激光驱动飞片加载金属箔板间接冲击微成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微纳米科学与技术的不断发展,微小机电系统及其微结构器件的制作是近年来微制造研究的热点。微塑成形工艺因其在规模化批量生产方面的优势,在金属微结构的制作方面得到日益广泛的应用,已成为当前制造科学领域国内外学者研究学科前沿。本文在剖析国内外有关微塑成形技术,特别是激光冲击微成形技术研究的基础上,结合激光驱动飞片技术,提出了激光驱动飞片加载金属箔板间接冲击微成形的新方法。基于对激光驱动飞片加载方式及箔板成形机理的理论分析,开展激光驱动飞片间接冲击金属箔板的变形特性实验和有限元数值模拟研究。主要工作有以下几个方面:
     探讨了激光驱动飞片加载及其金属箔板成形的机理。包括激光诱导等离子体产生冲击波压力的数学模型、激光驱动飞片靶的结构及其影响因素、激光驱动飞片的解析过程、飞片高速碰撞靶材的冲击动力学行为、冲击波导致的温升和靶材高应变率的塑性变形,这些研究为微成形工艺参数的合理选取及成形过程的数值模拟奠定了基础。
     构建了激光驱动飞片加载下箔板间接冲击微成形的实验系统,初步揭示了激光间接冲击微成形能力与规律。通过对基于大面积阵列特征模具、单个圆孔模具和圆环模具的微成形实验,研究了激光能量、箔板厚度、离焦量对成形的影响,并对成形件的形貌和表面粗糙度的变化进行了分析,同时对典型成形件的应变分布进行了理论研究。研究发现:激光驱动飞片具有良好的加载功能,在合理的工艺参数下,可获得良好的成形效果,不但成形特征明显,而且成形表面质量好,可实现金属箔板的微成形要求;提高激光能量,可以增加成形深度,但是当激光能量大于某一特定值时成形件就会沿着模具边缘产生开裂现象,甚至是完全开裂,进一步研究发现激光驱动飞片加载技术也非常适合微冲裁工艺。
     基于ANSYS/LS-DYNA软件平台,采用显式动态分析模型,建立了激光间接冲击微成形的有限元分析模型,有效地解决了激光间接冲击微成形中载荷高、结构响应变化快的问题。模拟分析了激光间接冲击微成形中的瞬态响应过程、成形过程中的内能的变化、飞片加载后成形件的残余应力分布;研究了激光能量、微模具圆角半径和箔板与微模具的摩擦系数对于成形形貌和减薄率的影响。为成形工艺参数的优化和成形形状的预测和控制提供了手段。
     利用透射电子显微镜(TEM)对成形后的成形件微观组织演变情况进行了观察与分析。表明在飞片的高速加载作用下材料内部组织晶粒超细化,其达到纳米级别,在晶粒内部还存在一些纳米孪晶片层,其尺寸只有几个到十几纳米。提出了两种解释微成形过程中微观形貌的演化和晶粒细化机制:动态再结晶超细化和形变孪晶超细化机制。本文采用的激光驱动飞片的加载方式为材料超细晶的获取提供了一种新的途径。
     采用光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics-SPH),以JohnSon-cook可拉伸积累损伤破坏模型为本构模型,对激光驱动飞片加载靶材产生层裂损伤现象进行了数值模拟研究,得到了靶材内部应力的变化规律以及飞片加载下靶材的层裂极值。研究成果为激光间接冲击微成形失效准则及控制提供参考和指导。
With the continuous development of micro and nanotechnology, the manufacture of MEMS (Micro-Electro-Mechanism System) and its micro parts have become present research hotspot in micro manufacturing field. Because micro plastic forming technology has special advantages in large scale batch production, it has an increasingly extensive application on the manufacture of metallic microstructure. And it has already become the subject frontier of modern manufacturing field both at home and abroad. Based on the analysis of micro forming both at home and abroad, combining laser-driven flyer technology, a novel laser indirect shock micro forming is presented, which uses laser-driven flyer to load the sheet metal. Based on the theory analysis of the mechanism of laser-driven flyer and metal foil forming, a systematical study on the deformation property of metal foil indirect shock micro forming under laser-driven flyer were carried out from experiment and numerical simulation in this article. The main contents are as following:
     The mechanism of laser-driven flyer loading and metal foil forming were investigated, involving laser induced shockwave, shock force mathematical model, flyer target structures, influencing factors of laser-driven flyer, analytic representation of laser-driven flyer, impact dynamics of laser indirect shock forming, temperature rise of collision process and high strain rate plastic forming. This study laid a foundation for reasonable selection of the micro forming process parameters and numerical simulation of forming process.
