan Wang,Nanquan Lou.,BingZhangh,Jie wei,Spectroshimicas Acta Part A 57(2001), 1759-1765
    85. W.P.Hess,D.W.Chandler, and J. W. Thoman,Jr.,Chem.Phys. 163,277,1992
    86. R.S.Mulliken,J.Chem.Phys8,382,1940
    87. R.S.Mulliken,Phys.Rev.61,277,1942
    88. R.S.Mulliken, and E.Teller, Phys.Rev.61,283,1942
    
    
    89. G.N.A. van Veen,T.Baller, and A.E.de Vries, Chem.Phys.,92,59,1985
    90. JianHua Huang and Dadong Xu,3oseph S. Francisco et al. J .Chem.. Phys. 118, 7: 3083,2003
    91. D.Howard Fairbrother, K.A.Briggman, K.A.Dichens, et al. Rev.Sci.Instrum.68(5),May 1997
    92. John F. Black and Ivan Powis.,J.Chem.Phys. 89(7), 1988
    93. NIST. Atomic Spectra Database
    94. K.Vijayalkshmi,V.R.Bhadwarj.et al.,J.phys.B30,(1997)4056
    95. Y.Song,X-M.Qian,K-C.Lau and C.T.Ng,Jianbo Liu and Wenwu Chen,J.Chem.Phys., 115(9): 4095,2001
    96. Gabriel Amaral, Kesheng xu, and Jingsong Zhang, J Phys.Chem.A., 105: 1115,2001
    97. Terry N. Olney, Glyn Cooper, Wing Fat Chan,et al.Chem.Phys.218(1997)127-147
    98. Bernhard Urban and Vladimir E.Bondybey, J.Chem.Phys., 116(12): 4938,2002
    99. P.Sharma,R.K.Vasta, D.K.maity, S.K.Kulshreshtha, J. Chem.Lett..382: 637,2003
    100. K.Vijayalkshmi,C.P. Safvan,G.R.Kumar, D.Mather, Chem.Phys.Lett.270,37,1997
    101. NIST.Chemistry Webbook
    102. Steven P.Sapers nd Verronica Vaida Ron Naaman, J. Chem.Phys.,88(6)3638,1998
    103. D.Xie,H.Guo,Y.Amatatsu,R.Kosloff, J. Plays. Chem.A 104:1009,2000
    104. A.T.J.B.Eppink,D.H.Parker, J. Chem.Phys. 110(1999),832
    105. J.G.Uderwood,I.Powis, Phys. Chem. Chem.Phys.2(2000)747
    106. Y.Matsumi,K.Tonokura,Mkawasaki,G.Inoue,et. al. 3. Chem.Phys.97(1992)5261
    107. P.Zhou,W.S.McGivern,S.W.North, Phys. Chem. Chem.Phys.2(2000),3785
    108. M.S.Park,T.K.Kim,S.Hlee,K.H.J ung, et al.3. Phys. Chem.A 105(2001)5606
    109. H.Xu,Y.Guo,S.Liu,X.Ma,D.Dai,G.Sha,3. Chem.Phys. 117(2002)5722
    110. R.O.Loo,H-RHaerri,G.E.Hall,et.al. J. Chem. Phys.90(1989)4222
    111.李全新、马兴孝等,物理化学学报,12(2)136,1996
    112. S-Y.Chiang,M.Bahou,K.Sankaran,Y-P.Lee.et.al. J. Chem.Phys. 118(2003)62
    113. J.H.Huang,D.D.Xu,W.H.Fink,W.M.Jackson, J. Chem.Phys. 115(2001)6012
    114. J.N.Harvey, D.Schroder, H.Schwarz,Bull.Soc.Chim.Belge. 106: 447,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700