Fe~(2+)和/胰岛素对葡萄糖预处理的人脐静脉平滑肌细胞增殖及MMP-2分泌的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     冠状动脉粥样硬化性心脏病简称冠心病(coronary heart disease,CHD),是影响人类健康的主要疾病之一,经皮冠状动脉内成形术(percutaneous transluminal coronary angioplasty,PTCA)目前已经成为一种常规有效的治疗CHD的方法。药物支架(drug-eluting stent,DES)的使用使支架置入术后支架内再狭窄(in-stent restenosis,ISR)的发生率降低到5~10%左右,但仍然无法彻底解决ISR的问题。大量的多中心、随机和双盲对照研究显示,糖尿病(diabetes millitus,DM)患者PTCA的疗效差,ISR发生率较高[1-3],具体机制的研究仍不够深入,因而严重影响其临床应用。同时有研究显示,置入体内的金属支架在体内会以“洗脱”的方式脱出Fe~(2+)[4],不同类型支架“洗脱”到支架周围的Fe~(2+)量并非完全一致,而且其对与之直接接触的血管平滑肌细胞(vascular smooth muscle cells,VSMC)的生物功能的影响尚不清楚。有研究认为Fe~(2+)对VSMC增殖有一定程度抑制作用[5],此研究结论似乎与临床观察到的现象不相符合。为此,本研究采用原代培养的3~5代人脐静脉平滑肌细胞(human umbilical vascular smooth muscle cell,HUSMC),参照上述研究[5]采用的Fe~(2+)浓度梯度分组,分别用普通培养液模拟正常人体内环境、高糖培养液模拟人体内高糖环境、高胰岛素环境模拟人体高胰岛素环境培养HUVSMC,以研究Fe~(2+)、胰岛素对其增殖以及金属蛋白酶-2(matrix metalloproteinase-2,MMP-2)分泌功能的影响,探讨血糖异常和/或胰岛素抵抗患者体内金属支架ISR发生的可能机制并找寻临床证据。
     研究目的
     1.观察Fe~(2+)对葡萄糖预孵育的VSMC增殖及MMP-2分泌的影响。
     2.观察胰岛素对葡萄糖预孵育的VSMC增殖及MMP-2分泌的影响。
     3.观察Fe~(2+)对葡萄糖和胰岛素预孵育的VSMC增殖、MMP-2分泌以及VSMC胞内Ca~(2+)浓度的影响。4.探讨其可能的作用机制。
     第一部分
     方法
     健康产妇剖宫产分娩的无菌胎儿脐带分离出脐静脉,组织块法培养HUVSMC,取生长稳定的3~5代细胞,分为正常组(葡萄糖5 mmol/L)以及高糖组(葡萄糖25 mmol/L)的。
     1.各分为六个亚组:①空白对照组O;②Fe~(2+)组A(0.00625 mg/mL);③Fe~(2+)组B(0.0125 mg/mL);④Fe~(2+)组C(0.025 mg/mL);⑤Fe~(2+)组D(0.05 mg/mL);⑥Fe~(2+)组E(0.1 mg/mL)。37℃、5%CO2培养箱内干预24 h。
     2. MTT比色法测定细胞增殖情况。
     3. ELISA试剂盒检测细胞培养上清中MPP-2含量。
     结果
     1.正常组:与O组比,B~E组对VSMC有促进增殖作用(P<0.05);仅E组能明显促进VSMC分泌MMP-2(P<0.01),其余各组与对照组间差异无统计学意义。
     2.高糖组:与O组比,B~E组,能促进VSMC增殖(P<0.01)及MMP-2的分泌,D组、E组促进作用最强。
     3.正常组与高糖组比较:B~E各相应亚组间,高糖组对VSMC增殖及MMP-2分泌的促进作用较正常组强(P<0.05)。结论
     正常及高葡萄糖环境,适当的浓度Fe~(2+)能影响VSMC的生物学特性,促进VSMC的增殖与MMP-2的分泌,且高糖环境下作用更为显著。
     第二部分
     方法
     1.同实验一。
     2.各分为4个亚组:①空白对照组O;②胰岛素组A(10 mIU);③胰岛素组B(100 mIU);④胰岛素组C(1000 mIU)。37℃、5%CO2培养箱内干预48 h。
     3. MTT比色法测定细胞增殖情况。
     4. ELISA试剂盒检测细胞培养上清中MPP-2含量。
     结果
     1.正常组:与O组比,各亚组均可促进VSMC增殖(P<0.01)及MMP-2的分泌(P<0.01),且B组(100 mIU)作用最强。
     2.高糖组:与O组比,A组、B组均促进VSMC的增殖(P<0.05);但A、B、C三个亚组均能促进MMP-2的分泌(P<0.01),且B组(100 mIU/L)作用最强。
     3.正常组与高糖组比较:A、B各相应亚组间,高糖组对VSMC增殖及分泌MMP-2作用较正常组强(P<0.05),而相应C组间高糖组对VSMC增殖及分泌MMP-2作用较正常组弱(P<0.01)。
     结论
     正常及高葡萄糖环境,适当浓度的胰岛素能促进VSMC增殖及MMP-2的分泌,效应具有浓度依赖性;且高糖环境下促进作用更为显著。
     第三部分方法
     1.同实验一。
     2.各分为4个亚组:①空白对照组O(10%FBS的DMEM,72 h);②Fe~(2+)组A(10%FBS的DMEM,48 h+0.05 mg/mL Fe~(2+),24 h);③胰岛素组B(10%FBS的DMEM,24 h+100 mIU胰岛素,48 h);④胰岛素+Fe~(2+)组C(100 mIU胰岛素,48 h+100 mIU胰岛素及0.05 mg/mL Fe~(2+),24 h)。