     An experimental system for metal foil indirect shock micro forming under laser-driven flyer was developed. Through the research of micro forming based on micro channel networks mould, circular hole mould and circularity micro-channel mould, it analyses the effect of laser energy, workpiece thickness and defocusing on the deformation. The surface topography and roughness of the workpiece was investigated experimentally. And the theoretical strain distributions on typical formed parts were analyzed. It is found that the work piece has a high spatial resolution at the micron-level and the good surface quality is accomplished when process parameters are reasonable. The research results have shown the possibility of realizing sheet metal micro forming. The research on laser indirect shock micro forming showed that increasing the laser energy could increase the deformation depth, but may induce fracture when the laser energy is too high. Further studies proved that laser-driven flyer is also very suitable for micro punching technology.
     This paper also reports an investigation into laser indirect shock micro forming process through finite element simulation. ANSYS/LS-DYNA is an explicit dynamic analysis program, which is used to simulate the forming process. Comparing the simulated results with experiments, the precision and reliability are validated. The energy history, the displacement history and residual stresses field of the model are analyzed. The effect of laser energy, the die radius and the frictional coefficient on the deformation was numerically studied. The numerical simulation research provides means for optimization of process parameters, prediction and control of deformation shape.
     The microstructures of the treated samples were examined by transmission electron microscopy (TEM). The microstructures of the workpiece under laser-driven flyer loading are characterized by nano-sized grains and a small fraction of mechanical twins. And multiple mechanical twins appeared inside many grains. In the grain, twin boundaries are parallel to each other and they subdivide the grain into a thin twin-matrix (T-M) lamellar structure, of which the thickness varies from several to several tens of nanometers. The two structural refinement mechanisms are introduced: the dynamic recrystallization and the twin-matrix (T-M) lamellar refinement mechanism. Laser-driven flyer loading provides a new way for grain refinement.
     This paper uses the method of smoothed particle hydrodynamics and the model of Johnson-Cook tensile cumulative damage to simulate the spall induced by the laser-driven flyer loading. The change law of internal stress distribution and the extreme value of spall under laser-driven flyer are obtained. These results could offer some useful messages for the study on the failure criterion and controlling of laser indirect shock micro forming.
引文
[1]张凯丰.微成形制造技术[M].北京:化学工业出版社,2008.
    [2]R Schuster, V Kirchner,P Allongue. Electrochemical Micromachining[J]. Science,2000, 98(200):101.
    [3]M.Geiger,U.Engel, Micro-forming a Challenge to the Plasticity Research Community-Addressed to the 40th Anniversary of the JSTP[J]. Journal of the JSTP 2002,494 (43):171-172.
    [4]F. Vollertsen, H. Schulze Niehoff, Z. Hu. State of the art in micro forming [J]. International Journal of Machine Tools & Manufacture,2006,46:1172-1179.
    [5]Y Saotome,K Yasuda,H Kaga.Microdeep drawability of very thin sheet steels[J].Journal of Materials Processing Technology,2001.113,641-647.
    [6]F Vollertsen, Z Hu, H Schulze Niehoff, C. Theiler. State of the art in micro forming and investigations into micro-deep drawing[J].Journal of Materials Processing Technology,2004. 151:70-79.
    [7]Z. Hu, F. Vollertsen. Friction test for deep drawing with respect to size-effects[C]. Proceedings of the 1st ICNFT.2004:153-158.
    [8]U.Engel,R.Eckstein.Microforming-from basic research to its realization[J],.Journal of Materials Processing Technology,2002,125-126:35-44.
    [9]Saotome Y,Iwazaki H. Superplastic Backward Microextrusion of Microparts for Micro-electro-mechanical Systems[J].Journal of materials Processing Technology,2001, 119(1):307-311.
    [10]H. Justinger, G Hirt and N. Witulski, Analysis of Cup Geometry and Temperature Conditions in the Miniaturized Deep Drawing Process[J]. Advanced Technology of Plasticity,2005, 459-460.
    [11]单德彬,袁林,郭斌.精密微塑性成形技术的现状和发展趋势[J].塑性工程学报,2008,15(2):46-53.
    [12]郭斌,王春举,单德彬等.基于微塑性成形的微型零件批量制造技术[J].功能材料与器件学报,2008,14(1):278-282.
    [13]单德彬,郭斌,周健.金属薄板微成形技术的研究进展[J].塑性工程学报,2007,14(3):93-99.
    [14]雷鹍鹍,张凯丰.金属微成形过程中的微尺度效应与相似评估[J].机械工程学报,2007,43(7):212-220.
    [15]苑伟政,李晓莹.微机械及微细加工技术[J].机械科学与技术,1997,16(3):503-506.
    [16]席庆标.微拉深工艺的实验研究及计算机模拟[D].上海交通大学,2007.
