被动调Q拉曼激光器的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激拉曼散射(Stimulated Raman Scattering简称SRS)是产生激光新波长的重要途径之一,拉曼散射光的波长取决于泵浦光的波长和拉曼介质本身的性质。通过选择不同波长的泵浦光和不同的拉曼介质材料,散射光光谱可从紫外遍及到近红外区域。常用的拉曼介质材料有气体、液体和固体三种形态,由于固体拉曼介质具有很多优点,如体积小、拉曼增益高、热导性能好及机械性能好等,现已取代气体和液体拉曼介质,成为最常用的拉曼介质;而固体拉曼激光器由于具有结构紧凑、稳定性好、转化效率高等优点,在医疗、信息、交通、测量和国防等领域都得到广泛应用。
     近几年固体拉曼介质及固体拉曼激光器已成为激光材料和激光器件领域的研究热点。目前,俄罗斯、美国、德国、澳大利亚和中国台湾等国家和地区的研究人员都在积极参与固体拉曼激光器的研究。国内开展固体拉曼激光器研究的有利条件是我国在晶体生长领域具有世界领先水平。在大陆,山东大学、福建物质结构研究所、上海光学精密机械研究所等高等院校和研究所在全固体拉曼激光器理论及实验研究方面都取得了一些重要研究成果。
     输出波长在550-600nm范围内的全固体激光器近年来已经引起广泛关注,该波长范围的激光在医疗、通信、光谱学、激光雷达、激光制导、大气探测、信息存储等领域都有广泛的应用。其中获得黄光的有效方法之一是利用腔内倍频固体拉曼激光器。具体方法是利用晶体的受激拉曼散射效应将激光二极管泵浦掺Nd3+材料得到的1.06μm附近的激光转换为1.18μm附近的激光,再进行倍频得到黄光波段激光,这一方法已成为目前获得该波段激光的重要手段。
     到目前为止,已报道的拉曼激光器大部分是主动调Q拉曼激光器。主动调Q拉曼激光器的优点是转化效率和输出功率高,但缺点是结构设计较复杂,价格较昂贵。比起主动调Q拉曼激光器,被动调Q拉曼激光器虽然转化效率和输出功率不高,但是其具有许多优点,如结构紧凑、价格便宜、操作简单等,因而关于被动调Q拉曼激光器的理论及实验研究也是非常重要的。但是到目前为止关于被动调Q拉曼激光器的研究相对比较少。因而在本论文中我们将着重于被动调Q拉曼激光器的理论和实验研究。
     本论文提出了一种测量固态拉曼介质增益系数的新方法,通过研究两块不同长度的拉曼介质产生的拉曼光光强的比值与泵浦光光强的关系来测得拉曼增益系数,并用此方法测得YVO4晶体的拉曼增益系数是4.5cm/GW;然后分别以Nd:YAG作为激光介质,以Cr4+:YAG作为饱和吸收体,以SrWO4, BaWO4和KLu(WO4)2作为拉曼介质,研究了了LD端面泵浦被动调Q内腔式拉曼激光器的特性;又采用KTP晶体作为倍频晶体,进行了LD泵浦被动调Q腔内倍频拉曼激光器的研究,同时建立了被动调Q腔内倍频拉曼激光器的理论模型。具体的研究内容如下:
     1.提出一种测量固态拉曼介质增益系数的新方法。通过选取两块同种材料、不同长度的拉曼晶体,在皮秒脉冲泵浦下通过观察受激拉曼散射现象,分析两块晶体输出端拉曼光强的比值与泵浦光强的关系来测量晶体的拉曼增益系数。并用此方法测得YVO4晶体的拉曼增益系数是4.5cm/GW。
     2.以Nd:YAG晶体作为激光介质,α切的SrWO4晶体作为拉曼介质,采用Cr4+:YAG被动调Q方式,首次实现了LD端面泵浦被动调Q的Nd:YAG/SrWO4内腔式拉曼激光器在1180nm的运转。当LD泵浦功率为14.9W,饱和吸收体(Cr4+:YAG)初始透过率为81%时,实验得到拉曼光的最高平均输出功率为1.78W,得到的最大单脉冲能量是88.1μJ。
     3.以陶瓷Nd:YAG作为激光介质,以c切KLu(WO4)2晶体作为拉曼介质,采用Cr4+:YAG被动调Q方式,首次实现了LD端面泵浦被动调Q的Nd:YAG/KLu(WO4)2内腔式拉曼激光器在1178nm的运转。在泵浦功率为15.7W, Cr4+:YAG初始透过率为81%时,实验得到拉曼光的最高平均输出功率为1.89W,得到的最大单脉冲能量是84.0μJ。
     4.考虑泵浦光、腔内基频光和拉曼光光子数密度和反转粒子数密度的横向分布,以及倍频拉曼光光子数密度与拉曼光子数密度之间的关系,在被动调Q拉曼激光器速率方程组的基础上,得到了被动调Q腔内倍频拉曼激光器的速率方程组。通过引入一组综合参量,可得到被动调Q倍频拉曼激光器的归一化速率方程组。通过数值求解该速率方程组,可得到了一系列普适曲线,这些曲线不仅可以表明归一化的被动调Q内腔倍频拉曼光的脉冲参量与这些综合参量之间的关系,还可以用来估计任何一个被动调Q内腔倍频拉曼激光器的输出脉冲特性。
