栽培大豆非生物胁迫诱导的蛋白激酶基因GmGSK的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐、干旱、低温等非生物胁迫是影响作物产量的重要环境因素。植物通过长期进化逐渐形成特定的机制来抵御外界环境造成的胁迫,减轻对自身的伤害。其中蛋白激酶可通过对底物可逆的磷酸化来参与胁迫信号的传导,从而进一步调节外界胁迫对作物造成的伤害。因此,蛋白激酶在植物的抗逆途径中起到了非常重要的作用。
     我们以小麦的TaGSK1基因序列为探针,通过电子克隆在栽培大豆中得到一条类似糖原合成酶激酶的cDNA序列,并通过RT-PCR的方法将其克隆。序列分析表明,此cDNA包含一条1230bp的完整开放阅读框,编码410个氨基酸,估计的分子量为46.5kD,等电点PI为8.64。蛋白序列分析表明,其编码一个与GSK-3同源的蛋白,含有丝氨酸/苏氨酸蛋白激酶活性位点,命名为GmGSK (Genbank登录号:FJ460228)。
     Southern杂交表明,GmGSK基因在栽培大豆基因组中至少有两个拷贝。Northern杂交显示,在栽培大豆的根、茎、叶、叶柄及子叶中均能表达GmGSK,但不同的组织器官中GmGSK基因的表达量不同,在根中分布较多。半定量RT-PCR分析结果显示,GmGSK基因的表达可以被NaCl、NaHCO3、干旱、ABA和低温所诱导,这表明GmGSK可能参与了大豆非生物胁迫的信号传导过程或对非生物胁迫的耐受。
     利用pCAMBIA1302构建GmGSK:GFP融合载体,通过农杆菌渗入法在烟草中叶片细胞中瞬时表达GmGSK:GFP融合蛋白。对GmGSK进行亚细胞定位发现,其分布在细胞膜与细胞质中。为了进一步研究其功能我们分别将其转入大肠杆菌(BL21)和酿酒酵母(INVScl)中,原核表达显示其蛋白大小确为46.5kD左右;在转GmGSK基因的酿酒酵母中,其对NaCl、NaHCO3和干旱等非生物胁迫的耐受能力明显强于非转基因酿酒酵母。
     最后,通过构建pCAMBIA3300-GmGSK植物双元表达载体,将GmGSK转入烟草,过量表达GmGSK基因,验证其在植物中的生物学功能。结果表明,在高盐胁迫下转基因植株的生长状态、相对生物量、根系发达程度与对照相比均得到了明显的提高。对转基因烟草和非转基因烟草植株共同浇灌适当浓度NaCl,结果显示转基因烟草能明显提高对高盐的耐受性,而非转基因烟草则在不久后死亡。对其生理指标进行测定显示,在盐胁迫下转基因烟草的可溶性糖含量增长幅度明显快于非转基因对照,而外渗相对电导率增长速率则明显慢于非转基因对照,这些有助于提高转基因烟草的耐盐性。
     以上结果表明,栽培大豆GmGSK基因在生物抵御外界非生物胁迫过程中有重要作用,过量表达GmGSK基因,能显著提高生物的抗逆性,这也为将来利用耐盐基因改善栽培大豆耐盐性方面,提供了一条新途径。
High salt, drought, low temperature and other abiotic stresses are important environmental factors to affect crop yield. Plants reduce their own damage through long-term evolution to resist the external environment stress resistance. Protein kinase may be reversible through the phosphorylation to participate in stress signal transduction, thereby further respond to external stresses on plants. Protein kinase played a very important role in the stress-tolerant pathway in plants.
     We used wheat TaGSKl gene sequence as a query. A full-length cDNA of the GSK-3-like gene was obtained by in silico cloning from Soybean database of GenBank and was further isolated from G. max by RT-PCR. The complete cDNA open reading frame sequence is 1230 bp in length and encoded 410 amino acid residues with a theoretical molecular weight of 46.5 kD and an isoelectric point of 8.64. Protein sequence analysis showed that it encoded a protein homologous with GSK, containing serine/threonine protein kinase active site, named GmGSK (Genbank Access number:FJ460228).