    [17]Joo B Y, Oh S I, J eon B H. Development of Micro Punching System [C]. Annals of the CIRP,2001.50(1):191-199
    [18]S Kurimoto, K Hirota, Y Nakano, T Mori. Improvement of Ultrafine Piecing by Means of Vacuum System[C]. Proceeding of the 7th ICTP.2002.391-396
    [19]席庆标.微拉深工艺的实验研究及计算机模拟[D].上海交通大学.2007
    [20]Y. SHEN, H. P. YU, X. Y. RUAN. The Test Study of Micro Copper Cylinder Upsetting[C]. Proceeding of the 1st ICNFT.2004:165-170
    [21]彭林法.微/介观尺度下薄板成形建模分析与实验研究[D].上海交通大学.2007.
    [22]雷鹍,张凯峰.金属微成形中尺度效应的探讨[J].塑性工L程学报.2005.
    [23]童敏杰.电沉积法制备细晶铜的微成形性能[D].哈尔滨工业大学.2006.
    [24]张凯峰,丁水,雷鹍,王国峰.电沉积纳米镍薄板的超塑微拉深性能[J].中国机械工程.2007,18:983-987
    [25]SHAN De-bin, WANG Chun-ju and GUO Bin etal. Effect of thickness and grain size on material behavior in micro-bending[J]. transactions of nonferrous metals society of china. 2009,19:507-510.
    [26]王春举.微型器件精密微塑性成形技术研究[D].哈尔滨工业大学.2003.
    [27]周健.5A02铝合金微型齿轮精密微塑性成形工艺研究[D].哈尔滨工业大学.2004.
    [28]于君祖.微塑性体积成形中尺寸效应的研究[D].哈尔滨工业大学.2005.
    [29]郭晓琳.Zr基大块非晶合金微型齿轮微成形工艺实验及模拟研究[D].哈尔滨工业大学.2005.
    [30]贾莲莲.C2680黄铜箔微圆筒拉深工艺研究[D].哈尔滨工业大学.2007.
    [31]龚峰.T2紫铜薄板微成形摩擦尺寸效应与润滑研究[D].哈尔滨工业大学.2010.
    [32]么莹.基于DLC膜模具表面改性的U型微拉深摩擦行为研究[D].哈尔滨工业大学.2010.
    [33]吴涛.微细特征模压成形实验研究及数值模拟[D].山东大学.2010
    [34]张军.微细塑性成形实验方法及技术研究[D].华中科技大学.2005
    [35]X. Wu, J.J. Li, Z.Z. Zheng, L. Liu, Y. Li. Micro-back-extrusion of a bulk metallic glass[J]. Scripta Materialia.2010,63:469-472.
    [36]D. Wang, T.L. Shi, J. Pan, GL. Liao, Z.R. Tang, L. Liu. Finite element simulation and experimental investigation of forming micro-gear with Zr-Cu-Ni-Al bulk metallic glass[J]. Journal of Materials Processing Technology.2010,210:684-688.
    [37]赵亚西.H62黄铜微挤压成形及其尺寸效应研究[D].南京航空航天大学.2007
    [38]姚罡.电磁力微成形装置的研制[D].华北电力大学.2009.
    [39]张敏,陆辛.电磁脉冲驱动力在微成形工艺中的试验研究[J].锻压技术.2009,34(3):72-74.
    [40]禹路.微拉伸尺度效应及数值模拟研究[D].合肥工业大学.2010
    [41]张永康,周建忠,周明等.激光冲击成形新概念[C].2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集,北京,2002.392-394
    [42]Clauer A H, Fairand B P. Laser shock hardening of weld zones in aluminum alloys[J]. Metallurgical Transactions A,1977,8A:1871-1877.
    [43]Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics,1972,43(9): 3893-3895
    [44]J.Z. Lu, L. Zhang, A.X. Feng, Y.F. Jiang, G.G. Cheng. Effects of laser shock processing on mechanical properties of Fe-Ni alloy [J], Materials and Design.2009,30:3673-3678
    [45]Y.K. Zhang, X.D. Ren, J.Z. Zhou, J.Z. Lu, L.C. Zhou. Investigation of the stress intensity factor changing on the hole crack subject to laser shock processing [J], Materials and Design. 2009,30:2769-2773
    [46]Jin-zhong Lu, Chao-jun Yang, Lei Zhang, Ai-xin Feng, Yin-fang Jiang.Mechanical Properties and Microstructure of Bionic Non-Smooth Stainless Steel Surface by Laser Multiple Processing [J], Journal of Bionic Engineering.2009,6:180-185
    [47]Kai-yu Luo, Jin-zhong Lu, Ling-feng Zhang, Jun-wei Zhong, Hai-bing Guan, Xiao-ming Qian. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing [J], Materials and Design.2010,31:2599-2603
    [48]周建忠.金属板料激光冲击成形加载机制及变形特性研究.[D]江苏大学,2003.