     3. MTT比色法测定细胞增殖情况。
     4. ELISA试剂盒检测细胞培养上清中MPP-2含量。
     5.激光共聚焦法测定细胞内Ca~(2+)浓度。
     结果
     1.正常组:与O比较,A、B、C各组VSMC内Ca~(2+)浓度均升高,VSMC增殖及MMP-2分泌能力增强。其中A、B组较C组促进VSMC胞内Ca~(2+)浓度升高的作用高(P<0.01),促进VSMC增殖及MMP-2分泌作用强(P<0.05)。
     2.高糖组:与O比较,A、B、C各组VSMC内Ca~(2+)浓度均升高,VSMC增殖及MMP-2分泌能力增强。其中A、B组促进VSMC胞内Ca~(2+)浓度升高、促进MMP-2分泌作用较C组强(P<0.01),三组促进VSMC增殖作用无明显差异(P=0.484)。
     3.正常组与高糖组比较:高糖组A、B各相应亚组间对VSMC增殖及分泌MMP-2作用较正常组强(P<0.05),C组两相应亚组间无明显差异(P=0.167)。高糖组A~C各亚组细胞内Ca~(2+)浓度均高于正常组(P<0.05)。
     结论
     正常及高葡萄糖环境下,适当浓度的胰岛素、Fe~(2+)能促进VSMC增殖、MMP-2的分泌以及VSMC胞内Ca~(2+)浓度升高,且高糖组促进作用更为明显。正常及高葡萄糖环境下,胰岛素、Fe~(2+)单独作用促进MMP-2分泌、VSMC胞内Ca~(2+)浓度升高作用较胰岛素、Fe~(2+)共同作用时强。促进VSMC增殖作用,在正常葡萄糖环境下,胰岛素、Fe~(2+)单独作用时较胰岛素、Fe~(2+)共同作用时强,但在高葡萄糖环境下三者作用无明显差异。
Background
     Coronary heart disease is one of the major diseases that threatens human health. Percutaneous transluminal coronary angioplasty(PTCA)is becoming a popular and effective treatment for coronary heart disease. The use of drug-eluting stent help to reduce the incidence of in-stent restenosis(ISR) to 5~10%, but still can’t completely solve the ISR promble. Lots of multi-center, double-blind and randomized controlled study showed that the patients with diabetes have not as good effect and higher ISR rate than patients without diabetes[1-3]. For the mechanisms are still not fully understood, its clinical application is seriously affected. At the same time, some studies showed that ion leakage ftom metallic implant stens[4], and the dose of ion are various from type to type. The effect of the ion on adjacent vascular smooth muscle cells(VSMC) is still unknown. There was a study which found out that Fe~(2+) may extently inhibites the proliferation of VSMC[5], but it seems that this conculsion doesn’t apparently comply with clinical observation. So we utilized primarily cultured human umbilical vein smooth muscle cells (HUVSMC)(Passage3~5), and the Fe~(2+)concentration gradient group which adopted from that study to carry out a study. We use used low glucose DMEM(5.5 mmol/L)to simulate the general human body microenvironment, DMEM with high concentration glucose(25 mmol/L) and high insulin to simulate the human body microenvironment under diabetes conditions, in order to elucidate the effects of Fe~(2+), insulin on proliferation and secretion of MMP-2, and to investigate the possible mechanisms of the ISR in patients with abnormal blood glucose and/or abnormal glucose tolerance, and look for clinical evidence.