     Southern blot analysis revealed that it had at least two copies in G. max genome. Northern blot analysis indicated that GmGSK expressed in all tested tissues, with highest expression in root. Semi-quantitative RT-PCR analysis revealed that GmGSK gene could be induced by NaCl, NaHCO3, drought, ABA and cold, which suggested that GmGSK might be involved in soybean abiotic stress signal transduction process or tolerance to abiotic stress.
     We used pCAMBIA1302 to construct GmGSK:GFP vector and GmGSK:GFP fusion protein was introduced into tobacco by Agroinfiltration. The subcellular localization of GmGSK indicated that it was distributed in the cell membrane and cytoplasmic. GmGSK was transformed into Escherichia coli. (BL21) and successfully expressed with a 46.5kD detected. And Saccharomyces cerevisiae (INVSc1) transformed with GmGSK increased their tolerance obviously to NaCl, NaHCO3 and drought stresses than wild type.
     Finally, in order to further validate GmGSK biological functions in plants, a recombinant vector pCAMBIA3300-GmGSK was construted and transferred into tobacco for over-expression analysis. The results showed that the growth, relative biomass and rooting rate of transgenic tobaccos were significantly improved than wild type. Transgenic tobacco was treated with NaCl solution and results showed that transgenic tobacco could increase their salt tolerance significantly compared with wild type tobacco. Physiological analysis showed that transgenic tobacco increase the soluble sugar content significantly faster than wild type tobacco and extravasation relative conductivity growth rate was significantly slower than wild type tobacco under salt stress, which help the transgenic tobacco to improve salt tolerance.
     These results suggested that soybean GmGSK gene played an important role to resist abiotic stress. Over-expressed GmGSK gene could significantly improve the salt tolerance of yeast and tobacco, which indicated that GmGSK gene could be a promising gene in stress tolerance improvement in soybean and other plants in the future.
引文
[1]Garrett R H.生物化学(影印版)[M].北京:高等教育出版社,2005.
    [2]Walker J C, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glyco-protein of Brassica [J]. Nature,1990,345:743-746.
    [3]Ferreira P C, Hemerly A S, Villarroel R. The Arabidopsis functional homolog of P34cdc2 protein kinase [J]. Plant Cell,1991,3:531-540.
    [4]Lin X, et al. Differential accumulation of transcripts encoding protein kinase homologs in greening pea seedlings [J]. Proc Natl Acad Sci USA,1991,88:6951-6955.
    [5]Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases [J]. Proc Natl Acad Sci USA,1992, 89:10183-10187.
    [6]Pay A, Jonak C, Bogre L, et al. The MsK family of alfalfa protein kinase genes encodes homologues of shaggy/glycogen synthase kinase-3 and shows differential expression patterns in plant organs and development [J]. Plant Jouranl,1993,3 (6):847-856.
    [7]Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science,1993,262:1432-1436.
    [8]Ito Y, Banno H, Moribe T, et al. NPK15, a tobacco protein-serine/threonine kinase with a single hydrophobic region near the amino-terminus [J]. Mol Gen Genet,1994,245:1-10.
    [9]Harmon A C, Yoo B C, Mccaffery C. Pseudo substrate inhibition of CDPK, a protein kinases with a calmodulin-like domain [J]. Biochemistry,1994,33:7278-7287.
    [10]董海涛,吴玉良,程志强等.差异显示法克隆水稻抗白叶枯病相关蛋白激酶基因[J].浙江大学学报,1998,24(5):548-552.
    [11]孙大业,马力耕.细胞信号转导(第二版)[M].北京:科学出版社,1998,350-355.
    [12]Hanks S K, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily:kinase (catalytic) domain structure and classification [J]. FASEB J,1995,9(8):576-96.
    [13][16] Hanks S K, Quinn A M. Protein kinase catalytic domain sequence database:identification of conserved features of primary structure and classification of family members [J]. Meth Eezymol 1991,200:38-62.
    [14]Wei L, Hubbard S R, Smith R F, et al. Protein kinase superfamily-comparisons of sequence data with three-dimensional structures [J]. Curr Opin Struct Biol,1994,4:450-455.
    [15]Wu C W, Chi C H and Lin W C. The three-dimensional structure of the catalytic subunit of protein kinase A [J]. Expert reviews in molecular medicine,2002.
    [17]Urao T, Katagiri T, Mizoguchi T, et al. Two gene that encode Ca2+-dependent protein kinase are induced by drought and high-salt stress in Arabidopsis thaliana [J]. Mol Gen Genet,1994,244: 331-340.
