氯胺酮对大鼠肺泡巨噬细胞胞内钙离子及活性氧的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:氯胺酮对LPS刺激的大鼠肺泡巨噬细胞胞内钙离子及活性氧的影响
     目的:研究氯胺酮对脂多糖(LPS)刺激的大鼠肺泡巨噬细胞一氧化氮(NO)、羟自由基(·OH)、超氧阴离子(O_2·~-)生成及胞内游离钙离子([Ca~(2+)]_i)的影响。
     方法:体外培养的大鼠肺泡巨噬细胞系NR8383分为对照组(C组),LPS组(L组)及不同浓度氯胺酮预处理组(K1、K2和K3组)。L组、K1、K2和K3组均采用1 mg/L的LPS刺激,在刺激前分别给以磷酸盐缓冲溶液(PBS)、10、100和1000 gmol/L浓度氯胺酮预处理。C组用相同剂量的PBS处理。继续培养24小时后用试剂盒检测细胞培养上清液中NO、·OH及(超氧阴离子)O_2·~-水平,应用激光共聚焦法测定胞内游离钙离子的水平。
     结果:L组NO、·OH、O_2·~-及胞内游离钙离子的水平显著高于C组;与L组相比,K2和K3组的NO、·OH、O_2·~-及胞内游离钙离子的水平显著降低;K2和K3组间无统计学差异。
     结论:氯胺酮(100和1000μmol/L)对LPS所致的NR8383的NO、·OH、O_2·~-及胞内游离钙离子的的升高有抑制作用。
     第二部分氯胺酮对卵蛋白激发的致敏大鼠离体肺泡巨噬细胞胞内钙和自由基的影响
     目的:研究氯胺酮对OVA刺激的致敏大鼠肺泡巨噬细胞(AM)一氧化氮(NO)、羟自由基(·OH)、超氧阴离子(O_2·~-)生成及胞内游离钙离子([Ca~(2+)]_i)的影响。
     方法:SD大鼠经皮下注射OVA致敏后行肺泡灌洗,分离纯化后得到体外培养的AM,经氯胺酮(10μM,100μm和1000μM)处理、OVA刺激后,测定细胞[ca~(2+)]_i并检测细胞培养上清液中一氧化氮(NO)、羟自由基(·OH)及O_2·~-水平。
     结果:OVA刺激可引起致敏肺泡巨噬细胞[Ca~(2+)]_i增高及NO、·OH和O_2·~-的生成增多,氯胺酮对此具有抑制作用。
     结论:氯胺酮可抑制OVA所致的氧化应激,其分子机制可能与[Ca~(2+)]_i相关。
Part One
     Effects of ketamine on nitrogen monoxidum,oxygen Radicals and free intracellular calcium in Lipopolysaccharide-stimulated rat alveolar macrophage in vitro
     Objective:To investigate the effects of ketamine on production of Nitric oxide(NO),hydroxy radical(·OH),superoxide anion(O_2·~-)and free intracellular calcium([Ca~(2+)]_i)in the rat alveolar macrophage cell line (NR8383)activated by Lipopolysaccharide(LPS).
     Methods:Macrophage was distributed into five groups,group C, group L,group K1,group K2 and group K3.Group L,K1,K2 and K3 were stimulated with LPS.Before stimulation,Group L,K1,K2 and K3 were treated with phosphate buffer solution(PBS),10,100and 1000μmol/L ketamine.Group C was treated with PBS.The levels of NO,·OH and O_2·~- in the supernatant were assayed.The[Ca~(2+)]i level was measured with fluorescent intensity by laser scanning confocal microscope.
     Results:The concentrations of NO,·OH,O_2·~-and[Ca~(2+)]_i in group L increased significantly(P<0.01)when compared to Group C.The concentrations of NO,·OH and O_2·~- in Group K2,K3 were obviously lower than those of Group L(P<0.05).There was no statistical difference between K2 and K3(P>0.05).
     Conclusions:Ketamine(100 and 1000μmol/L)can inhibit LPS-induced production of NO,·OH,O_2·~- and[Ca~(2+)]_i.
     Part Two
     Effects of Ketamine on OVA-induced the changes of Free Intracellular Calcium and Free-radical in Alveolar Macrophages in Vitro
     Objective:To observe the effect of ketamine on OVA-induced the changes of free intracellular calcium([Ca~(2+)]_i)and free-radical in alveolar macrophages from sensitized rat in vitro.
