Mfn2基因PKA磷酸化位点的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     去除PKA磷酸化位点对Mfn2基因调控细胞增殖和凋亡功能的影响
     1.目的
     研究大鼠线粒体融合素基因2(Mitofusin 2, Mfn2)在去除蛋白激酶A (Protein kinaseA, PKA)磷酸化位点后对大鼠血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)增殖和凋亡的影响及相关的信号通路。
     2.方法
     利用携带去除PKA磷酸化位点的Mfn2重组腺病毒[Adv-Mfn2-PKA(△)]和携带Mfn2的重组腺病毒(Adv-Mfn2)感染大鼠VSMCs。激光共聚焦显微镜观察其细胞内定位;荧光显微镜观察细胞形态变化;四甲基偶氮唑盐(MTT)法比较其对细胞增殖的影响;细胞凋亡ELISA分析其对细胞凋亡的影响;Western blot法分析Mfn2-PKA(△)、Mfn2、磷酸化ERK1/2(p-ERKl/2)和磷酸化Akt(p-Akt)蛋白的表达变化。
     3.结果
     外源基因转染后表达特异性蛋白产物;Mfn2-PKA(△)主要分布于线粒体上,与Mfn2相同;Mfn2-PKA(△)抑制VSMCs增殖、诱导VSMCs凋亡的作用较Mfn2显著减弱(P<0.01),与对照组无显著差异;Mfn2-PKA(△)较Mfn2组p-ERK1/2表达显著升高(P<0.01),p-Akt表达也显著升高(P<0.01),与对照组无明显差异。
     4.结论
     去除PKA磷酸化位点不影响Mfn2在线粒体上的定位,但其调节VSMCs增殖和凋亡的作用消失,对ERK1/2和Akt信号通路也无抑制作用。表明PKA磷酸化位点对Mfn2调节VSMCs增殖和凋亡的功能有重要影响。
     第二部分
     Mfn2磷酸化位点突变体抑制细胞增殖作用的差异
     1.目的
     研究大鼠线粒体融合素2基因(Mitofusin2, Mfn2)蛋白激酶A (Protein kinase A,PKA)磷酸化位点的状态对大鼠VSMCs增殖的影响及其相关的信号通路。
     2.方法
     利用携带PKA磷酸化位点突变的Mfn2重组腺病毒(Adv-Mfn2-S442A和Adv-Mfn2-S442D)和携带Mfn2的重组腺病毒(Adv-Mfn2),感染大鼠VSMCs。激光共聚焦法分析Mfn2及其突变体对线粒体形态的影响。细胞计数法、水溶性四甲基偶氮唑盐(WST-1)法比较其对细胞增殖的影响;流式细胞术比较各组细胞周期的变化;Western blot法分析各组Mfn2、磷酸化Raf-1(p-Raf-1)、磷酸化ERK1/2(p-ERKl/2)蛋白表达变化。建立大鼠颈动脉球囊损伤再狭窄模型,局部血管转染Mfn2及突变体基因,HE染色观察颈动脉内膜增殖程度,免疫组化染色观察增殖细胞核抗原(PCNA)的表达水平。
     3.结果
     外源基因转染后表达特异性蛋白产物,Mfn2及其突变体均促进线粒体融合并聚集于核周。细胞实验,Adv-Mfn2-S442A和Adv-Mfn2抑制细胞增殖作用较对照组显著增强(P<0.01),停滞于G0/G1期细胞比例显著增加(P<0.01);p-Raf-1和p-ERK1/2表达水平显著降低(P<0.01),且Adv-Mfn2-S442A作用更明显(P<0.01),而Adv-Mfn2-S442D组较对照组无显著差异。动物实验,Adv-Mfn2-S442A和Adv-Mfn2组大鼠颈动脉球囊损伤后内膜增殖较对照组显著减弱(P<0.01),PCNA表达水平显著减弱(P<0.01),且Adv-Mfn2-S442A作用更明显(P<0.01),而Adv-Mfn2-S442D组较对照组无显著差异。
     4.结论
     去磷酸化的Mfn2通过ERK1/2信号通路抑制VSMCs增殖的作用较Mfn2更明显;而磷酸化的Mfn2无显著作用。PKA磷酸化位点的状态对Mfn2调节VSMCs增殖有重要影响,并独立于Mfn2促进线粒体融合的作用。
     第三部分
     Mfn2磷酸化位点突变体诱导细胞凋亡作用的差异
     1.目的
     研究大鼠线粒体融合素2基因(Mitofusin2, Mfn2)蛋白激酶A (Protein kinase A,PKA)磷酸化位点的状态对大鼠VSMCs凋亡的影响及其相关的信号通路。
     2.方法
     利用携带PKA磷酸化位点突变的Mfn2重组腺病毒(Adv-Mfn2-S442A和Adv-Mfn2-S442D)和携带Mfn2的重组腺病毒(Adv-Mfn2),感染大鼠VSMCs。流式细胞术比较各组细胞凋亡率的变化;JC-1染色法检测线粒体膜电位变化;Westernblot法分析各组Mfn2、磷酸化Akt(p-Akt)和活性半胱天冬酶9(cleaved caspase-9)蛋白表达变化。
     3.结果
     外源基因转染后表达特异性蛋白产物。Adv-Mfn2-S442A和Adv-Mfn2诱导细胞凋亡的作用较对照组显著增强(P<0.01),线粒体膜电位显著降低(P<0.01),p-Akt表达水平显著降低(P<0.01),cleaved caspase-9表达水平显著增高(P<0.01),且Adv-Mfn2-S442A作用更明显(P<0.01),而Adv-Mfn2-S442D组较对照组无显著差异。
     4.结论
     去磷酸化的Mfn2通过Akt信号通路诱导VSMCs凋亡的作用较Mfn2更明显;而磷酸化的Mfn2无显著作用,PKA磷酸化位点的状态对Mfn2调节VSMCs凋亡有重要影响。
PartⅠ
     Effect of mitofusin 2 with protein kinase A phosphorylation site deletion on the proliferation and apoptosis of vascular smooth muscle cells
     1. Objective
     To investigate the effect of mitofusin 2 (Mfn2) gene with the protein kinase A (PKA) phosphorylation site deletion [Mfn2-PKA(△)] on inhibiting the proliferation and inducing the apoptosis of vascular smooth muscle cells (VSMCs) and related signaling pathway.