    [18]Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants [J]. Science, 1996,274:1089-1092.
    [19]Pestenaacz A, Erdei L. Calcium-dependent protein kinase in maize and sorghum induced by polyethylene glycol [J]. Physiol Plant,1996,97:360-364.
    [20]Hong S W, Jon J H, Kwak J M, et al. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana [J]. Plant Physiol,1997,113:1203-1212.
    [21]Mizoguchi T, Lchimura K and Shinozaki K. Environmental stress response in plants:the role of mitogen-activated protein kinase [J]. Trends in Biotechnology,1997,15(1):15-19.
    [22]Patharkar O R, Cushman J C. A stress-induced calcium-dependent protein kinase from Mesonm-bryanthernum crystallinum phosphorylates a two-component pseudo-response regulator [J]. Plant,2000,24:679-691.
    [23]Saijo Y, Hatas, Kyoznka J, et, al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants [J]. Plant J,2000,23:319-327.
    [24]Saijo Y, Kinoshito N, Ishiyama K, et al. A Ca2+-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles [J]. Plant Cell Physiol, 2001,42:1228-1233.
    [25]Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J]. Plant Cell,2003,15:1833-1845.
    [26]Wang M, Gu D, Liu T, Wang Z, et al. Over-expression of a putative maize calcineurin-like protein in Arabidopsis confers salt tolerance [J].Plant Mol Biol,2007,65:733-746.
    [27]Michael H B, Valerie M S. Future directions in plant hormone research [J]. Plant Growth Regul,1993,12:227-232.
    [28]Seo S, Okamoto M, Seto H, et al. Tobacco MAP kinase:a possible mediator in wound signal transduction pathways [J]. Science,1995,270:1988-1992.
    [29]Seo S, Sano H, Ohashi Y. Jasmonate-based wound signal transduction requires activation of WIPK, a mitogen-activated protein kinase [J]. Plant Cell,1999,11:289-298.
    [30]Zhang S, Klessig D F. Salicylic acid activates a 48kD MAP kinase in tobacco [J]. Plant Cell, 1997,9:809-824.
    [31]Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science,1993,262:1432-1436.
    [32]Song W, Wang G, Chen L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21 [J]. Science,1995,270:1804-1806.
    [33]Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus in wheat [J]. Plant J,1997,11(1):45-52.
    [34]Brueggeman R, Rostoks N, Kudrna D, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases [J]. Proc Natl Acad Sci USA, 2002,99:9328-9333.
    [35]Robatzek S, Chinchilla D and Boller T. Ligan-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis [J]. Genes & Development,2006,20 (5):537-542.
    [36]Sasabe M, Naito K, Suenaga H, et al. Elicitin-responsive lectin-like receptor kinase genes in BY22 cells [J]. DNA Seq,2007,18(2):152-159.
    [37]Stein J C, Howlett B, Boyeset D C, et al. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea [J]. PNAS,1991,88: 8816-8820.
    [38]Mu J H, Lee H S, Kao T H. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase [J]. Plant Cell,1994,6(5):709-721.
    [39]Calderini O, Bogre L, Vicente O, et al. A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells [J]. J Cell Sci,1998, 111(Pt20):3091-3100.
    [40]Frattini M, Morello L, Breviario D. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development [J]. Plant Mol Biol,1999,41:753-764.
    [41]Jinn T L, Stone J M, and Walke J C. HAESA, an Arabidopsis leucine rich repeat receptor kinase, controls floral organ abscission [J]. Gen & Dev,2000,14:108-117.
    [42]Anil V S, Harmon A C, and Rao K S. Spatio-temporal accumulation and activity of calcium-dependent kinases during embryogenesis, seed development, and germination in sandalwood [J]. Plant Physiol,2000,122:1035-1043.
    [43]Lally D, Peter I P, Tong H Y, et al. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation an dalters morphology [J]. Plant Cell,2001,13: 1317-1331.
    [44]David C, Martine B, Lynette F, et al. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis [J]. Proc Natl Acad Sci USA, 2005,102 (25):9074-9079.
    [45]Chang C, Kwok S F, Bleecker A B, et al. Arabidopsis ethylene-response gene ETR1 similarity of product to two-component regulators [J]. Science,1993,262:539-545.