     Methods:Macrophages were collected from Bronchoalveolar Lavage fluid of OVA-sensitized Sprague-Damley rats and treated with ketamine of concentration at 10μM,100μM and 1000μM before challenge with 100μg/mL OVA.The production of nitric oxide(NO),hydroxy radical (·OH)and superoxide anion(O_2·~-)in the supematant of culture was assayed by kits and the[Ca~(2+)]_i of macrophages was measured with mean fluorescent intensity(MFI)by laser scanning confocal microscope.
     Results:OVA challenge induced an elevation of[Ca~(2+)]_i and an increase of NO,·OH and O_2·~- in sensitized rat macrophages,which were inhibited by ketamine.
     Conclusions:Ketamine inhibited OVA-induced oxidative stress which involved in calcium.
引文
[1] Boljevic S, Daniljak IG, Kogan AH. Changes in free radical possibility of their correction in patients with bronchial asthma[J]. Vojnosanit-pregl, 1993,50:3-18.
    [2] Claude Lenfant, Shirley Murphy, Ted Buxton, et al. National Asthma Education and Prevention Program, Expert Panel Report 2(M). Guidelines for the Diagnosis and Management of Asthma.Washington, DC: NIH Publication, 1997.12-22
    [3] Kelm M and Schrader J. Control of coronary vascular tone by nitric oxide[J]. Circ Res, 1990, 66: 1561-1575
    [4] Peters-Golden M. The alveolar macrophage: the forgotten cell in asthma[J]. Am J Respir Cell Mol Biol, 2004,31(1):3-7.
    [5] Huie RE, Padmaja S. Reaction of NO with superoxide[J]. Free Radic Res Commun, 1993,18:195-199.
    [6] Redington AE. Modulation of nitric oxide pathways: therapeutic potential in asthma and chronic obstructive pulmonary disease[J]. Eur J Pharmacol, 2006,533:263-76.
    [7] Moncada S, Higgs A. The L-arginine-nitric oxide pathway [J]. N Engl J Med, 1993,329:2002-12.
    [8] Guo FH, Uetani K, Haque SJ, et al. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators[J]. J Clin Invest, 1997,100:829-38.
    [9] Konig P, Carpenter M, White AA. Urinary cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate(cGMP) in asthmatic and normal children[J]. Eur J Respir Dis, 1980,61:218-26.
    [10] Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels[J]. Pharmacol Rev, 1999,51:7-61.
    [11] Olney JW, Ho OL, Rhee V. Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system[J]. Exp Brain Res, 1971,14:61-76.
    [12] Gagliardi RJ. Neuroprotection, excitotoxicity and NMDA antagonists [J]. Arq Neuropsiquiatr, 2000,58:583-8.
    [13] Lynch DR, Guttmann RP. Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes[J]. J Pharmacol Exp Ther, 2002,300:717-23.
    [14] Beal MF. Mechanisms of excitotoxicity in neurologic diseases[J]. FASEB J, 1992,6:3338-44.
    [15] Liu Y, Zhang J. Recent development in NMDA receptors [J]. Chin Med J (Engl), 2000,113:948-56.
    [16] Gonzales JM, Loeb AL, Reichard PS, et al. Ketamine inhibits glutamate-, N-methyl-D-aspartate-, and quisqualate-stimulated cGMP production in cultured cerebral neurons [J]. Anesthesiology, 1995,82:205-13.
    [17] Jurado S, Sanchez-Prieto J, Torres M. Differential expression of NO-sensitive guanylyl cyclase subunits during the development of rat cerebellar granule cells: regulation via N-methyl-D-aspartate receptors[J]. J Cell Sci, 2003,116:3165-75.
    [18] Nathan C. Nitric oxide as a secretory product of mammalian cells[J]. FASEB J, 1992,6:3051-64.
    [19] Zhang J, Dawson VL, Dawson TM, et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity[J]. Science, 1994, 263:687-9.
    [20] Ayata C, Ayata G, Hara H, et al. Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice[J]. J Neurosci, 1997,17:6908-17.
    [21]Pfenninger E,Himmelseher S.Neuroprotection by ketamine at the cellular level[J].Anaesthesist,1997,46 Suppl 1:S47-54.
    [22]Fitzal S.Ketamine and neuroprotection.Clinical outlook[J].Anaesthesist,1997,46 Suppl 1:S65-70.