     Aims
     The aims of our present study were:
     1. to elucidate effects of Fe~(2+) on proliferation and secretion of MMP-2 in VSMC inculated with glucose.
     2. to elucidate effects of insulin on proliferation and secretion of MMP-2 in VSMC inculated with glucose.
     3. to elucidate effects of Fe~(2+) on proliferation and secretion of MMP-2 in VSMC incubated with insulin and glucose.
     4. to investigate the possible mechanism.
     Part One
     Methods
     The umbilical vein was obtained by a sterile procedure. HUVSMC were derived following standard culture methods, and then divided to normal glucose(5 mmol/L, groupⅠ)and high glucose(25 mmol/L, groupⅡ)incubation. 1. VSMCs were divided into 6 sub-groups:①control group O;②Fe~(2+)group A(0.00625 mg/mL);③Fe~(2+)group B(0.0125 mg/mL); ④Fe~(2+)group C(0.025 mg/mL);⑤Fe~(2+)group D(0.05 mg/mL);⑥Fe~(2+)group E(0.1 mg/mL). Cells were intervened for 24 h in 37℃and 5%CO2 incubator.
     2. VSMC proliferation was assessed with MTT method.
     3. MMP-2 secretion was measured with ELISA
     Results
     1. Normal glucose groupⅠ: compared to the control group O, proliferation in group B~Eincreased, P<0.05; the secretion of MMP-2 was promoted only in group E, P<0.01.
     2. High glucose groupⅡ: compared to the control group O, the proliferation and secretion of MMP-2 in group B~Eincreased, P<0.05, and the group D and Ewere the most evident.
     3. Normal glucose groupⅠvs High glucose groupⅡ: the proliferation and secretion level of MMP-2 in high glucose groupⅡ(sub-group B~E), was higher than normal glucose groupⅠ, P<0.05. Conclusions
     These results demonstrate that Fe~(2+)could stimulated the proliferation of VSMC, and increase the secretion of MMP-2. Part Two
     Methods
     1. The same as part one.
     2. Divided into 4 sub-group:①control group O;②Insulin group A(10 mIU);③Insulin group B(100 mIU);④Insulin group C(1000 mIU). Cells were intervened for 24 h in 37℃and 5%CO2 incubator.
     3. VSMC proliferation was assessed with MTT method.
     4. MMP-2 secretion was measured with ELISA
     Results
     1. Normal glucose groupⅠ: compared to the control group O, proliferation and secretion of MMP-2 increased in all group, P<0.01, and was most evident in group B.
     2. High glucose groupⅡ: compared to the control group O, the proliferation in group A~B increased, P<0.05; and secretion of MMP-2 in all group increased, P<0.01; and was most evident in group B.