     2. Methods
     VSMCs of rats were infected by recombinational adenovirus carrying green fluorescent protein (GFP), Mfn2-PKA (△) or Mfn2 gene (Adv-GFP, Adv-Mfn2-PKA (△), Adv-Mfn2). The abundance of Mfn2-PKA(△) protein and Mfn2 protein were determined by Western blot analysis using Mfn2 antibody. Laser confocal microscopy (LCMS) was used to observe the locations of the proteins. The growth curve of the VSMCs was explored by MTT. The effect of Adv-Mfn2-PKA(△) on the apoptosis of VSMCs was explored by ELISA. Western blot were used to detect the expression of phosphorylation of ERK1/2 (p-ERK1/2) and protein kinase B (p-Akt).
     3. Results
     The Mfn2 and Mfn2-PKA (△) both expressed protein-specific bands in VSMCs. Two kinds of gene expression products were mainly located at the out membrane of mitochondria. Compared with the control group and Adv-GFP group, the absorbance values at 3,4,5,6 days were significantly reduced in Adv-Mfn2 group (P< 0.01), and no obvious changes were observed in Adv-Mfn2-PKA (△) group. Mfn2-PKA(△) had no effect on promoting the apoptosis of VSMCs compared with Mfn2 (P<0.01). Overexpression of Mfn2-PKA(△) gene could not down-regulate the expression of p-ERK1/2 and p-Akt (P< 0.01).
     4. Conclusions
     Mfn2-PKA (△), located at the out membrane of mitochondria, has no effect on suppressing the proliferation and on inducing apoptosis of VSMCs. Mfn2-PKA (△) has no inhibition effect on ERK1/2 and Akt signaling pathway. PKA phosphorylation site plays an important role in regulating the function of Mfn2 gene.
     PartⅡ
     Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin 2
     1. Objective
     Mitofusin 2 (Mfn2) is an important suppressor of vascular smooth muscle cells (VSMCs) proliferation. It contains a protein kinase A (PKA) phosphorylation site at serine 442 (S442) and can be phosphorylated by PKA. This study examined the role of phosphorylating specific sites on the regulation of Mfn2 protein activity in vitro and in vivo.
     2. Methods
     To investigate the functional significance of Mfn2 phosphorylation, we introduced two separate mutations at the codon for serine 442 in the rat Mfn2 gene. Replacing serine with alanine provided a nonphosphorylatable residue with minimal structural changes to the protein, while replacing the serine residue with aspartic acid mimicked constitutive phosphorylation at this site. In this study, we evaluated changes in Mfn2 protein abundance, mitochondrial morphology and membrane fusion in adenovirus infected rat VSMCs. Since Mfn2 has profound suppressive effects on Ras in VSMCs and might therefore inhibit cell proliferation by modulating the activity of the Ras-Raf-ERK1/2 signaling pathway and the cell cycle, we chose to test the effects of these mutations on proliferation of VSMCs in vitro and in vivo.
     3. Results
     Our results indicated that, in VSMCs, Mfn2 expression and mitochondrial morphology are affected by adenoviral-mediated overexpression of the two Mfn2 mutant proteins in the same way as the wild-type Mfn2 protein. Specifically, overexpression of the protein harboring the phospho-deficient mutation Mfn2-S442A (serine replaced by alanine at residue 442) increased the inhibitory effects of Mfn2 on proliferation of VSMCs, and stimulation effects on apoptosis of VSMCs in culture. On the other hand, the phospho-mimetic mutation Mfn2-S442D (serine replaced by aspartic acid at residue 442) led to loss of growth suppressor activity.
     4. Conclusions
     These results suggest that this specific PKA phosphorylation site plays a key role in Mfn2-mediated suppression of VSMC growth, which is independent of its effects on modulation of mitochondrial morphology.