    [49]周建忠,张永康,杨继昌等.基于激光冲击波的板料塑性成形新技术[J].中国机械工程,2002,13(22):1938-1941
    [50]周建忠,张永康,杨继昌等.金属板料激光冲击成形技术研究[J],应用激光,2002,22(2):165-168.
    [51]杨继昌,周建忠,张永康等.激光冲压金属板料成形的研究[J].江苏大学学报(自然科学版).2002,23(1):2
    [52]William Braisted, Robert Brockman. Finite element simulation of laser shock peening [J].International Journal of Fatigue,1999,21:719-724.
    [53]Hackel, Lioyd, Harris, etal. Contour Forming of Metals By Laser Peening, US Patent Number:WO01/05549A2,2002-06-25.
    [54]Thord Thorslund, Franz-Josef Kahlen, Aravinda Kar. Temperature, pressure and stress during laser shock processing [J]. Optics and Lasers in Engineering,2003,39:51-71.
    [55]R. Fabbro, J. Fournier et al. Physical study of laser-produced plasma in confined geometry [J], Journal of Applied Physics,1990,68(2):775-784.
    [56]Zhou, M., Zhang, Y.K, Cai, L., Ultrahigh-Strain-Rate Plastic Deformation of a Stainless-Steel Sheet with TiN Coatings Driven by Laser Shock Waves [J], Applied Physics A-Materials Science & Processing,2003,77:549-554.
    [57]周建忠,张永康,周明等.单次激光冲击下板料变形的理论分析[J],中国激光,2005,32(1):135-138.
    [58]张永康,张雷洪,左敦稳等.激光冲击成形下3A21铝板料表面残余应力[J],南京航空航天大学学报,2005,37:16-19.
    [59]王飞.脉冲激光冲击成形的理论与实验研究[D].上海交通大学2008.
    [60]周国祥,王飞,姚振强.激光冲击成形中率相关的初步研究[J].上海交通大学学报,2009,43(7),1129-1132,1136.
    [61]M. Zhou, Y.K. Zhang, L. Cai. Ultrahigh-starin-rate Plastic deformation of a stainless-steel sheet with TiN coatings driven by laser shock waves[J].Materials Seience&Porcessing, 2003,549-554
    [62]Zhou M, Zhang YK, Cai L. Laser shock forming on coated metal sheets characterized by ultrahigh-strain-rate plastic deformation[J]. Journal of applied physics.2002,91(8): 5501-5503.
    [63]J.Z.Zhou, J.C.Yang, Y.K.Zhang etal. A study on super-speed forming of metal sheet by laser shock waves[J]. Journal of Material Processing technology 2002; 129(1-3):241-244.
    [64]张永康,周明,周建忠.一种激光冲击精密成形方法及装置.01134063.0
    [65]张永康,周明,周建忠等.激光冲压精密成形装置zLo1263316.x.2002..626.
    [66]花银群,张永康,杨继吕等.激光冲击强化技术中自由约束层理论厚度的研究[J].中国激光.1997,29(8):751-754.
    [67]周建忠,张永康,周明等.一种基于激光冲击技术的快速制模装置.02264630.2.2002.9.25
    [68]任旭东,张永康,周建忠等.航空钛合金的激光冲击研究[J].华中科技大学学报(自然版).2007,35:150-152
    [69]J.Z.Zhou,Y.K.Zhang,X.Q.Zhang.The mechanism and experimental study on laser peen forming of sheet metal[J]. Key Engineer Material.2006,315-316:607-611
    [70]Ding Hua, Wang Yun, Cai Lan. Laser shock forming of aluminum sheet:Finite element analysis and experimental study[J], Applied Surface Science.2009,255(10):5633-5636
    [71]Wenwu Zhang,Y.Lawrence Yao, Microscale Laser Shock Processing-Modeling, Testing, and Microstructure Characterization [J], Journal of Manufacturing Processes,2001,3(2):128-143
    [72]Wenwu Zhang, Y.Lawrence Yao. Micro-scale Laser Shock Processing of Metallic Components[J]. ASME Journal of Manufacturing Science and Engineering,2002,2 (124):369-378.