     5.以陶瓷Nd:YAG作为激光介质,以α切SrWO4作为拉曼介质,采用Cr4+:YAG被动调Q方式,首次实现了LD端面泵浦被动调Q的Nd:YAG/SrWO4/KTP内腔式倍频拉曼激光器在590nm黄光波长处的运转。在LD泵浦功率为14.0W, Cr4+:YAG初始透过率为81%时,实验得到590nm黄光最高平均输出功率为1.02W,相应的从LD泵浦光到黄光的光-光转换效率为7.29%,得到的最大单脉冲能量是56.2μJ。
     6.以Nd:YAG晶体作为激光介质,以a切BaWO4作为拉曼介质,采用Cr4+:YAG被动调Q方式,首次实现了LD端而泵浦被动调Q的Nd:YAG/BaWO4/KTP内腔式倍频拉曼激光器在590nm黄光波长处的运转。在LD泵浦功率为14.1W, Cr4+:YAG初始透过率为81%时,实验得到590nm黄光最高平均输出功率为1.21W,相应的从泵浦光到黄光的光-光转换效率为9.06%,得到的最大单脉冲能量是68.5μJ。本论文的主要创新点如下:
     1.提出一种测量固态拉曼介质增益系数的新方法。采用两块同种材料、不同长度的拉曼晶体,在皮秒脉冲泵浦下观察受激拉曼散射现象,通过分析两块晶体输出端拉曼光强的比值与泵浦光强的关系来算得晶体的拉曼增益系数。并用此方法测得YVO4晶体的拉曼增益系数是4.5cm/GW。
     2.首次实现了LD端面泵浦被动调Q的Nd:YAG/SrWO4内腔式拉曼激光器在1180nm的高效运转。
     3.首次实现了LD端面泵浦被动调Q的Nd:YAG/KLu(WO4)2内腔式拉曼激光器在1178m的高效运转。当LD泵浦功率为15.7W,饱和吸收体Cr4+:YAG的初始透过率为81%时,得到拉曼光的最高平均输出功率为1.89W,这是目前为止所报道的采用LD泵浦被动调Q内腔拉曼激光器方式获得的最高输出功率。
     4.考虑到泵浦光、腔内基频光和拉曼光光子数密度和反转粒子数密度的横向分布,以及倍频拉曼光光子数密度与拉曼光子数密度之间的关系,首次建立了被动调Q腔内倍频拉曼激光器的理论模型。
     5.首次实现了LD端面泵浦被动调Q的Nd:YAG/SrWO4/KTP内腔式倍频拉曼激光器在590nm黄光波长处的运转。
     6.首次实现了LD端面泵浦被动调Q的Nd:YAG/BaWO4/KTP内腔式倍频拉曼激光器在590nm的运转。在LD泵浦功率为14.1W,Cr4+:YAG初始透过率为81%时,得到黄光的最高平均输出功率为1.21W,相应的从泵浦光到黄光的光-光转换效率为9.06%,得到的最大单脉冲能量是68.5μJ。所得到黄光的平均输出功率、转换效率和单脉冲能量是目前所报道的采用LD泵浦被动调Q内腔倍频拉曼激光器方式获得的最高输出功率、最大转换效率和最大单脉冲能量。
Stimulated Raman scattering (SRS) is one of effective methods for frequency conversion, and the wavelengths of the generated Raman scattered light are determined by the pump laser wavelengths and the Raman shifts of the Raman crystals. The laser spectrum with SRS can extend from the ultraviolet to the near infrared by using different pump sources and different Raman-active media. Raman-active media include solids, liquids and gases. Compared with the traditional gas and liquid Raman media, solid-state Raman media have the advantages of high molecule density, small physical size, high Raman gain coefficient, good thermal and mechanical properties, and so on. The solid-state Raman lasers using crystal Raman media have the advantages of compactness, high stability and high efficiency. And they have wide applications in fields of medical treatment, information, communication, measurement, military affairs, and so on.