     PartⅢ
     Mutation of the protein kinase A phosphorylation site influences the pro-apoptosis activity of mitofusin 2
     1. Objective
     To study the role of Mfn2 gene with protein kinase A phosphorylation site mutations in the apoptosis of VSMCs and related signaling pathways.
     2. Methods
     Two novel mutations were constructed, Adv-Mfn2-alaPKA and Adv-Mfn2-asnPKA, then VSMCs were infected with them. The effect of mutations on the apoptosis of VSMCs was explored by flow cytometry analysis. The cell mitochondrial membrane potential was detected by using JC-1 staining method. Western blot were used to detect the expression of Mfn2、p-Akt and cleaved caspase-9.
     3. Results
     The expression of Mfn2 protein has no significant difference in Adv-Mfn2, Adv-Mfn2-S442A and Adv-Mfn2-S442D groups. Flow cytometry analysis showed both of Mfn2-S442A and Mfn2 had stronger effect in promoting the apoptosis of VSMCs (P<0.01). The mitochondrial membrane potential in these two groups remarkably decreased (P<0.01). The results of Western blot indicated that the protein expression of p-Akt remarkably decreased, whereas cleaved capased-9 protein highly expressed in Adv-Mfn2-S442A and Adv-Mfn2 group (P<0.01). Mfn2-S442A was superior to Mfn2 in promoting the apoptosis of VSMCs (P<0.01). The effect of Mfn2-S442D was similar to the control.
     4. Conclusions
     Mfn2-S442A has more stronger inducing effect on the apoptosis of VSMCs than Mfn2, while Mfn2-S442D has no effect. We can conclude that PKA phosphorylation site plays an important role in regulating the function of Mfn2 gene.
引文
1. Orr AW, Hastings NE, Blackman BR, et al. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vase Res.2010, 47:168-80.
    2. Koshiba T, Detmer SA, Kaiser JT, et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science,2004,305:858-862.
    3. Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet,2005,14:R283-R289.
    4. Griffin EE, Detmer SA, Chan DC. Molecular mechanism of mitochondrial membrane fusion. Biochim Biophys Acta,2006,1763:482-489.
    5. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature,2008,456:605-610.
    6. Merkwirth C, Langer T. Mitofusin 2 builds a bridge between ER and mitochondria. Cell, 2008,135:1165-1167.
    7. de Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering:The role of Ras. Mitochondrion,2009,9:222-226.
    8. Zorzano A, Bach D, Pich S, et al. Role of novel mitochondrial proteins in energy balance. Rev Med Univ Navarra,2004,48:30-35.
    9. Cartoni R, Leger B, Hock MB, et al. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol,2005,567: 349-358.
    10. Mingrone G, Manco M, Calvani M, et al. Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity? Diabetologia,2005,48:2108-2114.
    11. Holloway GP, Perry CG, Thrush AB, et al. PGC-1 alpha's relationship with skeletal muscle palmitate oxidation is not present with obesity despite maintained PGC-1 alpha and PGC-lbeta protein. Am J Physiol Endocrinol Metab,2008,294:E1060-E1069.
    12. Yu T, Robotham J L, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA.2006,103:2653-2658
    13. Kijima K, Numakura C, Izumino H, et al. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet,2005,116:23-27.
    14. Cartoni R, Martinou JC. Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp Neural,2009,218:268-273.
    15. Chung KW, Cho SY, Hwang SJ, et al. Early-onset stroke associated with a mutation in mitofusin 2. Neurology,2008,70:2010-2011.
    16. Chen KH, Guo X, Ma D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004,6:872-883.
    17. Guo X, Chen KH, Guo Y, et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res,2007,101:1113-1122.
    18. Jiang GJ, Mei H, Bin Z, et al. Hyperplasia suppressor gene associates with smooth muscle a-actin and is involved in the redifferentiation of vascular smooth muscle cells. Heart Vessels.2006; 21:315-320.
    19. Neuspiel M, Zunino R, Gangaraju S, et al. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem,2005,280:25060-25070.
    20. Shen T, Zheng M, Cao CM, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem,2007,282:23354-23361.
    21. Loiseau D, Chevrollier A, Verny C, et al. Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann Neural.2007; 61:315-323.
    22. Pich S, Bach D, Briones P, et al. the Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. HumMol Genet. 2005; 14:1405-1415.
    23. Neuspiel M, Zumno R, Gangaraju S, et al. Aetivated mitofusin 2 signals mitochondrial fusion, interferes with bax activation, and reduces susceptibility to radical indueed depolarization. J Biol Chem.2005; 280:25060-25070.
    24. Eura Y, Ishihara N, Yokota S, et al. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biol Chem. 2003; 134:333-344.
    25.赵丽,周炜,郭小梅.tMfn2基因通过线粒体凋亡路径促进血管平滑肌细胞凋亡的研究.中华心血管病杂志.2009,37:639-643.
    26.赵丽,王四坤,郭小梅.tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志.2009,18:808-812.
    1 陈光慧,张晨晖,汤健,等.一个新的高血压病相关基因的克隆和表达.中华医学杂志,1997,77:823-828.
    2 Chen KH, Wang FQ, Zhang JH, et al. Cloning and expression of a novel cDNA related to Hypertension. Chin MedJ,1998,111:384-386.
