激光冲击打标技术的实验与数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冲击打标是一种新型的标记技术,它将激光冲击和激光标记很好地结合起来。本文从激光打标技术的分类出发,介绍了几种不同的激光打标技术,分析了激光打标技术的基本原理,并对激光冲击打标过程进行了实验研究和数值模拟,论文研究的主要内容如下:
     通过改变激光脉沖能量、约束层等,以6061铝合金和AZ91镁合金为研究对象,设计了不同的激光冲击打标实验方案。对于6061铝合金材料,用水为约束层,黑色涂层为吸收层,从实验结果可以得出随着激光能量的增加,标记区域的深度和残余应力值逐渐增加,在材料发生塑性变形的同时,由于位错运动、增殖、滑移使内部的位错密度急剧增加,使材料表面的强度和硬度显著增强;对于AZ91镁合金材料,考虑到水对镁合金的腐蚀作用,选用K9玻璃为约束层,铝箔为吸收层,山于等离子的屏蔽效应,标记区域的深度并没有随着激光能量的增加而逐渐增加,由于金属表层承受冲击时发生了激烈的塑性变形,标记区域的硬度有了明显的提高。
     在实验研究的基础上,基于ANSYS/LS-DYNA建立了激光冲击打标的三维有限元模型,通过激光诱导的冲击波的加载,进行了打标的数值模拟。模拟结果表明,激光冲击波作用后的标记区域网格形成了与载荷直径相仿的凹坑,其残余应力均表现为压应力,随着形变量的逐渐增加,在标记中心残余压应力达到最大值;板厚方向的残余压应力随着板厚的增加而不断减小;变形量的大小与残余应力大小存在一定的对应关系。最终将实验与模拟结果进行对比,二者基本相符合。
Laser shock marking is a novel technique which combines of laser shock with marking. Starting from classification of laser marking, the paper introduces several different laser markings and analyses the principal of laser markings. Experimental studies and simulation were carried out on laser shock marking. In this paper, the main contents were as following:
     Through the changes of laser pulse energy and the material of constrained layers, the experimental schemes of laser shock marking with 6061 Al alloy and AZ91 Mg alloy were designed. For 6061 Al alloy, using water as the constrained layer, black coating as the absorption, the results show that as the amount of the laser energy increases, depth and residual stress of marking zone increases gradually. While plastic deformation occurs, strength and hardness of the material surface increases significantly because dislocation density increases rapidly due to dislocation motion, proliferation and slip. For AZ91 Mg alloy, considering water corrosion to Mg alloy, using K9 glass as the constrained layer, aluminum foil as the absorption, the depth of marking zone does not increase with the increasing of laser pulse energy because of shielding effect of the plasma. Hardness of the material surface increases significantly because of plastic deformation on the material surface.
     In order to study distributing of residual stress and distortion on the basis of experiments, a FEM model of marking by laser shock waves based on ANSYS/LS-DYNA was established in this paper. By loading the shock waves induced by laser, a numerical simulation on marking had been carried out. The simulated result shows that the mesh of marking zone acted by laser shock waves forms a crater with dimension similar to the diameter of the load, and its residual stress is compressive stress. As the amount of the deformation increases gradually, the residual compressive stress in the center of marking zone reaches the maximum; the residual compressive stress along the thickness of the plate declines as the thickness increases.
引文
[1]秦应雄,郑启光,席再军等.防伪激光打标系统的研究.激光杂志,2002,23(3):57.
    [2]吴仲城,虞承端,戈瑜.Nd:YAG激光打标机控制系统的设计.测控技术.1999,18(12):54.
    [3]文小明,史明霞,杨雪玲.准分子激光对钦搪瓷打标的研究.激光技术,2000,24(1):9.
    [4]伍珊红,齐军,虞效舜等.Nd:YAG激光打标工艺实验研究.激光与红外,1999,29(2):92-93.
    [5]王加贤,张文珍.激光打标中打标工作面位置的确定.应用激光.1996,16(3):115.
    [6]宁国勤,朱中湿,朱绍文等激光打标中图形、图像的处理.激光技术,2002,26(4):295.
    [7]雷建设,黄肇明,郭振华等.单片机控制的激光打标机.激光技术,2001,25(2):140.
    [8]王加金主编.激光加工技术.北京:中国计量出版社,1992.
    [9]Information Technology Automatic identification and data capture techniques Guidelines for direct part marking(DPM)[R].NASA,2003.