     Solid-state Raman media and all-solid-state Raman lasers have attracted much interest in the fields of laser materials and solid-state lasers in recent years. Researchers from Russia, America, Germany, Australia, Taiwan, etc. are actively taking part in the research of the all-solid-state Raman lasers. In the Chinese Mainland, the research groups from Shandong University, Fujian Institute of Research on the Structure of Matter, Shanghai Institute of Optics and Fine Mechanics are engaged in the research for solid-state Raman lasers and have much research output in theory and experiment.
     The yellow-orange lasers with the spectral region from560nm to600nm have attracted intensive research interests, which have had wide applications in medicine, communication, spectroscopy, laser radar, metrology, remote sensing, information storage, and so on. But they are hardly obtained by frequency doubling Nd-doped lasers. An efficient method for generating the yellow-orange laser is intracavity frequency doubling the first Stokes Raman laser. With the Nd doped1.06μm fundermental laser and the SRS in Raman crystal, the1.18μm first-Stokes wavelength can be generated. And the first-Stokes laser is frequency-doubled afterwards to generate the yellow-orange laser.
     Because actively Q-switched Raman lasers have the advantages of high output power and high efficiency, most reported Raman lasers are actively Q-switched. Compared with actively Q-switched Raman lasers, passively Q-switched Raman lasers have the advantages of compactness, low cost and easiness of operation although their output powers and efficiencies are relatively low. So research on passively Q-switched frequency-doubled Raman lasers is also important. Nevertheless, the reports on LD-pumped passively Q-switched Raman lasers are relatively few. So in this dissertation, we mainly studied passively Q-switched Raman lasers.
     In this dissertation, we firstly studied a new method of solid-state Raman gain coefficient mearement. The Raman gain coefficient gR could be obtained by analyzing the relation between the ratio of Raman laser intensities of the two Raman crystals and the pump laser intensity. The Raman gain coefficient of YVO4crystal was measured to be4.5cm/GW by this method. Secondly, by using Nd:YAG as the gain medium, using Cr4+:YAG as saturable absorber, we studied the output laser characteristics of LD-pumped passively Q-switched intracavity SrWO4, KLu(WO4)2and BaWO4Raman lasers, respectively. Thirdly, by using the KTP intracavity frequency doubling of the LD-pumped passively Q-switched Raman laser, the efficient yellow lasers were obtained. And a theoretical model for the passively Q-switched intracavity frequency-doubled Raman laser was built.
     The main contents of this dissertation are as follows:
     1. A new method for measuring Raman gain coefficients of solid-state materials was presented. Two crystals with the same material and different lengths were used. The pump source was a picosecond pulse laser. The Raman gain coefficient gR could be obtained by analyzing the relation between the ratio of Raman laser intensities of the two crystals and the pump laser intensity. The gain coefficient of YVO4crystal was measured to be4.5cm/GW.
     2. By using an Nd:YAG crystal gain medium, a Cr4+:YAG saturable absorber and an a-cut SrWO4Raman medium, an LD end-pumped passively Q-switched Nd:YAG/SrWO4intracavity Raman laser was demonstrated for the first time. A1.78W1180nm laser was obtained at an incident pump power of14.9W and a saturable absorber's initial transmission of81%. The highest pulse energy was88.1μJ.
     3. By using an Nd:YAG ceramic gain medium, a Cr+:YAG saturable absorber and an c-cut KLu(WO4)2Raman medium, an LD end-pumped passively Q-switched Nd:YAG/KLu(WO4)2intracavity Raman laser was demonstrated for the first time. A1.89W1178nm laser was obtained at an incident pump power of15.7W and a saturable absorber's initial transmission of81%. The highest pulse energy was84.0 μJ.
     4. The rate equations for the passively Q-switched intracavity frequency-doubled Raman lasers were obtained by considering the spatial distributions of the intracavity photon density and the population inversion density, and the photon density relation between the frequency-doubled Raman laser and the Raman laser. These rate equations were normalized by introducing some synthetic parameters. By solving the normalized rate equation numerically, a group of general curves were generated. These curves could give a good understanding of the dependences of the laser pulse characteristics on the synthetic parameters. They could also be used to estimate the laser pulse characteristics of any passively Q-switched intracavity frequency-doubled Raman laser.