    3 Chen KH, Guo XM, Ma DL, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nature Cell Biol,2004,6:872-883.
    4 GuoXM, ChenKH, GuoYH, et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circulation Research,2007,101: 1113-1122.
    5 Cai X. Regulation of smooth muscle cells in development and vascular disease:current therapeutic strategies.Expert Rev Cardiovasc Ther.2006;4:789-800.
    6 Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. CircJ,2009;73:615-621.
    7 Bhardwaj S, Roy H, Yla-Herttuala S. Gene therapy to prevent occlusion of venous bypass grafts.Expert Rev Cardiovasc Ther.2008;6:641-52.
    8 Charron T, Nili N, Strauss BH. The cell cycle:a critical therapeutic target to prevent vascular proliferative disease.Can J Cardiol.2006;22 Suppl B:41B-55B.
    9 Chen XL, Chen ZS, Ding Z, et al. Antisense extracellular signal-regulated kinase-2 gene therapy inhibits platelet-derived growth factor-induced proliferation, migration and transforming growth factor-beta(1) expression in vascular smooth muscle cells and attenuates transplant vasculopathy. Transpl Int.2008;21:30-38.
    10 Sugimoto M, Yamanouchi D, Komori K. Therapeutic approach against intimal hyperplasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) and the Rho/Rho-kinase pathway. Surg Today.2009;39:459-65.
    11 Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell,1997,90:121-129.
    12 Hermann GJ, Thatcher JW, Mills JP, et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzol.J Cell Biol,1998,143:359-373.
    13 Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J CellSci,2001,114:867-874.
    14 GuoYH, ChenKH, Wei G, et al. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit. Biochemical and Biophysical Research Communications,2007,363:411-417.
    15 Shen T, Zheng M, Cao CM, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem,2007,282:23354-23361.
    16 Wu L, Li Z, Zhang Y, et al. Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther.2008,7:222-232.
    17赵丽,周炜,郭小梅.tMfn2基因通过线粒体凋亡路径促进血管平滑肌细胞凋亡的研究.中华心血管病杂志.2009,37:639-643.
    18赵丽,王四坤,郭小梅.tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志.2009,18:808-812.
    19 Elizabeth AA, Paul L, Jamie S, et al. Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Experimental Neurology.2008,211:115-127.
    20 Baillie GS. Compartmentalized signalling:spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J.2009,276:1790-1799.
    1. Nicolas D, Richard M. Integrating signals between cAMP and the RAS/RAF/MEK/ ERK signalling pathways. FEBS Journal.2005,272:3491-3504.
    2. Philip JS, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends in Cell Biology.2002,12:258-266
    3. George GH, Kang GX, Mark H. Cell physiology of cAMP sensor Epac. J Physiol.2006, 577:5-15.
    4. Milne DM, Palmer RH, Meek DW. Mutation of the casein kinase II phosphorylation site abolishes the anti-proliferative activity of p53. Nucleic Acids Res,1992,20: 5565-5570.
    5. Belusa R, Wang ZM, Matsubara T, et al. Mutation of the protein kinase C phosphorylation site on rat alphal Na+,K+-ATPase alters regulation of intracellular Na+and pH and influences cell shape and adhesiveness. J Biol Chem,1997,272: 20179-20184.
    6. Osborn SL, Sohn SJ, Winoto A. Constitutive phosphorylation mutation in Fas-associated death domain (FADD) results in early cell cycle defects. J Biol Chem,2007, 282:22786-22792.
    7. Huang W, Erikson RL. Constitutive activation of Mekl by mutation of serine phosphorylation sites. ProcNatl Acad Sci,1994,91:8960-8963.
    8. Thorsness PE, Jr Koshland DE. Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem, 1987,262:10422-10425.
    9. Fiscella M, Ullrich SJ, Zambrano N, et al. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene, 1993,8:1519-1528.
    10. Zuchner S, Mersiyanova I, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet,2004,36: 449-451.
    11. Verhoeven K, Kristl G, Zuchner S, et al. MFN2 mutation distribution and genotype/ phenotype correlation in Charcot-Marie-Tooth type 2. Brain,2006; 129:2093-2102.
    12. Kathrin E, Matthias V, Michaela H, et al. Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene(MFN2). BMC Medical Genetics.2006;7:53.
    13. Elizabeth AA, Paul L, Jamie S, et al. Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Experimental Neurology.2008,211:115-127.
    14. Santel A, Fuller M T. Control of mitochondrial morphology by a human mitofusin. J Cell Sci,2001,114(Pt 5):867-874.
    15. Chen H, Detmer S A, Ewald A J, et al. Mitofusins Mfnl and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol,2003, 160:189-200.
    16. Huang P, Yu T, Yoon Y. Mitochondrial clustering induced by overexpression of the mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death. Eur J Cell Biol,2007,86:289-302.
    17.赵丽,周炜,郭小梅.tMfn2基因通过线粒体凋亡路径促进血管平滑肌细胞凋亡的研究.中华心血管病杂志.2009,37:639-643.
    18.赵丽,王四坤,郭小梅.tMfn2基因抑制血管平滑肌细胞增殖的作用与机制.中华急诊医学杂志.2009,18:808-812.