     3. Normal glucose groupⅠvs high glucose groupⅡ: the proliferation and secretion level of MMP-2 was higher in high glucose groupⅡ(sub-group A~B), P<0.05, but was lower in sub-group C than normal glucose groupⅠ. Conclusions
     These results demonstrate that insulin could stimulated the proliferation of VSMC, and increase the secretion of MMP-2 dose-dependent. Part Three
     Methods
     1. The same as part one.
     2. Divided into 4 sub-group:①control group O(10%FBS DMEM, 72 h);②Fe~(2+) group A(10%FBS DMEM,48 h+0.05 mg/mL Fe~(2+), 24 h);③Fe~(2+) group B(10%FBS DMEM, 24h+100 mIU Insulin, 48 h);④Fe~(2+) group C(100 mIU Insulin, 48 h+100 mIU Insulin and 0.05 mg/mL Fe~(2+), 24 h).
     3. VSMC proliferation was assessed with MTT method.
     4. MMP-2 secretion was measured with ELISA.
     5. The intracellular Ca~(2+) concentration was assessed by laser confocal microscopy.
     Results
     1. Normal glucose groupⅠ: compared to the control group O, the intracellular Ca~(2+) concentration of VSMC was augmented in all sub-groups, and was higher in the group A and B than in group C, P<0.01. The proliferation as well as secretion of MMP-2 were also increased in all subgroups, P<0.05.
     2. High glucose groupⅡ: compared to the control group O, the proliferation and secretion of MMP-2, as well as the intracellular Ca~(2+) concentration of VSMC was increased in all groups, and appearing the most prominent in group C.
     3. Normal glucose groupⅠvs high glucose groupⅡ: in the sub-group A and B in high glucose groupⅡ, the the proliferation and secretion level of MMP-2 was higher than normal glucose groupⅠ, P < 0.05. The intracellular Ca~(2+) concentration of VSMC in high glucose groupⅡwas higher than normal glucose groupⅠ, P<0.05.
     Conclusions
     These results demonstrate that Fe~(2+) could stimulated the proliferation of VSMC, and increase the intracellular Ca~(2+) as well as the secretion of MMP-2.
引文
[1] Stein B, Weintraub WS, Gebhart SP, Cohen-Bernstein CL, Grosswald R, Liberman HA, Douglas JS, Jr., Morris DC, King SB, 3rd. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation, 1995,91(4):979-989.
    [2] Abizaid A, Mintz GS, Pichard AD, Kent KM, Satler LF, Walsh CL, Popma JJ, Leon MB. Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am J Cardiol, 1998,82(4):423-428.
    [3] Elezi S, Kastrati A, Neumann FJ, Hadamitzky M, Dirschinger J, Schomig A. Vessel size and long-term outcome after coronary stent placement. Circulation, 1998,98(18):1875-1880.
    [4] May T, Mueller PP, Weich H, Froese N, Deutsch U, Wirth D, Kroger A, Hauser H. Establishment of murine cell lines by constitutive and conditional immortalization. J Biotechnol, 2005,120(1):99-110.
    [5] Mueller PP, May T, Perz A, Hauser H, Peuster M. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 2006,27(10):2193-2200.
    [6]李田昌,胡大一.冠状动脉内支架进展.中国医疗器械信息, 2000,6(02):6-13.
    [7] Ruygrok PN, Melkert R, Morel MA, Ormiston JA, Bar FW, Fernandez-Aviles F, Suryapranata H, Dawkins KD, Hanet C, Serruys PW. Does angiography six months after coronary intervention influence management and outcome? Benestent II Investigators. J Am Coll Cardiol, 1999,34(5):1507-1511.
    [8] Van Belle E, Perie M, Braune D, Chmait A, Meurice T, Abolmaali K, McFadden EP, Bauters C, Lablanche JM, Bertrand ME. Effects of coronary stenting on vessel patency and long-term clinical outcome afterpercutaneous coronary revascularization in diabetic patients. J Am Coll Cardiol, 2002,40(3):410-417.
    [9] Heper G, Durmaz T, Murat SN, Ornek E. Clinical and angiographic outcomes of diabetic patients after coronary stenting: a comparison of native vessel stent restenosis rates in different diabetic subgroups. Angiology, 2002,53(3):287-295.