    [73]Chen Hongqiang, Wang Youneng, Kysar Jeffrey W etal. Advances in Microscale Laser Shock Peening[J]. Tsinghua Science And Technology.2004,9(5):506-518
    [74]Hongqiang Chen, Y.Lawrence Yao, Jeffrey W.Kysar etal. Fourier analysis of X-ray micro-diffraction profiles to characterize laser shock peened metals[J]. International Journal of Solids and Structures,2005,42:3471-3485
    [75]Y. Wang, J. W.Kysar, Y.L. Yao. Analytical solution of anosotropic plastic deformation induced by micro-scale laser shock peening[J]. Mechanics of Materials.2008,40:100-114
    [76]Hongqiang Chen,Jeffrey W.Kysar, Lawrence Y Yao. Characterization of Plastic Deformation induced by microscale laser shock peening [J]. Journal of Applied Mechanics, 2004,71(9):713-723
    [77]Youneng Wang, Yajan Fan, Sinisa Vukelic, Lawrence Y Yao. Energy level effects on deformation mechanism in micro-scale laser peen forming[J]. Transactions of the North American Manufacturing Reaserch Institute of SME 2006,34:119-126
    [78]F.Vollertsen,H.Schulze Niehoff. On the acting pressure in laser deep drawing [J]. Prod. Eng. Res. Devel.2009 3:1-8
    [79]Wielage,H.,Vollertsen,F.,Classification of laser shock forming within the field of high speed forming processes[J]. Journal of Materials Processing Technology,2011,211(5):953-957.
    [80]H. Wielage, F. Vollertsen. Influence of different process parameters on deformation velocity in laser shock forming[C]. International Conference on High Speed Forming (ICHSF 2010), Columbus:2010,285-294
    [81]Gary J. Cheng, Daniel Pirzada, Zhou Ming. Microstructure and mechanical characterizations of metal foil after microscale laser dynamic forming [J]. Journal of Applied Physics 2007,101,063108
    [82]Huang Gao,Chang Ye,Gary J. Cheng. Deformation Behaviors and Critical Parameters in Microscale Laser Dynamic Forming [J]. Journal of Manufacturing Science and Engineering, 2009,131:051011.
    [83]Cunjiang Yu, Huang Gao, Hongyu Yu etal. Laser dynamic forming of functional materials laminated composites on patterned three-dimensional surfaces with applications on flexible microelectromechanical systems [J]. APPLIED PHYSICS LETTERS,2009,95:091108.
    [84]Huang Gao and Gary J. Cheng. Laser-Induced High-Strain-Rate Superplastic 3-D Microforming of Metallic Thin Films [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,2010,19(2):273-281.
    [85]Huang Gao and Gary J. Cheng. Multiple-pulse laser dynamic forming of metallic thin films for microscale three dimensional shapes [J]. Journal of Applied Physics,2010,108:013107.
    [86]J Li, H. Gao, GJ Cheng, Forming Limit and Fracture Mode of Microscale Laser Dynamic Forming[J], ASME Transaction Journal of Manufacturing Science and Engineering, 2010,132:061005-1-061005-10.
    [87]J.L. Ocana, et al., Laser shock microforming of thin metal sheets [J], Applied Surface Science.2009,255 (10):5633-5636
    [88]Yoshihiro Sagisakaa, Masayoshi Kamiyab and Minoru Matsudab et al. Thin-sheet-metal bending by laser peen forming with femtosecond laser [J]. Journal of Materials Processing Technology,2010,210:2304-2309.
    [89]Zhigang Che, Liangcai Xiong, Tielin Shi etal. FEM Calculation of Micro scale Laser Shock Processing on MEMS Material with Excimer Laser [J]. Advanced Design and Manufacture to Gain a Competitive Edge.2008,785-792
    [90]车志刚,熊良才,史铁林等.微尺度下激光冲击金属材料的特性分析与展望[J].激光技术,2008,32(4):152-154
    [91]张明浩.超薄板材脉冲激光微冲击成形过程数值模拟[D].山东大学,2008.
    [92]刘晓军.8011铝合金板材脉冲激光微冲击成形实验研究[D].山东大学,2009.
    [93]刘晶.超薄板材激光微冲击成形的变形与破坏研究[D].山东大学,2010.
    [94]Chao Zheng, Sheng Sun and Zhong Ji et al. Numerical simulation and experimentation of micro scale laser bulge forming [J]. International Journal of Machine Tools & Manufacture, 2010,50:1048-1056.
    [95]Chao Zheng, Sheng Sun and Zhong Ji et al. Effect of laser energy on the deformation behavior in micro scale laser bulge forming [J]. Applied Surface Science,2010, 257:1589-1595.
    [96]grehl P, Schwirzke F, Cooper A W. Correlation of stress-wave profiles and the dynamics of the plasma produced by laser irradiation of plane solid targets[J]. Journal of Applied Physics, 1975,46(10):4400-4406.
    [97]Decoste R, Bodner S E, Ripin B H, et al. Ablative acceleration of laser-irradiated thin—foil targets[J]. Physical Review Letters,1979,42(25):1673-1677.
    [98]Cogan S, Shirman E, Haas Y. Production efficiency of thin metal flyers formed by Laser ablation[J]. Journal of Applied Physics,2005,97(11):113508-113513.