    [23]Said SI,Dey RD,Dickman K.Glutamate signalling in the lung[J].Trends Pharmacol Sci,2001,22:344-5.
    [24]Ricciardolo FL.Multiple roles of nitric oxide in the airways[J].Thorax,2003,58:175-82.
    [25]Watters JJ,Sommer JA,Pfeiffier ZA,et al.A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling:the MEK/ ERK pathway is not essential for nitric oxidce and interleukin 1 beta production[J].J Biol Chem,2002,277(11):9077-9087.
    [26]Danielle RK.LANKVELD,Sarah BULL,Paul VAN DIJK,et al.Ketamine inhibits LPS-induced tumour necrosis factor-alpha and interleukin-6 in an equine macrophage cell line[J].Vet Res.2005,36:257-262.
    [27]Chang Y,Chen TL,Sheu JR,et al.Suppressive effects ofketamine on macrophage functions[J].Toxicology and Applied Pharmacology.2005,204:27-35.
    [28]傅诚章,朱敏敏,周钦海.氯胺酮雾化吸入对哮喘大鼠气道炎症的影响[J].中华麻醉学杂志.2004,24(11):833-837.
    [29]Suliburk JW,Gonzalez EA,Kennison SD,et al.Differential effects of anesthetics on endotoxin-induced liver injury[J].J Trauma,2005,58:711-716;disscusion 716-717.
    [30]Helmer KS,Suliburk JW,Mercer DW.Ketamine-induced gastroprotection during endotoxemia:role of heme-oxygenase-1[J].Dig Dis Sic,2006,51:1571-1581.
    [31]王海云,王国林.氯胺酮对脂多糖诱导下脐静脉内皮细胞活化的影响[J].中华麻醉学杂志,2004,24:357-360.
    [32]Helmke R J,German VF,Mangos JA.A continuous alveolar macrophage cell line:comparisons with freshly derived alveolar macrophages[J].In Vitro Cell Dev Biol,1989,25:44-48
    [33]Julio GC,Henry JF.Phospholipase D and Priming of the Respiratory Burst by H202 in NR8383 Alveolar Macrophages[J].Am.J.Respir.Cell Mol.Biol.2000,23:748-754.
    [34]Michael MS,Godleski JJ,Paulauskis JD.Regulation of Macrophage Inflammatory Protein-1a mRNA by Oxidative Stress[J].J Bio Chem.1996,271:5878-5883.
    [35]Julio GC,Kousthub S,Henry JF.Priming of Alveolar Macrophage Respiratory Burst by H_2O_2 Is Prevented by Phosphatidylcholine-Specific Phospholipase C Inhibitor Tricyclodecan-9-yl-xanthate (D609)[J].J Pharmacol Exp Ther,2002,301:87-94.
    [36]Kelm M,Schrader J.Control of coronary vascular tone by nitric oxide[J].Circ Res.1990,66:1561-1575.
    [37]DiMaria GU,Spicuzza L,Mistretta A,et al.Role of endogenous nitric oxide in asthma[J].Allergy,2000,55(Suppl 61):31-35
    [38]Stamler JS,Singel DJ,Loscalzo J.Biochemistry of nitric oxide and its redox-activated forms[J].Science,1992,258:1898-1902
    [39]Meurs H,Maarsingh H,Zaagsma J.Arginase and asthma:novel insights into nitric oxide homeostasis and airway responsiveness[J].Trends Pharmacol Sci,2003,24:450-455
    [40]Alva N,Palomeque J,Carbonell T.Nitric oxide induced by ketamine/xylazine anesthesia maintains hepatic blood flow during hypothermia[J].Nitric Oxide,2006,15:64-9.
    [41]Bulutcu F,Dogrul A,Guc MO.The involvement of nitric oxide in the analaesic effects ofketamine[J].Life Sci.2002,71:841-53.
    [42]周媛,李洁,刘春风.脂多糖对星形胶质细胞增殖和细胞内钙离子水平及活性氧与一氧化氮释放的影响[J].中国临床康复.2006,10(33):171-173.
    [43]闻平,戴赓孙,叶庆林.细菌脂多糖对NIH3T3细胞增生、胞内游离钙及 cAMP 浓度的影响[J].医学研究生学报,2000,13(5):295-297.