     5. By using an Nd:YAG ceramic gain medium, a Cr4+:YAG saturable absorber, an a-cut SrWO4Raman medium and a KTP frequency doubling medium, an LD end-pumped passively Q-switched Nd:YAG/SrW04/KTP intracavity frequency-doubled Raman laser was demonstrated for the first time. With a coupled cavity, a1.02W590nm laser was obtained at an incident pump power of14.0W and a saturable absorber's initial transmission of81%, the corresponding conversion efficiency was7.29%. The highest pulse energy was56.2μJ.
     6. By using an Nd:YAG crystal gain medium, a Cr4+:YAG saturable absorber, an a-cut BaWO4Raman medium and a KTP frequency doubling medium, an LD end-pumped passively Q-switched Nd:YAG/BaWO4/KTP intracavity frequency-doubled Raman laser was demonstrated for the first time. With a coupled cavity, al.21W590nm laser was obtained at an incident pump power of14.1W and a saturable absorber's initial transmission of81%. The highest conversion efficiency was9.06%. The highest pulse energy was68.5μJ. The main innovations of this thesis are as follows:
     1. A new method for measuring Raman gain coefficients of solid-state materials was presented. Two crystals with the same material and different lengths were used. The Raman gain coefficient gR could be obtained by analyzing the relation between the ratio of Raman laser intensities of the two crystals and the pump laser intensity. The gain coefficient of YVO4crystal was measured to be4.5cm/GW.
     2. By using an Nd:YAG crystal gain medium, a Cr4+:YAG saturable absorber and an a-cut SrWO4Raman medium, an LD end-pumped passively Q-switched Nd:YAG/SrWO4intracavity Raman laser was demonstrated for the first time.
     3. By using an Nd:YAG ceramic gain medium, a Cr4+:YAG saturable absorber and an c-cut KLu(WO4)2Raman medium, an LD end-pumped passively Q-switched Nd:YAG/KLu(WO4)2intracavity Raman laser was demonstrated for the first time. A1.89W1178nm laser was obtained at an incident pump power of15.7W and a saturable absorber's initial transmission of81%. The obtained maximum average output power was much higher than those of the previously reported diode-pumped passively Q-switched intracavity Raman lasers.
     4. A theoretical model for the passively Q-switched intracavity frequency-doubled Raman lasers were built for the first time, by considering the spatial distributions of the intracavity photon density and the population inversion density, and the photon density relation between the frequency-doubled Raman laser and the Raman laser.
     5. By using an Nd:YAG ceramic gain medium, a Cr4+:YAG saturable absorber, an a-cut SrWO4Raman medium and a KTP frequency doubling medium, an LD end-pumped passively Q-switched Nd:YAG/SrWO4/KTP intracavity frequency-doubled Raman laser was demonstrated for the first time.
     6. By using an Nd:YAG crystal gain medium, a Cr4+:YAG saturable absorber, an a-cut BaWO4Raman medium and a KTP frequency doubling medium, an LD end-pumped passively Q-switched Nd:YAG/BaWO4/KTP intracavity frequency-doubled Raman laser was demonstrated for the first time. With a coupled cavity, a1.21W590nm laser was obtained at an incident pump power of14.1W and a saturable absorber's initial transmission of81%. The highest conversion efficiency was9.06%. The highest pulse energy was68.5μJ. To the best of our knowledge, the obtained average output power, conversion efficiency and pulse energy were much higher than those of the previously reported LD-pumped passively Q-switched frequency-doubled Raman lasers.
引文
[1]A. Smekal, "The quantum theory of dispersion," Naturwiss, vol.11, pp.873-875,1923.
    [2]C. V.Raman and K. S. Krishman, "A New Type of Secondary Radiation," Nature, vol. 121, pp.501-502,1928.
    [3]G. Landsberg and L. Mandelstam, "A novel effect of light scattering in crystals,' Naturwiss, vol.16, pp.557-772,1928.
    [4]J. Cabannes, "New optical phenomenon; pulsations produced when anisotropic molecules in rotation and vibration difuse visible and ultra-violet light," Comptes Rendus Acad. Sci, vol.186, pp.1201,1928.
    [5]Y. Rocard, "New difused radiations," Compt. rend, vol.186, pp.1109,-1928.
    [6]E. J. Wodbury and W. K. Ng, "Ruby laser operation in the near IR," Proceedings of the IRE, vol.50, pp.2367,1962.
    [7]J. Goldhar and J. R. Murray, "Intensity averaging and four-wave mixing in Raman amplifiers," IEEE J. Quantum Electron., vol.18, pp.399-409,1982.