    [99]Laser-driven miniature flyer plates for shock initiation of secondary explosives, Paisley, D.L.[R]. DE89016587
    [100]W. M. Trott, K. D. Meeks. High-power Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets [J]. Journal of Applied Physics,1990,67 (7):3297-3301
    [101]R. J. Lawrence, W. M. Trott. Theoretical analysis of a pulsed laser driven hypervelocity flyer launcher [J]. Int. J.Impact Engng.,1993,14:439-449.
    [102]Hongliang He, Takamichi Kobayashi, Toshimori Sekine, Time-resolved measurement of the launch of laser-driven foil plate[C], AIP Conf. Proc. Shock Compression in Condensed Matter.2002,620,1339-1342.
    [103]S. N. LUO, D. C. SWIFT, T. E. TIERNEY IV, et al, Laser-induced shock waves in condensed matter:some techniques and applications [J], High Pressure Research,2004,24 (4):409-422.
    [104]Ozaki, Norimasa; Esposite, M.; Nazarov, W.; Laser-driven flyer impact experiments at the LULI2000 laser facility Inertial[J], Fusion Sciences and Applications 2005,1101-1105.
    [105]Paisley DL, Luo SN, Swift AC, et al. Experimental method for laser-driven flyer plates for 1-D shocks[J]. Shock Compression of Condensed Matter,2007,955:1337-1340.
    [106]Bowden MD, Drake RC. The initiation of high surface area Pentaerythritol Tetranitrate using fiber-coupled laser-driven flyer plates[J]. Optical Technologies for Arming, Safing, Fuzing, and Firing Ⅲ,2007,6662:66620 D-1
    [107]Bowden MD, Maisey MP. Determination of Critical Energy Criteria for Hexanitrostilbene Using Laser-driven Flyer Plates[J]. Optical Technologies for Arming, Safing, Fuzing, and Firing Ⅳ,2008,7070:707004-1
    [108]Miller CW, Kishimura H, Kelly SC, et al. Laser-driven miniflyer system for shock compression studies[J]. Shock Compression of Condensed Matter,2009,1195:1147-1150.
    [109]Fujiwara H, Brown KE, Dlott DD. Laser-driven flyer plates for reactive materials research[J]. Shock Compression of Condensed Matter,2009,1195:1317-1320
    [110]谷卓伟,孙承纬,刘仓理.小型激光器驱动飞片的平均速度测量研究[J].强激光与粒子束,2001,13(3):309-312
    [111]谷卓伟,孙承纬.小型脉冲激光器驱动高速飞片的实验研究[J].中国激光,2002,29(5): 407-410.
    [112]朱励,肖泰明,郝军.一个描述强激光驱动飞片高速运动的Gurney模型[J].四川大学学报(自然科学版),2005,42(4):775-778.
    [113]张文兵,龚自正,董洪建等.激光驱动飞片速度和完整性的影响因素分析[J].航天器环境工程,2007,24(3):155-159
    [114]曹燕,龚自正,代福,童靖宇,牛锦超,庞贺伟.激光驱动飞片速度的理论分析[J].航天器环境工程,2009,26(4):307-311.
    [115]赵翔,苏伟,李东杰,高杨.一种基于激光驱动的飞片动能利用效率计算方法[J].光电工程,2009,36(10):51-55.
    [116]Pengbo Zhang, Ying Qin, Jijun Zhao, Bin Wen, Yan Cao, Zizheng Gong. Numerical simulation of the temperature field in laser-driven flyer plates by high power nanosecond laser-material interactions[J]. J. Phys. D:Appl. Phys.2009,(42):225302.
    [117]陈光华,李泽仁,刘寿先,刘乔,刘俊,畅里华.Fabry-Perot干涉仪测量爆轰加载下的飞片自由面速度[J].信息与电子工程,2006,4(5),369-371.
    [118]唐孝容,李剑峰,张大勇,陶彦辉,刘海涛.高速运动飞片的F-P干涉测量技术研究[J].激光技术,2007,31(2):172-174.
    [119]陈怡星.脉冲激光表面微造型的数值模拟与实验研究[D].江苏大学,2007.
    [120]孙承伟编著.激光辐射效应[M].北京:国防工业出版社,2002年.
    [121]Richard M.More. Laser-Driven Shockwave Experiments at Extreme High Pressures[R]. Laser Interaction and Related Physical Phenomena.New York:1979.
    [122]P Peyre,R Fabbro. Laser shock processing:a review of the physics and applications[J]. Opt. Quant. Electr,1995,27:1213~1229.
    [123]Swift D C, Niemczura J G, Paisley D L, et al. Laser-launched flyer plates for shock physics experiments[J]. Review of scientific instruments,2005,76:093907.