    19. Enserink JM, Christensen AE, de Rooji J, et al. A novel Epac specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002,4:901-906.
    20. Christensen AE, Selheim F, de Rooji J, et al. cAMP analog mapping of Epac 1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 2003,278:35394-35402.
    21. Vliem MJ,Ponsioen B,Schwede F,et al.8-pCPT-2'-O-Me-cAMP-AM:an improved Epac-selective cAMP analogue. Chembiochem.2008; 9:2052-2054.
    22. Roscioni SS, Elzinga CR, Schmidt M. Epac:effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol.2008,377:345-357.
    23. Holz GG, Chepurny OG, Schwede F. Epac-selective cAMP analogs:new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal.2008,20:10-20.
    1. Chen KH, Guo X, Ma D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004,6:872-883.
    2. Guo X, Chen KH, Guo Y, et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res,2007,101:1113-1122.
    3. Shen T, Zheng M, Cao CM, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem,2007,282:23354-23361.
    4. de Brito O M, Scorrano L. Mitofusin 2 tethers endoplasmic reticulumto mitochondria. Nature,2008,456:605-610.
    5. Ugioka R, Shimizu S, Tsujimoto Y. Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem,2004,279:52726-52734.
    6. Jahani A A, Cheung E C, Neuspiel M. Mitofusin 2 protects cerebellar granule neurons against injury induced cell death. J Biol Chem,2007,282:23788-23798.
    7. Weith A, Brodeur G M, Bruns G A, et al. Report of the second international workshop on human chromosome 1 mapping 1995. Cytogenet Cell Genet,1996,72:114-144.
    8. Hofmann WK, Takeuchi S, Xie D, et al. Frequent loss of heterozy-gosity in the region of D1S450 at Ip36.2 in myelidysplastic syndromes. Leuk Res.2001,25:855-858.
    9. Hogarty MD, Maris JM, White PS, et al. Anslysis of genomic imprinting at 1p35-36 in neuroblastoma. Med Pediatr Oncol.2001; 36:52-55.
    10.张玮,夏耘,吴亚群等.线粒体融合素基因-2在正常体重和肥胖乳腺癌患者不同组织中表达的研究.中国组织化学与细胞化学杂志.2007,16:407-410.
    11. Wu L, Li Z, Zhang Y, et al. Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther.2008,7:222-232.
    12.王萍,毋丽娜,邱晓彦等.人增殖抑制基因对肿瘤细胞系化疗敏感性的作用.北京大学学报(医学版).2005,37:117-120.
    13.夏耘,吴亚群,裘法祖等.线粒体融合素基因-2对人乳腺癌MCF-7细胞株增殖与化 疗敏感性的影响.癌症.2007,26(8):815-819.
    14. Quoyer J, Longuet C, Broca C, et al. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem.2010,285:1989-2002.
    15. Smirnova IS, Chang S, Forsthuber TG Prosurvival and proapoptotic functions of ERK1/2 activation in murine thymocytes in vitro. Cell Immunol.2010,261:29-36.
    16. Grund K, Ahmadi R, Jung F, et al. Troglitazone-mediated sensitization to TRAIL-induced apoptosis is regulated by proteasome-dependent degradation of FLIP and ERK1/2-dependent phosphorylation of BAD. Cancer Biol Ther. 2008,7:1982-1990.
    17. Minutoli L, Antonuccio P, Polito F, et al. Mitogen-activated protein kinase 3/mitogen-activated protein kinase 1 activates apoptosis during testicular ischemia-reperfusion injury in a nuclear factor-kappaB-independent manner. Eur J Pharmacol.2009,604:27-35.
    1. Baillie GS. Compartmentalized signalling:spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J.2009,276:1790-1799.
    2. Toshihiro Ichiki. Role of cAMP Response Element Binding Protein in Cardiovascular Remodeling Good, Bad, or Both? Arterioscler Thromb Vasc Biol.2006,26:449-455.
    3. Fentzke RC, Korcarz CE, Lang RM, et al. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest. 1998,101:2415-2426.
    4. Mehrhof FB, Muller FU, Bergmann MW, et al. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation.2001,104: 2088-2094.
    5. Mayo LD, Kessler KM, Pincheira R, et al. Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J Biol Chem.2001,276:25184-25189.
    6. Schroer K, Zhu Y, Saunders MA, et al. Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation.2002,105:2760-2765.
    7. de Rooij J, Zwartkuis FJT, Verheijen MHG,et al. Epac is a Rap 1 guanine nucleotide exchange factor directly activated by cyclic AMP. Nature.1998,396:474-477.
    8. Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP binding proteins that directly activate Rap 1. Science.1998,282:2275-2279.
    9. Rehmann H, Prakash B, Wolf E, et al. Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Biol.2003,10:26-32.
    10. Rehmann H, Das J, Knipscheer P, et al. Structure of the cyclic AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature.2006,439:625-628.
    11. Niimura M,Miki T,Shibasaki T,et al. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol.2009, 219:652-658.
    12. Li Y, Asuri S, Rebhuhn JF, et al. The Rap1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem.2006,281: 2506-2514.