    [44]蒲传强,郝延磊,田成林.TNF-α和LPS对体外培养血脑屏障内皮细胞胞浆内钙离子浓度的影响[J].中国微循环,2003,7(1):14-16.
    [45]Zhang H,Li YY,Wang SN,et al.Effects of lipopolysaccharides on calcium homeostasis in isolated pancreatic acinar cells of rat[J].Acta Pharmacol Sin.2003,24(8):790-795.
    [46]Song PI,Abraham TA,Park Y,et al.The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells[J].Invest Ophthalmol Vis Sci.2001,42(12):2867-77
    [47]Martin L,Pingle SC,t-Iallam DM,et al.Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2[J].J Pharmacol Exp Ther.2006,316(1):71-8.
    [48]Osawa Y,Lee HT,Hirshman CA,et al.Lipopolysaccharide induced sensitization of adenylyl cyclase activity in murine macrophages.Am J Physiol Cell Physiol[J].2006,290(1):C143-51.
    [49]Zhou X,Yang W,Li J.Ca~(2+)and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation,inducible nitric-oxide synthase expression,and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages[J].J Biol Chem.2006,281(42):31337-47.
    [50]Moon EY,Pyo S.Lipopolysaccharide stimulates Epacl-mediated Rapl/NF-kappaB pathway in Raw 264.7 murine macrophages[J].Immunol Lett,2007,110(2):121-125.
    [51]Gonzales J-M,Loeb AL,Reichard PS,et al.Ketamine inhibits glutamate-,N-methyl-D-aspartate-,and quisqualate-stimulated cGMP production in cultured cerebral neurons[J].Anesthesiology,1995,82:205-13.
    [52]王焱林,杜朝晖,周青.氯胺酮对脂多糖诱导人单核细胞NF-kB表达和肿瘤坏死因子-α释放的影响[J].中华麻醉学杂志.2005,25(12):919-921
    [53]Shaked G;Czeiger D,Dukhno O,et al.Ketamine improves survival and suppresses IL-6 and TNFalpha production in a model of Gram-negative bacterial sepsis in rats[J].Resuscitation,2004,62(2):237-242.
    [54]Sun J,Wang XD,Liu H,et al.Ketamine suppresses endotoxin-induced NF-kappaB activation and cytokines production in the intestine[J].Acta Anaesthesiol Scand,2004,48(3):317-321.
    [55]谭志鑫,李玉山.魔芋葡甘聚糖与氯胺酮对低氧/复氧小鼠的保护作用研究[J].中国病理生理杂志,2006,22(5):892-919.
    [56]Tripathi S,Maiti TK.Stimulation of murine macrophages by native and heat-denatured lectin from Abrus precatorius[J].Int Immunopharmacol,2003,3(3):375-381.
    [57]Weigand MA,Schmidt H,Zhao Q,et al.Ketamine modulates the stimulated adhesion molecule expression on human neutrophils in vitro[J].Anesth Analg,2000,90(1):206-212.
    [58]Desouza LF,Barreto F,da Silva EG;et al.Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats:Involvement of high glucose and PPARgamma[J].Life Sci,2007,81(2):153-159.
    [59]刘辉,朱晓燕,季海锋,等.LPs致敏巨噬细胞产生O_2·~-及其信号机制[J].中国病理生理杂志,2003,19(07):881-884.
    [60]Bal-Price A,Brown GC.Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration,causing glutamate release and excitotoxicity[J].J Neurosci,2001,21:6480-91.
    [61]Brown GC,Bal-Price A.Inflammatory neurodegeneration mediated by nitric oxide,glutamate,and mitochondria[J].Mol Neurobiol,2003,27:325-55.
    [62]Kaelin RM,Center DM,Grant MM,et al.Production of lymphocyte chemokinetic activity by stimulated alveolar macrophages[J],xp Lung Res,1986;10(2):171-86.
    [63]Kosei M,Zheng Q,Wada T,et al.Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells[J].Immunology and Cell Biology(2005)83:336-343.
    [64]Peters-Golden M.The alveolar macrophage:the forgotten cell in asthma[J].Am J Respir Cell Mol Biol,2004,31:3-7.
    [65]Coyle JT,Puttfarcken P.Oxidative stress,glutamate,and neurodegenerative disorders[J].Science,1993,262:689-95.
    [1]Woodbridge PD.Changing concepts concerning depth of anesthesia[J].Anesthesiology,1957,18:536-550.