    [10]钱毅.YAG激光打标技术系统与控制软件的研究.河北工业大学硕士论文,2004..
    [11]Jinzhong Lu,Yongkang Zhang,Dejun Kong.etal..Laser Marking System of 3D Nondestructive Anti-counterfeitingIdentifiers Based on Liquid Crystal Mask.Materials Science Forum Vols.532-533(2006)pp.600-603.
    [12]廖洪海,胡兵,陈义红.国内激光打标的现状及发展前景,激光产品世界,2004年4月,28-33.
    [13]Dance C Brent,Hackel Lloyda,Harris Fritz.Identification marking by means of laser peening [P].Patent Number:Wo0161619,2001-08-23.
    [14]周建忠,张永康,周明.发明专利:一种用于激光冲击处理的柔性贴膜[P],专利号:ZL02138338.3.
    [15]张永康,殷苏民,周建忠,鲁金忠,冯爱新.激光冲击波三维高防伪无损标识的方法和装置[P],专利申请号:200510037968.2,申请人:江苏大学,申请日:2005.3.4.
    [16]Lu Jinzhong,Zhang Yongkang,Kong Dejun,etal..Study on residual stresses distribution and fabricating of nondestructive laser marking based on liquid crystal mask[S].Proceedings of the 7th ICFDM2006 International Conference on Frontiers of Design and Manufacturing June 19-22,2006,Guangzhou,China Pages 515-518.
    [17]F.J.Carpio,D.Araújo,F.J.Pacheco et al.Fatigue behaviour of laser machined 2024T3aeronautic aluminium alloy.Applied Surface Science,2003,208-209:194-198.
    [18]人民网.www.people.com.cn.
    [19]C.B.Dane,L.Hackel,J.Honig,J.Halpin.etal..Laser shocksm Marking System:High-Volume Labeling for Safety-Critical Parts.February 16,2001.
    [20]Askar yan CA,Moroz EM.Pressure on evaporation of matter in a radiation beam.Journal of Experimental and Theoretical Physics Letters 1963;16:1638-44.
    [21]White RM.Elastic wave generation by electron bombardment or electromagnetic wave absorption.Journal of Applied Physics 1963;34:2123-4..
    [22]Gregg DW,Thomas SJ.Momentum transfer produced by focused laser giant pulses.Journal of Applied Physics 1966;27:2787-9.
    [23]Skeen CH,York CM.Laser-Induced "blow-off" phenomenon.Applied Physics Letters 1968;12:369-71.
    [24]Anderholm NC.Laser-generated stress waves.Applied Physics Letters 1970;16:113-5.
    [25]Jones ED.Ultrafast laser-induced stress waves in solids.Applied Physics Letters 1971;18:33-5.
    [26]Charles S.Montross a,Tao Wei a,Lin Ye a,et al.Laser shock processing and its effects on microstructure and properties of metal alloys:a review.Journal of Fatigue,2002,24:1021-1036.
    [27]周南,乔登江.脉冲束辐照材料动力学.第一版.北京:国防工业出版社,2002.
    [28]N.C.Anderholm.Applied Physics Letters.1970(16):113.
    [29]P.Peyre,Fabbro.R.Laser shock processing:a review of the physics and applications.Optical and Quantum Electronics,1995,27(12):1213-1229.
    [30]Bayand S H,Maher W E,Hall R B.Laser-Target Interaction near the Plasma-Formation Threshold.Appl.Phys.1980,51(11):5699-5707.
    [31]孙承伟,陆启生,范正修等编著.激光辐照效应.第一版.北京:国防工业出版社,2002.
    [32]R.Fabbro,J.Fournier et al.Physical study of laser-produced plasma in confined geometry,Journal of Applied Physics,68(2),15 July,775-784,1990.
    [33]周建忠,张永康,周明等.单次激光冲击下靶材变形的理论分忻.中国激光,2005,32(1):135-138.
    [34]A.H.Clauer,B.P.Fairand,B.A.Wilcox.Pulsed laser induced deformation in an Fe3PctSi alloy.Metallurgical Transaction A.1977(8):119-125.
    [35]任旭东.金属靶材的激光冲击能量吸收涂层技术研究.江苏大学硕士论文,2006.
    [36]段志勇,王声波,吴鸿兴等.约束层材料及靶材表面特征对激光冲击波的影响.激光杂志,2001,21(2):20-21.
    [37]肖爱民,杨继吕,张永康等.激光冲市强化约束层选择的研究.应用激光,2001,21(1):16-18.