    [46]Kieber J, Rothenberg M, Roman G, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases [J]. Cell,1993,72: 427-441.
    [47]Mizoguchi T, Gotoh Y, Nishida E, et al. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cell [J]. Plant J,1994,5:111-122.
    [48]Abo-EL-Saad M, Wu R. A rice membrane calcium-dependent protein kinase is induced by gibberellin [J]. Plant Physiol,1995,108:787-793.
    [49]Kovtun Y, Chiu W L, Zeng W, et al. Suppression of auxin signal transduction by a MAPK cascade in higher plants [J]. Nature,1998,395:716-720
    [50]Wang Z Y, Seto H, Fujioka S, et al. BR11 is a critical component of a plasma-membrane receptor for plant steroids [J]. Nature,2001,410:380-383.
    [51]Li J, Kinoshita T, Pandey S, et al. Modulation of an RNA-binding protein by abscisic acid activated protein kinase [J]. Nature,2002,418:793-797.
    [52]Sharma A. Komatsu S. Involvement of a Ca2+-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, Rubisco activase, in rice [J]. Biochem Biophy Res Corem,2002,18:690-695.
    [53]Ullanat R and Jayabaskaran C. Distint light-, cytokinin-and tissue-specific regulation of calcium dependent protein kinase gene expression in cucumber (Cucumis sativus) [J]. Plant Science,2002,162:533-563.
    [54]Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts up stream of reactive oxygen species p roduction [J]. Plant Cell,2002,14:3089-3099.
    [55]Yuriko O, Kyonoshin M, Motoaki S Y, et al. Leucine-rich repeat receptor-like kinasel is a keymembrane2bound regulator of abscisic acid early signaling in Arabidopsis [J]. Plant Cell,2005, 17:1105-1119.
    [56][72] Embi N, Rylatt D B, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle, Separation from cyclic-AMP dependent protein kinase and phosphorylase kinase [J]. Eur J Biochem,1980,107:519-527.
    [57]Orena S J, Torchia A J, Garofalo R S. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3-L1 adipocytes [J]. J Biol Chem,2000,275:15765-15772.
    [58]Zumbrunn J, Kinoshita K, Hyman A A, et al. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation [J]. Curr Biol 2001,11:44-49.
    [59]Webster M T, Rozycka M, Sara E, et al. Sequence variants of the axin gene in breast,colon, and other cancers:An analysis of mutations that interfere with GSK3 binding [J]. Genes Chromosomomes Cancer,2000,28:443-453.
    [60][124] Neigeborn L, Mitchell APThe S. cerevisiae MCK1 gene encodes a protein kinase homolog that activates early meiotic gene expression [J]. Genes Dev,1991,5:533-554.
    [61]Puziss J W, Hardy T A, Johnson R B, et al. MDS1, a dosage suppressor of an mckl mutant, encodes a putative yeast homolog of glycogen synthase kinase 3 [J]. Mol Cell Biol 1994, 14:831-839.
    [62]Plyte S E, Feoktistova A, Burke J D, et al. Schizosaccharomyces pombe skp1 encodes a protein kinase related to mammalian glycogen synthase kinase 3 and complements a cdc14 cytokinesis mutant [J]. Molecular and Cellular Biology,1996,16:179-191.
    [63][71] Jonak C, Hirt H. Glycogen synthase kinase 3/SHAGGY-Like kinase in plants:an emerging family with novel functions [J]. TRENDS in Plant Science,2002,7:457-461.
    [64]Yoo M J, Albert V A, Soltis P S, et al. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants [J]. BMC Plant Biology,2006,6:3.
    [65][68]孙浩,蒋勇军,俞庆森等.分子动力学模拟方法研究结构水在糖原合成酶激酶-3β中的作用[J].物理化学学报,2009,25(4):635-639.
    [66]Fiol C J, Mahrenholz A M, Wang Y H, et al. Formation of protein kinase recognition sites by covalent modification of the substrate, Molecular mechanism for the synergistic action of casein kinase Ⅱ and glycogen synthase kinase 3 [J]. J Biol Chem,1987,262:14042-14048.
    [67][73]毛伟峰,李佳,袁崇刚.多功能的蛋白:糖原合成酶激酶-3[J].生命科学,2005,17(1):45-48.