    [10] Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res, 1998,82(11):1111-1129.
    [11] Suzuki J, Iwai M, Nakagami H, Wu L, Chen R, Sugaya T, Hamada M, Hiwada K, Horiuchi M. Role of angiotensin II-regulated apoptosis through distinct AT1 and AT2 receptors in neointimal formation. Circulation, 2002,106(7):847-853.
    [12] Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res, 2001,89(3):201-210.
    [13]梁成浩,郭亮,陈婉.冠状动脉支架用316L和317L不锈钢低腐蚀率的测定.生物医学工程学杂志, 2006,23(04):829-831.
    [14] Holmes DR, Jr., Vlietstra RE, Smith HC, Vetrovec GW, Kent KM, Cowley MJ, Faxon DP, Gruentzig AR, Kelsey SF, Detre KM, et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol, 1984,53(12):77C-81C.
    [15] Rensing BJ, Hermans WR, Vos J, Tijssen JG, Rutch W, Danchin N, Heyndrickx GR, Mast EG, Wijns W, Serruys PW. Luminal narrowing after percutaneous transluminal coronary angioplasty. A study of clinical, procedural, and lesional factors related to long-term angiographic outcome. Coronary Artery Restenosis Prevention on Repeated Thromboxane Antagonism (CARPORT) Study Group. Circulation, 1993,88(3):975-985.
    [16] Zahn R, Hamm CW, Schneider S, Zeymer U, Nienaber CA, Richardt G, Kelm M, Levenson B, Bonzel T, Tebbe U, Sabin G, Senges J. Incidenceand predictors of target vessel revascularization and clinical event rates of the sirolimus-eluting coronary stent (results from the prospective multicenter German Cypher Stent Registry). Am J Cardiol, 2005,95(11):1302-1308.
    [17]黄超联,朱文玲,沈珠军,曾勇,姜秀春,李燕华.冠状动脉内超声评价支架再狭窄.中华心血管病杂志, 2001,29(08):459-461.
    [18] Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF, Pichard AD, Kent KM, Stone GW, Leon MB. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation, 1999,100(18):1872-1878.
    [19] Moses JW, Stone GW, Nikolsky E, Mintz GS, Dangas G, Grube E, Ellis SG, Lansky AJ, Weisz G, Fahy M, Na Y, Russell ME, Donohoe D, Leon MB, Mehran R. Drug-eluting stents in the treatment of intermediate lesions: pooled analysis from four randomized trials. J Am Coll Cardiol, 2006,47(11):2164-2171.
    [20]蔡琳,刘汉雄,燕纯伯,杨源烈,刘剑雄,廖雪松,唐炯,吴镜,刘剑平,罗俊,王伟,余秀琼.胰岛素抵抗与冠状动脉狭窄严重程度的关系.中华心血管病杂志, 2001,28(09):538-541.
    [21] Scheen AJ, Warzee F, Legrand VM. Drug-eluting stents: meta-analysis in diabetic patients. Eur Heart J, 2004,25(23):2167-2168; author reply 2168-2169.
    [22] Kip KE, Faxon DP, Detre KM, Yeh W, Kelsey SF, Currier JW. Coronary angioplasty in diabetic patients. The National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. Circulation, 1996,94(8):1818-1825.
    [23] Kasaoka S, Tobis JM, Akiyama T, Reimers B, Di Mario C, Wong ND, Colombo A. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol, 1998,32(6):1630-1635.
    [24] Kastrati A, Mehilli J, Dirschinger J, Pache J, Ulm K, Schuhlen H, Seyfarth M, Schmitt C, Blasini R, Neumann FJ, Schomig A. Restenosis after coronary placement of various stent types. Am J Cardiol,2001,87(1):34-39.
    [25]陈纪言,张励庭,罗建方,周颖玲.冠状动脉内支架植入术后再狭窄的危险因素分析.实用医学杂志, 2002,18(11):1161-1162.