    13. Ueno H, Shibasaki T, Iwagana T, et al. Characterization of the gene Epac2:structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics.2001,78:91-98.
    14. Das R, Mazhab-Jafari MT, Chowdhury S,et al. Entropy-driven cAMP-dependent allosteric control of inhibitory interactions in exchange proteins directly activated by cAMP. J Biol Chem.2008,283:19691-19703.
    15. Harper SM, Wienk H, Wechselberger RW, et al. Structural dynamics in the activation of Epac. J Biol Chem.2008,283:6501-6508.
    16. Brock M, Fan F, Mei FC,et al. Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry. J Biol Chem.2007,282: 32256-32263.
    17. Rehmann H, Arias-Palomo E, Hadders MA, et al. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature.2008,455:124-127.
    18. Rehmann H. Characterization of the activation of the Rap-specific exchange factor Epac by cyclic nucleotides. Methods Enzymol.2006,407:159-73.
    19. Dao KK,Teigen K,Kopperud R, et al. Epac1 and cAMP dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem.2006, 281:21500-21511.
    20. Enserink JM, Christensen AE, de Rooji J, et al. A novel Epac specific cAMP analogue demonstrates independent regulation of Rapl and ERK. Nat Cell Biol.2002,4:901-906.
    21. Christensen AE, Selheim F, de Rooji J,et al. cAMP analog mapping of Epac 1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem.2003,278: 35394-35402.
    22. Vliem MJ,Ponsioen B,Schwede F,et al.8-pCPT-2'-O-Me-cAMP-AM:an improved Epac-selective cAMP analogue.Chembiochem.2008,9:2052-2054.
    23. Roscioni SS, Elzinga CR, Schmidt M. Epac:effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol.2008,377:345-357.
    24. Holz GG, Chepurny OG, Schwede F. Epac-selective cAMP analogs:new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal.2008,20:10-20.
    25. Schmidt M, Evellin S, Oude Weernink PA,et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol.2001, 3:1020-1024.
    26. Maillet M, Robert SJ, Cacquevel M, et al. Crosstalk between Rapl and Rac regulates secretion of sAA a. Nat Cell Biol.2003,5:633-639.
    27. Rangarajan S, Enserink JM, Kuiperij HB, et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rapl upon stimulation of the β 2-adrenergic receptor. J Cell Biol.2003,160:487-493.
    28. vom Dorp F, Sari AY, Sanders H, et al. Inhibition of phospholipase C-ε by Gi-coupled receptors. Cell Signal.2004,16:921-928.
    29. Jing H, Yen JH, Ganea D. A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2. J Biol Chem.2004,279:55176-55186.
    30. Ponsioen B, Zhao J, Riedl J, et al. Detecting cAMP induced Epac activation by fluorescent resonance energy transfer:Epac as a novel cAMP indicator. EMBO Rep. 2004,5:1176-1180.
    31. DiPilato LM, Cheng X, Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. ProcNatl Acad Sci USA.2004,101:16513-16518.
    32. de Rooij J, Rehmann H, van Triest M,et al. Mechanism of regulation of the Epac family of cAMP dependent Rap GEFs. J Biol Chem.2000,275:20829-20836.
    33. Liu C,Takahashi M, Li Y, et al. Ras is required for the cyclic AMP-dependent activation of Rapl viaEpac2. Mol Cell Biol.2008,28:7109-7125.
    34. Morel E, Marcantoni A, Gastineau M, et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res.2005,97:1296-1304.
    35. Bos JL. Epac proteins:multi-purpose cAMP targets.Trends Biochem Sci.2006,31: 680-686.
    36. Holz GG, Kang G, Harbeck M, et al. Cell physiology of cAMP sensor Epac.J Physiol. 2006,577:5-15.
    37. Lopez de Jesus M, Stope MB, Oude Weernink PA,et al. Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J Biol Chem.2006,281:21837-21847.
    38. Gupta M, Yarwood SJ. MAP1 A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (EPAC1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem.2005,280:8109-8116.
    39. Mei FC, Cheng X. Interplay between exchange protein directly activated by cAMP (Epac) and microtubule cytoskeleton. Mol BioSyst.2005,1:325-331.
    40. Yarwood SJ. Microtubule-associated proteins (MAPs) regulate cAMP signalling through exchange protein directly activated by cAMP (EPAC). Biochem Soc Trans. 2005,33:1327-1329.
    41. Borland G, Gupta M, Magiera MM,et al. Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting.Mol Pharmacol.2006,69:374-384.
    42. Kang G, Leech CA, Chepurny OQet al. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J Physiol.2008,586:1307-1319.
    43. Kwan EP, Gao X, Leung YM, et al. Activation of exchange protein directly activated by cyclic adenosine monophosphate and protein kinase A regulate common and distinct steps in promoting plasma membrane exocytic and granule-to-granule fusions in rat islet beta cells. Pancreas.2007,35:e45-54.
    44. Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol.2000,2:805-811.
    45. Sabbatini ME, Chen X, Ernst SA, et al. Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem.2008,283:23884-23894.
    46. Petersen RK, Madsen L, Pedersen LM, et al. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac-and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol.2008, 28:3804-2816.