    [2]Ball C,Westhorpe R.Intravenous induction agents:ketamine[J].Anaesth Intensive Care,2002,30:115.
    [3]Corssen G;Domino EF.Dissociative anesthesia:further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581[J].Anesth Analg,1966,45:29-40.
    [4]Greifenstein F,Devault M,Yoshitake J,et al.A study of a 1-aryl cyclo hexyl amine for anesthesia[J].Anesth Analg,1958,37:283-294.
    [5]McCarthy DA,Chen G;Kaump DH,et al.General Anesthetic And Other Pharmacological Properties Of 2-(O-Chlorophenyl)-2-Methylamino Cyclohexanone Hcl(Ci-581)[J].J New Drugs,1965,28:21-33.
    [6]Domino EF,Chodoff P,Corssen G.Pharmacologic Effects Of Ci-581 A new dissociative anesthetic[J].Man Clin Pharmacol Ther,1965,6:279-291.
    [7]Lin C,Durieux ME.Ketamine and kids:an update[J].Paediatr Anaesth,2005,15:91-97.
    [8]Restall J,Tully AM,Ward P J,et al.Total intravenous anaesthesia for military surgery A technique using ketamine,midazolam and vecuronium[J].Anaesthesia,1988,43:46-49.
    [9]Wright M.Pharmacologic effects of ketamine and its use in veterinary medicine[J].J Am Vet Med Assoc,1982,180:1462-1471.
    [10]Jansen KL.A review of the nonmedical use of ketamine:use,users and consequences[J].J Psychoactive Drugs,2000,32:419-433.
    [11]Jansen KL,Darracot-Cankovic R.The nonmedical use of ketamine, part two: a review of problem use and dependence [J]. J Psychoactive Drugs,2001,33:151-158.
    [12] Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience [J]. Can J Anaesth, 1989,36:186-197.
    [13] Cohen ML, Chan SL, Way WL, et al. Distribution in the brain and metabolism of ketamine in the rat after intravenous administration [J]. Anesthesiology, 1973,39:370-376.
    [14] Dayton PG, Stiller RL, Cook DR, et al. The binding of ketamine to plasma proteins: emphasis on human plasma[J]. Eur J Clin Pharmacol, 1983,24:825-831.
    [15] Kohrs R, Durieux ME. Ketamine: teaching an old drug new tricks[J]. Anesth Analg, 1998,87:1186-1193.
    [16] Annetta MG, lemma D, Garisto C, et al. Ketamine: new indications for an old drug[J]. Curr Drug Targets,2005,6:789-794.
    [17] Grant IS, Nimmo WS, McNicol LR, et al. Ketamine disposition in children and adults[J]. Br J Anaesth, 1983,55:1107-1111.
    [18] Malinovsky JM, Servin F, Cozian F, et al. Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children[J]. Br J Anaesth, 1996,77:203-207.
    [19] Cederholm I, Bengtsson M, Bjorkman S, et al. Long term high dose morphine, ketamine and midazolam infusion in a child with burns[J]. Br J Clin Pharmacol, 1990,30: 901-905.
    [20] Saarenmaa E, Neuvonen PJ, Huttunen P, et al. Ketamine for procedural pain relief in newborn infants[J]. Arch Dis Child Fetal Neonatal Ed,2001,85: F53-F56.
    [21] Himmelseher S, Durieux ME. Revising a dogma: ketamine for patients with neurological injury[J]. Anesth Analg, 2005,101:524- 534.
    [22] Koinig H, Marhofer P. S(+)-ketamine in paediatric anaesthesia[J]. Paediatr Anaesth,2003,13:185-187.
    [23] Pees C, Haas NA, Ewert P, et al. Comparison of analgesic/sedative effect of racemic ketamine and S(+)-ketamine during cardiac catheterization in newborns and children[J]. Pediatr Cardiol,2003, 24:424-429.
    [24] Langsjo JW, Salmi E, Kaisti KK, et al. Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans[J]. Anesthesiology,2004,100:1065-1071.
    [25] Sprenger T, Valet M, Woltmann R, et al. Imaging pain modulation by subanesthetic S-(+)-ketamine[J]. Anesth Analg,2006,103: 729-737.
    [26] Hetman M, Kharebava G. Survival signaling pathways activated by NMDA receptors[J]. Curr Top Med Chem,2006,6:787-799.