    [38]周建忠,杨继吕,吴鸿兴等.约束层特性对激光诱导冲击波影响的研究.中国激光,2002,29(11):1041-1044.
    [39]李志勇,朱文辉,周光泉等.实验研究有机玻璃约束层对激光冲击波的影响.中国激光1997.A24(2):118-122.
    [40]朱文辉,李志勇,周光泉.约束层表面黑漆涂层对激光冲击波的影响.强激光与粒子束1997.9(3):458-461.
    [41]刘世伟,郭大浩,王声波,段志勇,吴鸿兴,戴宇生,夏小平.实验参数对激光冲击强化效果的影响.中国激光 2000.(10):910-937.
    [42]李志勇,朱文辉,郭大浩,吴鸿兴.实验研究脉冲强激光在铝靶中诱导的冲击波.中国激光1997.24(2):259-262.
    [43]张永康,张斌,余承业,刘志东.激光冲击强化表面涂层及约束层的优选.航空精密制造技术 1994.30(4):24-26.
    [44]顾永玉,张永康,张兴权,史建国.约束层对激光驱动冲击波压力影响机理的理论研究.物理学报 2006.55(11):5885-5891.
    [45]周建忠.金属靶材激光冲击成形加载机制及变形特性研究.江苏大学博士论文,2003.
    [46]Lu Quanming,Mao S.Delayed Phase Explosion during High-power Nanosecond Laser Ablation of Silicon.Appl.Phys.kett,2002,80(17):3072-3074.
    [47]娄金旗.布袋除尘器分析在火力发电厂的应用.电力建设,2002,203(7):47-49.
    [48]Harrach R J.J.Appl.Phys.,1977(48):2370-2383.
    [49]田荣璋,王祝堂主编,铝合金及其加工手册[S],中南工业大学出版社 2000.10.
    [50]陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社.2004.
    [51]邯郸爱斯特研究所.X-350A新型X射线衍射应力测量仪使用手册[S].2002,2.
    [52]张兴权.金属板料激光喷丸成形的基础研究.江苏大学硕士论文,2005.
    [53]杨晓,邹鸿承,戴蜀娟.激光冲击处理提高铝合金疲劳性能的机理研究.应用激光,1998(4):179-183.
    [54]Kubota K,Mabuchi M,Higashi K.Review:Processing and Mechanical Properties of Fine-grained Magnesium Alloy.J.Mater.Sci.,1999,34:2255.
    [55]花银群,陈瑞芳,路淼,等.激光冲击强化处理40Cr钢的实验研究.中国激光,2004,31(4):495.
    [56]李晓轩,孙锡军,王华明,等.奥氏体不锈钢1Cr18Ni9Ti激光冲击强化研究.宇航材料工艺,1999,(4):16.
    [57]张兴权,周建忠,杨泽腾,等.改善零件疲劳寿命的激光冲击强化技术.汽轮机技术,2005,47(3):238.
    [58]Yasuo Ochi,Takashi Matsumura.Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy.Materials Science and Engineering:A,2004,386:291-295.
    [59]ANSYS Release 9.0 Documentation[S],B2.24.,2004.
    [60]谭建国.使用ANSYS6.0进行有限元分析.北京:北京大学出版社,2002.
    [61]王礼立.应力波基础.国防工业出版社.2005.
    [62]G.Kay.Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model.Tech.Rep.2006.
    [63]任旭东,张永康,左敦稳等.涂层对钛合金激光冲击效果的影响.江苏大学学报:自然科学版,2006,27(1):10-13.
    [64]P.Peyre,Fabbro.R.Laser shock processing:a review of the physics and applications.Optical and Quantum Electronics,1995,27(12):1213-1229.
    [65]任旭东,张永康,左敦稳等.涂层对钛合金激光冲击效果的影响.江苏大学学报:自然科学版,2006,27(1):10-13.
    [66]杜建钧,周建忠,杨超君等.ABAQUS在靶材激光喷丸成形模拟过程中的应用.应用激光,2005,25(6):371-373.
    [67]张宏,唐亚新,余承业等.激光冲击处理对2024铝合金疲劳性能的影响.金属热处理学报,1999,20(2):57-62.
    [68]P.Peyre,Fabbro.R.Laser shock processing:a review of the physics and applications.Optical and Quantum Electronics,1995,27(12):1213-1229.
    [69]周建忠,张永康,周明等.单次激光冲击下靶材变形的理论分析.中国激光,2005,32(1):135-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700