    [124]张文兵,董洪建,龚自正等.激光驱动微小碎片超高速发射技术研究[J].装备环境工程,2007,4(1):56-61.
    [125]张文兵,龚自正,董洪建等.激光驱动飞片速度和完整性的影响因素分析[J].航天器环境工程,2007,24(3):155-159.
    [126]顾永玉,张永康,张兴权等.约束层对激光驱动冲击波压力影响机理的理论研究[J].物理学报,2006,55(11):5885-5891.
    [127]R. Fabbro, B. Farall, F. Cottet etal. Experimental study of laser acceleration of planar targets at the wavelength 0.26μm [J]. Journal of Applied Physics,1984,56(11):3204-3208.
    [128]Lawrence R J, Trott W M. Theoretical analysis of a pulsed laser-driven hypervelocity flyer launcher[J].International Journal of Impact Engineering,1993,14:439-449.
    [129]Gurney R.The initial velocity of fragments from bombs, shells, and grenades[R].Report No.405,Ballistic Research laboratory,Aberdeen,MD,1943.
    [130]孙承纬,庄仕明,王春彦.激光驱动飞片冲击引爆炸药的计算[J].强激光与粒子束,1997.9:471-476.
    [131]马晓青,韩峰编著,高速碰撞动力学[M].北京:国防工业版社,1998年.
    [132]Marc Andre Meyers材料的动力学行为[M].张庆明,刘彦,黄风雷,等译,北京:国防工业出版社,2006年.
    [133]马景龙.利用长脉冲KrF激光产生用于状态方程测量的冲击波.[D]中国原子能科学研究所,2003.
    [134]Wilkins M L. Calculation of elastic-plastic flow [M]. In:Alder B, Editors, Methods in Computational Physics V.3,Academic Press,1964.
    [135]周南 乔登江 编著.脉冲束辐照材料动力学[M].北京:国防工业出版社,2002年.
    [136]尚晓江,苏建宇等著.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006年.
    [137]李裕春,时党勇,赵远编著.ANSYS10.0/LS-DYNA基础理论与工程实例[M].北京:中国水利水电出版社,2006年.
    [138]张乐乐,谭南林,焦风川编著.ANSYS辅助分析应用基础教程[M].北京:清华大学出版社,2006.
    [139]Johnson G R, Cook W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. In Proc.7th International Symposium on Ballistics, 1983:541-547.
    [140]Suryanarayana C. Nanocrystalline Materials[J]. In2 ternational Materials Reviews.1995,40 (2):41~64.
    [141]Birringer R, Gleiter H. Nanocrystalline Mateials[J]. Springer Series in Chemical Physics 1994,56:384-404.
    [142]杨振宁.高速冲击下材料的增塑效应、变形形态及性能[J].兵器材料科学与工程,1990,1:7-13.
    [143]杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401-407.
    [144]陈雪莲.爆轰环境下弹体钢材料的破碎性能研究[D].北京理工大学,2003.
    [145]朱向群.高应变率下材料亚结构特征及其变化规律的研究[D].江苏大学,2005.
    [146]B Bay, N Hansen, D A Hughes, et al. Evolution of FCC deformation structures in polyslip[J].Scripta Metall.,1992,40 (2):205-219.
    [147]Huang J C, Gray G T. Microband formation in shock-loaded and quasi-statically deformed metals[J]. Acta Metall.,1989,37:3335-3347.
    [148]L E Murr, E A Trillo, A A Bujanda, et al. Comparison of residual microstructures associated with impact craters in fcc stainless steel and bcc iron targets:the microtwin versus microband issue[J]. Acts Materialia,2002,50:121 — 131.
    [149]L E Murr, E P Garcia, J M Rivas, et al. Ballistic penetration in thick copper plates: microstructural characterization[J]. Scripla Materialia,1997,37(9):1329-1335.
    [150]Matthew S. Schneider, Bimal Kad, Daniel H. Kalantar etal. Laser shock compression of copper and copper-aluminum alloys [J]. International Journal of Impact Engineering, 2005,32:473-507.
    [151]段志勇.激光冲击波及激光冲击处理技术的研究[D].中国科学技术大学,2000.
    [152]胡永祥.激光冲击处理工艺过程数值建模与冲击效应研究[D].上海交通大学,2008.
    [153]J.Z. Lu, K.Y. Luo, Y.K. Zhang etal. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel [J]. Acta Materialia,2010,58:5354-5362.
    [154]K.Y. Luo, J.Z. Lu, Y.K. Zhang etal. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel [J]. Materials Science and Engineering A,2010,528:4783-788.
    [155]Kai-yu Luo, Jin-zhong Lu, Ling-feng Zhang etal. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing [J]. Materials and Design,2010,31:2599-2603.