    [27] Schrattenholz A, Soskic V. NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling[J]. Curr Top Med Chem,2006,6:663-686.
    [28] MacDonald JF, Bartlett MC, Mody I, et al. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones[J]. J Physiol,1991,432:483-508.
    [29] Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors[J]. Anesthesiology, 1997,86:903-917.
    [30] Coates KM, Flood P. Ketamine and its preservative, benzethonium chloride, both inhibit human recombinant alpha7 and alpha4beta2 neuronal nicotinic acetylcholine receptors in Xenopus oocytes[J]. Br J Pharmacol,2001,134:871-879.
    [31] Seeman P, Ko F, Tallerico T. Dopamine receptor contribution to the action of PCP LSD and ketamine psychotomimetics[J]. Mol Psychiatry,2005,10:877-883.
    [32] Seeman P. Brain dopamine receptors[J]. Pharmacol Rev, 1980,32:229-313.
    [33] Kapur S, Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia[J]. Mol Psychiatry,2002,7:837-844.
    [34] Seeman P, Kapur S. Anesthetics inhibit high-affinity states of dopamine D2 and other G-linked receptors [J]. Synapse,2003, 50:35-40.
    [35] Zilberstein G, Levy R, Rachinsky M, et al. Ketamine attenuates neutrophil activation after cardiopulmonary bypass [J]. Anesth Analg,2002,95:531-536.
    [36] Engelhard K, Werner C, Eberspacher E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats[J]. Anesth Analg,2003,96:524-531.
    [37] Sun J, Zhou ZQ, Lv R, et al. Ketamine inhibits LPS-induced calcium elevation and NF-kappa B activation in monocytes[J]. Inflamm Res,2004,53:304-308.
    [38] Winsauer G, Martin RD. Resolution of inflammation: intracellular feedback loops in the endothelium[J]. Thromb Haemost,2007,97: 364-369.
    [39] Grant IS, Nimmo WS, Clements JA. Pharmacokinetics and analgesic effects of IM and oral ketamine [J]. British Journal of Anaesthesia 1981; 53: 805-9.
    [40] Malinovsky JM, Lapage JY, Cozian A, et al. Is ketamine or its preservative responsible for neurotoxicity in rabbits?[J]. Anesthesiology, 1993; 78: 109-15.
    [41] Green SM, Li J. Ketamine in adults: what emergency physicians need to know about selection and emergence reactions[J]. American Journal of Emergency Medicine, 2005; 23: 142-4.
    [42] Lau TT, Zed PJ. Does ketamine have a role in managing severe exacerbation of asthma in adults? [J]. Pharmacotherapy, 2001;21:110-6.
    [43] Allen JY, Macias CG. The efficacy of ketamine in paediatric emergency department patients who present with acute severe asthma[J]. Annals of Emergency Medicine, 2005; 46: 43-50.
    [44] Tweed WA, Minuck M, Mymin D. Circulatory responses to ketamine anaesthesia[J]. Anaesthesia, 1972; 37: 613-9.
    [45] Smith G, Thorburn J, Vance JP, Brown DM. The effects of ketamine on the canine circulation[J]. Anaesthesia, 1979; 34: 555-61.
    [46] Ferrer-Allado T, Brechner VL, Dymond A, et al. Ketamine induced electroconvulsive phenomena in human limbic and thalamic regions [J]. Anesthesiology, 1973; 38: 337-44.
    [47] Gastone C, Celesia MD, Rang-Chi C, et al. Effects of ketamine in epilepsy [J]. Neurology, 1975; 25: 169.
    [48] Kolbel CB, Rippel K, Klar H, et al. Oesophageal motility disorders in critically ill patients: a 24 hour manometric study [J]. Intensive Care Medicine, 2000; 26: 1421-7.
    [49] Bell RF, Dahul JB, Moore RA, et al. Perioperative ketamine for acute postoperative pain. Cochrane Database of Systematic Reviews 2007: pub2.
    [50] Dave VB, Chokshi JM, Bandopadhyaya AK. Ketamine and intraocular pressure. Indian Journal of Ophthalmology 1976;24:5-8.
    [51] Motoyama EK, Davis PJ. Smith's Anesthesia for Infants and Children (ed 6)[M]. Mosby, St. Louis, MO (1996).