    [26] West NE, Ruygrok PN, Disco CM, Webster MW, Lindeboom WK, O'Neill WW, Mercado NF, Serruys PW. Clinical and angiographic predictors of restenosis after stent deployment in diabetic patients. Circulation, 2004,109(7):867-873.
    [27] Hausleiter J, Kastrati A, Mehilli J, Schuhlen H, Pache J, Dotzer F, Dirschinger J, Schomig A. Predictive factors for early cardiac events and angiographic restenosis after coronary stent placement in small coronary arteries. J Am Coll Cardiol, 2002,40(5):882-889.
    [28] Gilbert J, Raboud J, Zinman B. Meta-analysis of the effect of diabetes on restenosis rates among patients receiving coronary angioplasty stenting. Diabetes Care, 2004,27(4):990-994.
    [29] Sabate M, Jimenez-Quevedo P, Angiolillo DJ, Gomez-Hospital JA, Alfonso F, Hernandez-Antolin R, Goicolea J, Banuelos C, Escaned J, Moreno R, Fernandez C, Fernandez-Aviles F, Macaya C. Randomized comparison of sirolimus-eluting stent versus standard stent for percutaneous coronary revascularization in diabetic patients: the diabetes and sirolimus-eluting stent (DIABETES) trial. Circulation, 2005,112(14):2175-2183.
    [30] Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med, 2003,349(14):1315-1323.
    [31] Moussa I, Leon MB, Baim DS, O'Neill WW, Popma JJ, Buchbinder M, Midwall J, Simonton CA, Keim E, Wang P, Kuntz RE, Moses JW. Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS (SIRolImUS-coated Bx Velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions) substudy.Circulation, 2004,109(19):2273-2278.
    [32]金泽宁,陈韵岱,吕树铮,宋现涛,朱华刚,李红.冠心病合并糖尿病患者金属裸支架置入术后再狭窄的临床和造影预测因素.中华心血管病杂志, 2006,34(12):1093-1096.
    [33] Kuchulakanti PK, Torguson R, Canos D, Rha SW, Chu WW, Clavijo L, Deible R, Gevorkian N, Suddath WO, Satler LF, Kent KM, Pichard AD, Waksman R. Impact of treatment of coronary artery disease with sirolimus-eluting stents on outcomes of diabetic and nondiabetic patients. Am J Cardiol, 2005,96(8):1100-1106.
    [34]赵福海,吕树铮,陈韵岱,金泽宁,宋现涛,陈欣,孟康,柳弘,田锐.药物洗脱支架治疗后冠状动脉再狭窄相关因素的分析.中华老年心脑血管病杂志, 2007,9(3):156-158.
    [35] Carter AJ, Laird JR, Farb A, Kufs W, Wortham DC, Virmani R. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J Am Coll Cardiol, 1994,24(5):1398-1405.
    [36] Grewe PH, Deneke T, Machraoui A, Barmeyer J, Muller KM. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol, 2000,35(1):157-163.
    [37] Cosgrave J, Melzi G, Biondi-Zoccai GG, Airoldi F, Chieffo A, Sangiorgi GM, Montorfano M, Michev I, Carlino M, Bonizzoni E, Colombo A. Drug-eluting stent restenosis the pattern predicts the outcome. J Am Coll Cardiol, 2006,47(12):2399-2404.
    [38] Kastrati A, Schomig A, Elezi S, Schuhlen H, Dirschinger J, Hadamitzky M, Wehinger A, Hausleiter J, Walter H, Neumann FJ. Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol, 1997,30(6):1428-1436.
    [39] Xu B, Li JJ, Yang YJ, Ma WH, Chen JL, Qiao SB, Qin XW, Yao M, Liu HB, Wu YJ, Yuan JQ, Chen J, You SJ, Dai J, Xia R, Gao RL. A single center investigation of bare-metal or drug-eluting stent restenosis from 1633 consecutive Chinese Han ethnic patients. Chin Med J (Engl),2006,119(7):533-538.