    47. Martini CN, Plaza MV, Vila Mdel C. PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation. Mol Cell Endocrinol.2009,298:42-47.
    48. Omar B, Zmuda-Trzebiatowska E, Manganiello V,et al. Regulation of AMP-activated protein kinase by cAMP in adipocytes:roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell Signal.2009,21:760-766.
    49. T. Pawson, P. Nash. Science.2003,300:445-452.
    50. Pare GC, Easlick JL, Mislow JM, et al. Nesprin-1 a contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res.2005,303:388-399.
    51. Dodge-Kafka KL, Soughayer J, Pare GC, et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature.2005,437: 574-578
    52. Pare GC, et al. J Cell Sci.2005,118:5637-5646.
    53. Pare GC, Bauman AL, McHenry M, et al. The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci. 2005,118:5637-5646
    54. Marx SO, Kurokawa J, Reiken S, et al. Requirement of a Macromolecular Signaling Complex for 3 Adrenergic Receptor Modulation of the KCNQ1-KCNE1 Potassium Channel. Science.2002,295:496-499.
    55. Marban E. Cardiac channelopathies. Nature.2002,415:213-218.
    56. McConnachie G, Langeberg LK, Scott JD. AKAP signaling complexes:getting to the heart of the matter. Trends Mol Med.2006,12:317-323.
    57.朱理安,方宁远.心脏A激酶锚定蛋白AKAP概述.生命的化学.2008,28:51-54.
    58.林燕华,刘爱华,李学军.A型激酶锚定蛋白的结构和生物学功能.生理科学进展.2005,36:241-244.
    59. Yin F, Wang YY, Du JH, et al. Noncanonical cAMP pathway and p38 MAPK mediate beta2-adrenergic receptor-induced IL-6 production in neonatal mouse cardiac fibroblasts. J Mol Cell Cardiol.2006,40:384-393.
    60. Dhanasekaran N, Heasley LE, Johnson JL,et al. G protein coupled receptor systems involved in cell growth and oncogenesis. Endocrine Rev.1995;16:259-270.
    61. Cook SJ,McCormick F.Inhibition by cAMP of Ras-dependent activation of Raf. Science; 1993,262:1069-1072.
    62. Graves LM,Bornfeldt KE,Raines EW,et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci USA.1993,90:10300-10304.
    63. Giuliano P,Grieco D,Cavuto L,et al. Activation of cAMP-PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. Nat Med.1997,3:775-779.
    64. Schmitt JM,PHILIP JS. Cyclic AMP-Mediated Inhibition of Cell Growth Requires the Small G Protein Rap1. Molecular and Cellular Biology.2001:3671-3683.
    65. Wang Z, Dillon TJ, Pokala V,et al. Rapl-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rapl activation.Mol Cell Biol.2006,26:2130-2145.
    66. Yokoyama U, Minamisawa S, Quan H, et al. Prostaglandin E2-activated Epac promotes neointimal formation of the rat ductus arteriosus by a process distinct from that of cAMP-dependent protein kinase A. J Biol Chem.2008,283:28702-28709.
    67. Yokoyama U, Minamisawa S, Quan H, et al. Epacl is upregulated during neointima formation and promotes vascular smooth muscle cell migration. Am J Physiol Heart Circ Physiol.2008,295:H1547-1555.
    68. Eichstaedt HC, Liu Q, Chen Z, et al. Gene Transfer of COX-1 Improves Lumen Size and Blood Flow in Carotid Bypass Grafts. J Surg Res.2009
    69. Zhuplatov SB,Masaki T,Blumenthal DK, et al. Mechanism of dipyridamole's action in inhibition of venous and arterial smooth muscle cell proliferation. Basic Clin Pharmacol Toxicol.2006,99:431-439.
    70. Eid AH, Chotani MA, Mitra S,et al. Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle alpha2C-adrenoceptors. Am J Physiol Heart Circ Physiol.2008,295:H266-272.
    71.Carmona G, Chavakis E, Koehl U,et al. Activation of Epac stimulates integrin-dependent homing of progenitor cells. Blood.2008,111:2640-2646.
    72. Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science.2002,295:1711-1715.
    73. Pare GC, Baumann ALI, McHenry M,et al. The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci. 2005,118:5637-5646.
    74. Morel E, Marcantoni A, Gastineau M,et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res.2005,97:1296-1304.
    75. Ulucan C, Wang X, Baljinnyam E,et al. Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol. 2007,293A:H1662-1672.
    76. Metrich M, Lucas A, Gastineau M,et al. Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res.2008,102:959-965.
    77. Oestreich EA, Wang H, Malik S,et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+mobilization in cardiac myocytes. J Biol Chem.2007;282:5488-5495.
    78. Wang H, Oestreich EA, Maekawa N,et al. Phospholipase C-ε modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res. 2005,97:1305-1313.
    79. Hothi SS, Gurung IS, Heathcote JC, et al. Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart. Pflugers Arch.2008,457: 253-270.