    [52] Schmitz M, Ullah S. Right-sided obstructive leasions. In: Anesthesia for Congenital Heart Disease, Futura Publishing, Philadelphia, PA (2004).
    [53] Mistry RB, Nahata MC. Ketamine for conscious sedation in pediatric emergency care[J]. Pharmacotherapy,2005,25:1104-1111.
    [54] Hartvig P, Larsson E, Joachimsson PO. Postoperative analgesia and sedation following pediatric cardiac surgery using a constant infusion of ketamine[J]. J Cardiothorac Vasc Anesth, 1993, 7:148-153.
    [55] Denmark TK, Crane TK, Brown L. Ketamine to avoid mechanical ventilation in severe pediatric asthma[J]. J Emerg Med, 2006,30:163-166.
    [56] Allen JY, Macias CY. The efficacy of ketamine in pediatric emergency department patients who present with acute severe asthma[J]. Ann Emerg Med,2005,46:43-50.
    [57] Bell RF, Dahl JB, Moore RA, et al. Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (Cochrane review)[J]. Acta Anaesthesiol Scand, 2005, 49:1405-1428.
    [58] Elia N, Tramer MR. Ketamine and postoperative pain: a quantitative systematic review of randomised trials [J]. Pain, 2005,113:61-70.
    [59] Humphries Y, Melson M, Gore D. Superiority of oral ketamine as an analgesic and sedative for wound care procedures in the pediatric patient with burns[J]. J Burn Care Rehabil,1997,18: 34-36.
    [60] Hocking G, Cousins MJ. Ketamine in chronic pain management: an evidence-based review[J]. Anesth Analg,2003,97:1730-1739.
    [61] Laufer M, Schippel P, Wild L, et al. Treatment of extreme tumour pain with morphine and s-ketamine: a case report of an 11-year old girl[J]. Schmerz,2005,19:220-224.
    [62] Kronenberg RH. Ketamine as an analgesic: parenteral, oral, rectal, subcutaneous, transdermal and intranasal administration[J]. J Pain Palliat Care Pharmacother,2002,16:27-35.
    [63] Spandou E, Karkavelas G, Soubasi V, et al. Effect of ketamine on hypoxic-ischemic brain damage in newborn rats [J]. Brain Res,1999,819: 1-7.
    [64] Anand K, Garg S, Rovnaghi C, et al. Ketamine reduces the cell death following inflammatory pain in newborn rat brain[M]. Pediatr Res (2007) (epub ahead of print, Jun 25, 2007).
    [65] Bokesch PM, Kapural M, Drummond-Webb J, et al. Neuroprotective, anesthetic and cardiovascular effects of the NMDA antagonist CNS 5161A, in isoflurane-anesthetized lambs[J]. Anesthesiology,2000,93:202-208.
    [66] Nagels W, Demeyere R, Van Hemelrijck J, et al. Evaluation of the neuroprotective effects of S(+)-ketamine during open-heart surgery [J]. Anesth Analg,2004,98:1595-1603.
    [67] Gahlinger PM. Club drugs: MDMA, gamma-hydroxybutyrate (GHB), Rohypnol, and ketamine [J]. Am Fam Physician, 2004, 69:2619-2626.
    [68] Narendran R, Frankle WG, Keefe R, et al. Altered prefrontal dopaminergic function in chronic recreational ketamine users [J]. Am J Psychiatry,2005,162:2352-2359.
    [69] Wathen JE, Roback MG, Mackenzie T, et al. Does midazolam alter the clinical effects of intravenous ketamine sedation in children? A double-blind, randomized, controlled, emergency department trial[J]. Ann Emerg Med,2000,36:579-588.
    [70] Kaul HL, Jayalaxmi T, Gode GR, et al. Effect of ketamine on intracranial pressure in hydrocephalic children[J]. Anaesthesia, 1976,31:698-701.
    [71] Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs[J]. Science,1989,244:1360-1362.
    [72] Ikonomidou C, Bosch F, Miksa F, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain[J]. Science, 1999,283:70-74.
    [73] Scallet AC, Schmued LC, Slikker JW, et al. Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons[J]. Toxicol Sci,2004,81:364-370.
    [74] Slikker JW, Paule MG, Wright LK, et al. Systems biology approaches for toxicology [J]. J Appl Toxicol,2007,27:201-217.
    [75] Slikker JW, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey [J]. Toxicol Sci,2007,98:145-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700