    [69]De la Fuente van Bentem S, Anrather D, Dohnal I et al. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis [J]. J Proteome Res,2008,7:2458-2470.
    [70]Sugiyama N, Nakagami H, Mochida K et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis [J]. Mol Syst Biol,2008,4:193.
    [74]Pay A, Jonak C, Bogre L, et al. The MsK family of alfalfa protein kinase genes encodes homologues of shaggy/glycogen synthase kinase-3 and shows differential expression patterns in plant organs and development [J]. Plant Journal,1993,3(6):847-856.
    [75]Bianchi M W, Guivarc'h D, Thomas M, et al. Arabidopsis homologs of the shaggy and GSK-3 protein kinases:molecular cloning and functional expression in Escherichia coli [J]. Mol Gen Genet,1994,242:337-345.
    [76]Dornelas M C, Lejeune B, Dron M, et al. The Arabidopsis SHAGGY-related protein kinase (ASK) gene family:structure, organization and evolution [J]. Gene,1998,212:249-257.
    [77]Dornelas M C, Wittich P, von Recklinghausen I, et al. Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinase (ASK) multigene family [J]. Plant Mol Biol,1999,39:137-147.
    [78]Jonak C, Hirt H. Glycogen synthase kinase 3/SHAGGY-like kinases in plants:an emerging family with novel functions [J]. Trends Plant Science,2002,7:457-461.
    [79]Tichtinsky G, Tavares R, Takvorian A, et al. An evolutionary conserved group of plant GSK-3/shaggy-like protein kinase genes preferentially expressed in developing pollen [J]. Biochim Biophys Acta,1998,1442:261-273.
    [80]Perez-Perez J M, Ponce M R, Micol J L. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis [J]. Dev Biol,2002,242:161-173.
    [81][112] Kim L and Kimmel A R. GSK3, a master switch regulating cell-fate specification and tumorigenesis [J]. Curr Opin Genet Dev,2000,10:508-514.
    [82][125] Piao H L, Kyeong T P, Jeong H L, et al. An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid [J]. Plant Physiology,1999,119:1527-1534.
    [83]Piao H L, Lim J H, Kim S J, et al. Constitutive over-expression of AtGSKl induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis [J]. Plant J,2001,27:305-314.
    [84]Charrier B, Champion A, Henry Y, et al. Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction [J]. Plant Physiol,2002,130:577-90.
    [85]Chen G P, Ma W S, Huang Z J, et al. Isolation and characterization of TaGSKl involved in wheat salt tolerance [J]. Plant Sci,2003,165(6):1369-1375.
    [86]徐涛.小麦耐盐突变体TaGSK1基因的分离和鉴定[D]:[硕士学位论文].石家庄:河北师范大学,2003.
    [87]杨献光.水稻糖原合成酶激酶基因(OsGSK1)的克隆及功能分析[D]:[硕士学位论文].石家庄:河北师范大学,2005.
    [88]Richard O, Paquet N, Haudecoeur E, et al. Organization and expression of the GSK3/shaggy kinase gene family in the moss Physcomitrella patens suggest early gene multiplication in land plants and an ancestral response to osmotic stress [J]. Journal of Molecular Evolution,2005,61: 99-113.
    [89]魏敏,熊建华,李阳生等.实时PCR定量分析干旱胁迫下水稻糖原合成酶激酶基因表达差异[J],中国水稻科学,2006,20(6):567-571.
    [90]葛荣朝,赵宝存,陈桂平等.小麦耐盐相关基因TaSTK的克隆[J].作物学报,2007,33(5):857-860.
    [91]Kempa S, Rozhon W, Samaj J, et al. A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism [J]. The Plant Journal,2007,49, 1076-1090.
    [92]邹华文,吴忠义,张秀海等.玉米非生物逆境响应基因ZmASK1的克隆及表达特性分析[J].作物学报,2008,34(2):184-191.
    [93]张洪映,毛新国,景蕊莲等.小麦TaPK7基因的克隆及其在多种胁迫条件下的表达分析[J].麦类作物学报,2008,28(2):177-182.
    [94]Jonak C, Beisteiner D, Beyerly J, et al. Wound-induced expression and activation of WIG, a novel glycogen synthase kinase 3. The Plant Cell,2000,12:1467-1475.