    80. Metrich M, Morel E, Berthouze M, et al. functional characterization of the cAMP-binding proteins Epac in cardiac myocytes. Pharmacological Reports.2009, 61:146-153
    81.Pereira L, Metrich M, Fernandez-Velasco M, The cAMP binding protein Epac modulates Ca2+sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes.J Physiol.2007,583:685-694.
    82. Somekawa S, Fukuhara S, Nakaoka Y, et al. Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes.Circ Res.2005,97:655-662.
    83. Kwak HJ, Park KM, Choi HE,et al. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal.2008,20:803-814.
    84. Yokoyama U, Patel HH, Lai NC, et al. The cyclic AMP effector Epac integrates pro-and anti-fibrotic signals. ProcNatl Acad Sci USA.2008,105:6386-6391.
    85. Schlegel N, Waschke J. VASP is involved in cAMP-mediated Rac 1 activation in microvascular endothelial cells. Am J Physiol Cell Physiol.2009,296:453-462.
    86. Schlegel N, Burger S, Golenhofen N,et al. The role of VASP in regulation of cAMP-and Rac 1-mediated endothelial barrier stabilization. Am J Physiol Cell Physiol.2008, 294:178-188.
    87. Liu F, Verin AD, Borbiev T, et al. Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am J Physiol Lung Cell Mol Physiol.2001, 280:L1309-1317.
    88. Cullere X, Shaw SK, Andersson L, et al. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood.2005, 105:1950-1955.
    89. Patterson CE, Lum H, Schaphorst KL, et al. Regulation of endothelial barrier function by the cAMP-dependent protein kinase. Endothelium.2000,7:287-308.
    90. Lorenowicz MJ, Fernandez-Borja M, Kooistra MR, et al. PKA and Epacl regulate endothelial integrity and migration through parallel and independent pathways. Eur J Cell Biol.2008,87:779-792.
    91. Sayner S, Stevens T. Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on endothelial cell barrier function. Biochem Soc Trans. 2006,34:492-494.
    92. Schlegel N, Baumer Y, Drenckhahn D, et al. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Crit Care Med.2009,37:1735-1743.
    93. Creighton J, Zhu B, Alexeyev M, et al. Spectrin-anchored phosphodiesterase 4D4 restricts cAMP from disrupting microtubules and inducing endothelial cell gap formation. J Cell Sci.2008,121:110-119.
    94. Puana R, McAllister RK, Hunter FA, et al. Morphine attenuates microvascular hyperpermeability via a protein kinase A-dependent pathway. Anesth Analg.2008, 106:480-485.
    95. Adamson RH, Ly JC, Sarai RK,et al. Epac/Rapl pathway regulates microvascular hyperpermeability induced by PAF in rat mesentery. Am J Physiol Heart Circ Physiol. 2008,294:H1188-1196.
    96. Ouedraogo R, Wu X, Xu SQ,et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells:evidence for involvement of a cAMP signaling pathway. Diabetes.2006,55:1840-1846.
    97. Xu SQ, Mahadev K, Wu X, et al. Adiponectin protects against angiotensin Ⅱ or tumor necrosis factor alpha-induced endothelial cell monolayer hyperpermeability:role of cAMP/PKA signaling. Arterioscler Thromb Vasc Biol.2008,28:899-905.
    98. Mahadev K, Wu X, Donnelly S, et al. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc Res. 2008,78:376-384.
    99. Bindewald K, Gunduz D, Hartel F,et al. Opposite effect of cAMP signaling in endothelial barriers of different origin. Am J Physiol Cell Physiol.2004, 287:C1246-1255.
    100. Netherton SJ, Sutton JA, Wilson LS,et al. Both protein kinase A and exchange protein activated by cAMP coordinate adhesion of human vascular endothelial cells. Circ Res.2007,101:768-776.
    101. Mori D, Ishii H, Kojima C,et al. Cilostazol inhibits monocytic cell adhesion to vascular endothelium via upregulation of cAMP. J Atheroscler Thromb.2007, 14:213-218.
    102. Csiszar A, Labinskyy N, Smith KE,et al. Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells:role of shear stress and the cAMP/protein kinase A pathway. Arterioscler Thromb Vasc Biol.2007,27:776-782.
    103. Rondaij MG, Sellink E, Gijzen KA,et al. Small GTP-binding protein Ral is involved in cAMP-mediated release of von Willebrand factor from endothelial cells. Arterioscler Thromb Vasc Biol.2004,24:1315-1320.
    104. Lee SY, Min J. Regulation of NO from endothelial cells by the decrease of cellular cAMP under arsenite exposure. J Microbiol Biotechnol.2008,18:392-395.
    105. Ansurudeen I, Willenberg HS, Kopprasch S,et al. Endothelial factors mediate aldosterone release via PKA-independent pathways. Mol Cell Endocrinol.2009, 300:66-70.
    106. Borland G, Smith BO, Yarwood SJ. EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol.2009. [Epub ahead of print]
    107. Rakugi H, Matsukawa N, Ishikawa K, et al. Anti-oxidative effect of Klotho on endothelial cells through cAMP activation. Endocrine.2007,31:82-87.
    108. Yurugi-Kobayashi T, Itoh H, Schroeder T, et al. Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vase Biol.2006,26:1977-1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700