    [40] Escargueil-Blanc I, Meilhac O, Pieraggi MT, Arnal JF, Salvayre R, Negre-Salvayre A. Oxidized LDLs induce massive apoptosis of cultured human endothelial cells through a calcium-dependent pathway. Prevention by aurintricarboxylic acid. Arterioscler Thromb Vasc Biol, 1997,17(2):331-339.
    [41] Myers PR, Webel R, Thondapu V, Xu XP, Amann J, Tanner MA, Jenkins JS, Pollock JS, Laughlin MH. Restenosis is associated with decreased coronary artery nitric oxide synthase. Int J Cardiol, 1996,55(2):183-191.
    [42]王睿,高歌.冠状动脉再狭窄的防治研究.心脏杂志, 2000,12(03):221-223.
    [43] Glagov S. Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation, 1994,89(6):2888-2891.
    [44] Costa MA, Kozuma K, Gaster AL, van Der Giessen WJ, Sabate M, Foley DP, Kay IP, Ligthart JM, Thayssen P, van Den Brand MJ, de Feyter PJ, Serruys PW. Three dimensional intravascular ultrasonic assessment of the local mechanism of restenosis after balloon angioplasty. Heart, 2001,85(1):73-79.
    [45] Currier JW, Faxon DP. Restenosis after percutaneous transluminal coronary angioplasty: have we been aiming at the wrong target? J Am Coll Cardiol, 1995,25(2):516-520.
    [46] Grise MA, Massullo V, Jani S, Popma JJ, Russo RJ, Schatz RA, Guarneri EM, Steuterman S, Cloutier DA, Leon MB, Tripuraneni P, Teirstein PS. Five-year clinical follow-up after intracoronary radiation: results of a randomized clinical trial. Circulation, 2002,105(23):2737-2740.
    [47] Ramee SR, White CJ, Collins TJ, Mesa JE, Murgo JP. Percutaneous angioscopy during coronary angioplasty using a steerable microangioscope. J Am Coll Cardiol, 1991,17(1):100-105.
    [48] Speir E, Shibutani T, Yu ZX, Ferrans V, Epstein SE. Role of reactive oxygen intermediates in cytomegalovirus gene expression and in theresponse of human smooth muscle cells to viral infection. Circ Res, 1996,79(6):1143-1152.
    [49] Buffon A, Maseri A. Prediction of restenosis following percutaneous transluminal coronary angioplasty: an important but elusive goal. Am J Cardiol, 1998,82(6):836-837.
    [50] Carlsson J, Miketic S, Brom J, Ross R, Bachmann H, Tebbe U. Prior cytomegalovirus, Chlamydia pneumoniae or Helicobacter pylori infection and the risk of restenosis after percutaneous transluminal coronary angioplasty. Int J Cardiol, 2000,73(2):165-171.
    [51] Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res, 1993,73(6):1202-1207.
    [52] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001,414(6865):799-806.
    [53] Kashyap SR, Roman LJ, Lamont J, Masters BS, Bajaj M, Suraamornkul S, Belfort R, Berria R, Kellogg DL, Jr., Liu Y, DeFronzo RA. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J Clin Endocrinol Metab, 2005,90(2):1100-1105.
    [54] White MF. Insulin signaling in health and disease. Science, 2003,302(5651):1710-1711.
    [55] Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol, 2002,16(8):1931-1942.
    [56] Jonassen AK, Brar BK, Mjos OD, Sack MN, Latchman DS, Yellon DM. Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J Mol Cell Cardiol, 2000,32(5):757-764.
    [57] Aljada A, Ghanim H, Mohanty P, Kapur N, Dandona P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1(Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab, 2002,87(3):1419-1422.
    [58] Jeschke MG, Klein D, Bolder U, Einspanier R. Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology, 2004,145(9):4084-4093.
    [59] Porte D, Jr., Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes, 2005,54(5):1264-1276.
    [60]林岚.胰岛素诱导心肌肥厚的作用及机制的体外研究.福建医科大学学报, 1999,33(04):466-467.