    [95]Wrzaczek M, Rozhon W, Jonak C A. Proteasome-regulated Glycogen Synthase Kinase-3 Modulates Disease Response in Plants [J]. The journal of biological chemistry,2007,282:(8), 5249-5255.
    [96]Jonak C, Heberlebors E, Hirt H. Inflorescence-specific expression of ATK-1, a novel Arabidopsis thaliana homologue of Shaggy/glycogen synthase kinase-3 [J]. Plant Mol Biol,1995, 27:217-221.
    [97]Einzenberger E, Eller N, Heberle-Bors E, Vicente O. Isolation and expression during pollen development of a tobacco cDNA clone encoding a protein kinase homologous to shaggy/glycogen synthase kinase-3 [J]. Biochim Biophys Acta,1995,1260:315-319.
    [98]Decroocq-Ferrant V, Van Went J, Bianchi M W, et al. Petunia hybrida homologues of shaggy/zeste-white 3 expressed in female and male reproductive organs [J]. Plant J,1995,7: 897—911.
    [99]Dornelas M C, van Lammeren A A, Kreis M. Arabidopsis thaliana SHAGGY-related protein kinases(AtSK11 and 12)function in perianth and gynoecium development [J]. Plant J,2000,21(5): 419-29.
    [100]Choe S, Schmitz R J, Fujioka S, et al. Arabidopsis brassinosteroid-insensitive dwarfl2 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase [J]. Plant Physiol,2002,130:1506-1515.
    [101]Claisse G, Charrier B and Kreis M. The Arabidopsis thaliana GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion [J]. Plant Mol Biol,2007,64(1-2):113-124.
    [102]Li J and Nam K H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase [J], Science,2002,295(5558):1299-1301.
    [103]He J X, Gendron J M, Yang Y, et al. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis [J]. Proc Natl Acad Sci USA,2002,99:10185-10190.
    [104]Woodgett J R. Judging a protein by more than its name:GSK-3 [J]. Science STKE,2001, 100:12.
    [105]Koh S, Lee S C, Kim M K, et al. T-DNA tagged knockout mutation of rice OsGSKl, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses [J]. Plant Mol Biol,2007,65:453-466.
    [106]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Res,1980,8:4321-4326.
    [107]Holsters M, Waele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens [J]. Mol Gen Genet,1978,163:181-187.
    [108]张志良.植物生理学实验指导(第二版)[M].高等教育出版社,1990.
    [109]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2001.
    [110]武维华.植物生理学[M].北京:科学出版社,2003:442-443.
    [111][120] Podell S and Gribskov M. Predicting N-terminal myristoylation sites in Plant Proteins [J]. BMC Genomics,2004,5:37-51.
    [113]De la Fuente van Bentem S, Anrather D, Dohnal I, et al. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis [J]. J Proteome Res,2008,7:2458-2470.
    [114]Sugiyama N, Nakagami H, Mochida K, et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis [J]. Mol Syst Biol,2008,4:193.
    [115]Choe S, Schmitz RJ, Fujioka S, et al. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3-like kinase [J]. Plant Physiol,2002,130:1506-1515.
    [116]Yin Y H, Wang Z Y, Mora-Garcia S, et al. BES1 Accumulates in the nucleus in response to Brassinosteroids to regulate gene expression and promote stem elongation [J]. Cell,2002,109: 181-191.
    [117][122]吴立柱,赵宝存,齐志广等.小麦糖原合成酶激酶(TaGSK1)的亚细胞定位及功能鉴定[J].中国农业科学,2006,39(4):842-847.
    [118]Rossi L, Escugero J, Hohn B, et al. Efficent and sensitive assay for T-DNA-Dependent transient gene expression [J]. Plant Mol Bio Rep,1993,11(3):220-229.
    [119]Yang Y N, Li R and Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves [J]. Plant J,2000,22(6):543-551.
    [121]Wang Y, Zhang M, Ke K, et al. Cellular localization and biochemical characterization of a novel calcium dependent protein kinase from tobacco [J]. Cell Res,2005,15(8):604-612.
    [122]Gellissen G, Janowicz Z A, Weydemann U, et al. High-level expression of foreign genes in Hansenula polymorpha [J]. Biotechnol Adv,1992,10(2):179-189.
    [126]Marx J. Interfering with gene expression [J]. Science,2000,288(5470):1370-1372.
    [127]罗云波.食品生物技术导论[M].中国农业大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700