    [156]J.Z. Lu, K.Y. Luo, Y.K. Zhang etal. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts [J]. Acta Materialia, 2010,58:3984-3994.
    [157]苑春智.金属材料在强激光超高应变率作用下的微观组织响应[D].江苏大学,2009.
    [158]朱向群,周明,戴起勋等.激光冲击奥氏体不锈钢表面的亚结构变化[J].中国激光,2005,32(7):1006-1010.
    [159]U. ANDRADE, M. A. MEYERS, K. S. VECCHIO and A. H. CHOKSHI. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation[J]. Acta metall, mater. 1994,42(9):3183-3195.
    [160]H.W.Zhang,Z.K.Hei,G.Liu,J.Lu,K.Lu. Formation of nanostructured surface layer on AISI 304stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia,2003,51,1871-1881
    [161]Tao NR, Wu XL, Sui ML, Lu J, Lu K. Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy [J]. Mater Res,2004,19:1623-1629.
    [162]Tao NR, Zhang HW, Lu J, Lu K. Development of Nanostructures in Metallic Materials with Low Stacking Fault Energies during Surface Mechanical Attrition Treatment (SMAT) [J]. Materials Transactions,2003,44 (10):1919-1925.
    [163]N.R.Tao, K.Lu. Nanoscale structural refinement via deformation twinning in face-centered cubic metals[J].Scripta Materialia.2009,60:1039-1043.
    [164]K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu. Plastic strain-induced grain refinement at the nanometer scale in copper[J].Acta Mater.2006,54:5281-5291.
    [165]Y.S. Li, N.R. Tao, K. Lu. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J]. Acta Mater.2008,56: 230-241.
    [166]Belyakov A, Sakai T, Miura H, Tsuzaki K.Grain refinement in copper under large strain deformation[J]. Philos Mag A.2001,81:2629-2643.
    [167]H.W.Zhang,Z.K.Hei,G.Liu,J.Lu,K.Lu. Formation of nanostructured surface layer on AISI 304stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia.2003,51:1871-1881.
    [168]X. Wu, N. Tao, Y. Hong, G Liu, B. Xu, J. Lu, K. Lu. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment[J]. Acta Mater.2005,53:681-691.
    [169]邓小良.<111>晶向冲击加载下铜中空洞演化的微观机制研究[D].四川大学.2006.
    [170]张景琳,王继海和杨淑霞.材料微喷射和动态损伤的分子动力学研究[J].计算物理,1993,10(3):318-323.
    [171]Jaewoo Shim, Elizabeth Hagerman, Ben Wu and Vijay Gupta. Measurement of the tensile strength of cell-biomaterial interface using the laser spallation technique [J]. Acta Biomaterialia,2008,4:1657-1668.
    [172]唐志平,李欣增,周光泉,廖香丽.激光引起金属靶层裂的实验研究[J].科学通报,1992,22:2100—2103.
    [173]蔡兰,周明,张永康,激光薄膜层裂技术的理论建模及相关诊析技术.江苏理工大学学报(自然科学版),2000,Vo1.21(6):4-8.
    [174]T.de Resseguier, H. He, P Berterretche. Use of laser-accelerated foils for impact study of dynamic material behavior[J]. International Journal of Impact Engineering,2005,31: 945-956.
    [175]Cochran S, Banner D. Spall studies in uranium[J]. Journal of Applied Physics,1977, 48:2729-2737.
    [176]R.Liu M.B.Liu[著]韩旭, 杨刚, 强洪夫[译].光滑粒子流体动力学—一种无网格粒子法[M].长沙:湖南大学出版社,2005.
    [177]洪涛,赵美英,任磊,米保卫.SPH和FEM耦合方法分析机翼前缘鸟撞的响应问题[J].科学技术与工程,2009,9(7):1802-1805.
    [178]徐金中,汤文辉.SPH方法在层裂损伤模拟中的应用[J].强度与环境,2009,36(1):1-7.
    [179]Randles P w, Libersky L D. Smoothed particle hydrodynamics:some recent improvement and applications[J]. Comput Methods Appl Mech Engrg 1996,139:375-408.
    [180]Laurence Campagne, Loc Daridon, Sad Ahzi. A physically based model for dynamic failure in ductile metals [J]. Mechanics of materials 2005,37:869-886.
    [181]X. Teng, T. Wierzbicki Evaluation of six fracture models in high velocity perforation [J]. Engineering fracture mechanics 2006,73:1653-1678。
    [182]徐金中汤文辉.SPH方法在层裂损伤模拟中的应用[J].强度与环境2009,36(1):1-7.
    [183]Poizat, C., Campagne, L., and Daridon, L. Modeling and Simulation of Thin Sheet Blanking Using Damage and Rupture Criteria[J]. Int. J. Form. Processes,2005,8(1):29-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700