    [61] Ren J, Sowers JR, Natavio M, Brown RA. Influence of age on inotropic response to insulin and insulin-like growth factor I in spontaneously hypertensive rats: role of nitric oxide. Proc Soc Exp Biol Med, 1999,221(1):46-52.
    [62] Trovati M, Anfossi G. Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function. J Diabetes Complications, 2002,16(1):35-40.
    [63] Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP. National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation, 2004,110(10):1251-1257.
    [64]吕卓人,姜馨.糖尿病与心血管危险控制.中华心血管病杂志, 2001,29(10):637-639.
    [65] Bornfeldt KE, Gidlof RA, Wasteson A, Lake M, Skottner A, Arnqvist HJ. Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities. Diabetologia, 1991,34(5):307-313.
    [66]赵卫红,陈丽君.铁对过氧化氢诱导细胞凋亡的保护作用研究.中国小儿血液, 2002,7(01):6-7,31.
    [67]黄贵清,廖清奎,罗春华,李丰益,符仁义.急性白血病患儿外周血白血病细胞TfR表达与细胞增殖力和铁代谢的关系.中华血液学杂志, 1999,20(03):134-136.
    [68]汤有才,赵春,贾国存,李丰益,廖清奎,牛文忠,王军.铁剥夺对K562细胞凋亡及细胞周期的影响.郑州大学学报(医学版), 2006,41(06):1055-1057.
    [69]贾国存.肿瘤细胞铁代谢的分子机制.国外医学.输血及血液学分册, 2003,26(04):342-345.
    [70] Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Mol Med, 2001,7(3):103-108.
    [71] Connor JR, Menzies SL. Cellular management of iron in the brain. J Neurol Sci, 1995,134(Suppl):33-44.
    [72]谭力学.铁与慢性肝损伤.国外医学.医学地理分册, 2003,24(4):148-151.
    [73]林晓明,龙珠,沈小毅,唐仪,杨清.维生素A与铁缺乏对小鼠免疫功能的影响.营养学报, 2001,23(3):271-274.
    [74] McDonnell S, Morgan M, Lynch C. Role of matrix metalloproteinases in normal and disease processes. Biochem Soc Trans, 1999,27(4):734-740.
    [75]任冰稳.动脉粥样硬化与基质金属蛋白酶.中国循环杂志, 2002,17(1):73-74.
    [76] Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis, 2001,154(2):399-406.
    [77] Casterella PJ, Teirstein PS. Prevention of coronary restenosis. Cardiol Rev, 1999,7(4):219-231.
    [78] Feldman LJ, Mazighi M, Scheuble A, Deux JF, De Benedetti E, Badier-Commander C, Brambilla E, Henin D, Steg PG, Jacob MP. Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation, 2001,103(25):3117-3122.
    [79] Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF,Chisolm GM. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling. Circ Res, 1995,76(6):996-1002.
    [80] Pauletto P, Puato M, Faggin E, Santipolo N, Pagliara V, Zoleo M, Deriu GP, Grego F, Plebani M, Sartore S, Bon GB, Heymes C, Samuel JL, Pessina AC. Specific cellular features of atheroma associated with development of neointima after carotid endarterectomy: the carotid atherosclerosis and restenosis study. Circulation, 2000,102(7):771-778.
    [81]王智慧,孟晓萍,崔艳,王莉,李方连,贺晓楠,侯文丽.基质金属蛋白酶2(MMP2)对血管平滑肌增生迁移的影响.中国实验诊断学, 2006,10(07):789-790.
    [82] Levesque J, Hermawan H, Dube D, Mantovani D. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater, 2008,4(2):284-295.
    [83] Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature, 1997,386(6627):855-858.
    [84] Dayi SU, Tartan Z, Terzi S, Kasikcioglu H, Uyarel H, Orhan G, Alper AT, Ciloglu F, Cam N. Influence of angiotensin converting enzyme insertion/deletion polymorphism on long-term total graft occlusion after coronary artery bypass surgery. Heart Surg Forum, 2005,8(5):E373-377.
    [85] Bers DM, Perez-Reyes E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res, 1999,42(2):339-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700