    [8]R. S. F. Chang and N. Djeu, "Amplification of a diffraction-limited Stokes beam by a severely distorted pump," Opt. Lett., vol.8, pp.139-141,1983.
    [9]A. Flusbery and D. Korff, "Wave-front replication versus beam cleanup by Stimulated Raman Scattering," J. Opt. Soc. Am. B, vol.4, pp.687-690,1987.
    [10]J. C. van den Heuvel, F. J. M. van Putten, and R. J. L. Lerou, "Quality of the Stokes beam in stimulated Raman scattering," IEEE J. Quantum Electron., vol.30, pp. 2211-2219,1994.
    [11]J. C. van den Heuvel, "Numerical study of beam cleanup by stimulated Raman scattering," J. Opt. Soc. Am. B, vol.12, pp.650-657,1995.
    [12]W. H. Culver, J. T. A. Vanderslice, and V. W. T. Townsend, "Controlled generation of intense light pulses in reverse-pumped Raman lasers," Appl. Phys. Lett., vol.12, pp. 189-190,1968.
    [13]J. R. Murray, J. Goldhar, D. Eimerl, and A. Szoke, "Raman pulse compression of excimer lasers for application to laser fusion," IEEE J. Quantum Electron., vol.15, pp. 342-368,1979.
    [14]R. Frey, A. D. Martino, and F. Pradere, "High-efficiency pulse compression with intracavity Raman oscillators," Opt. Lett., vol.8, pp.437-439,1983.
    [15]I. V. Tomov, R. Fedosejevs, D. C. D. McKen, C. Domier, and A. A. Offenberger, "Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering," Opt. Lett., vol.8, pp.8-11,1983.
    [16]J. R. Ackerhalt, Y. B. Band, J. S. Krasinski, and D. F. Heller, "Short-pulse intracavity Raman laser," Opt. Lett., vol.13, pp.646-648,1988.
    [17]J. R. Murray, J. Goldhar, and A. Szoke, "Backward Raman gain measurements for KrF laser radiation scattered by CH4," Appl. Phys. Lett., vol.32, pp.551-553,1978.
    [18]G. Echhardt, "Selection of Raman laser materials," IEEE J. Quantum Electron., vol.2, pp.1-8,1966.
    [19]R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett., vol.17, pp.229-232,1966.
    [20]G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and α-sulfur single crystals," Appl. Phys. Lett., vol.3, pp.137-138,1963.
    [21]E. O. Ammann and C. D. Decker, "0.9-W Raman oscillator," J. Appl. Phys., vol.48, pp. 1973-1975,1977.
    [22]H. M. Pask and J. A. Piper, "Practical 580nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Opt. Commun., vol.148, pp.285-288,1998.
    [23]H. M. Pask and J. A. Piper, "Efficient all-solid-state yellow laser source producing 1.2-W average power," Opt. Lett., vol.24, pp.1490-1492,1999.
    [24]J. Simons, H. Pask, P. Dekker, and J. Piper, "Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598nm," Opt. Commun., vol.229, pp.305-310,2004.
    [25]R. P. Mildren, M. Convery, H. M. Pask, and J. A. Piper, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express, vol.12, pp.785-790,2004.
    [26]H. M. Pask, "Review design and operation of solid-state Raman lasers," Prog. Quantum Electron., vol.27, pp.3-56,2003.
    [27]T. T. Basiev, A. A. Sobol, P. G. zverev, L. I. Ivleva, V. V. Osiko and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol. 11, pp.307-314,1999.
    [28]H. M. Pask and J. A. Piper, "Diode-Pumped LiIO3 Intracavity Raman Lasers," IEEE J. Quantum Electron., vol.36, pp.949-955,2000.
    [29]H. H. Xu, X. Y. Zhang, Q. P. Wang, C. Wang, W. T. Wang, L. Li, Z. J. Liu, Z. H. Cong, X. H. Chen, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power," Appl. Phys. B, vol.107, pp.343-348,2012.
    [30]T. Murrayj, R. C. Power, and N. Peyghambarian. "Properties of stimulated Raman scattering in crystals," J. Lumin., vol.66 & 67, pp.89-93,1996.
    [31]T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [32]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, "Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett., vol.20, pp.1017-1019,1995.
    [33]A. S. Eremenko, S. N. Karpukin, and A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals," Sov. J. Quantum Electron., vol.10, pp.113-114,1980.
    [34]S. N. Karpukhin and A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quantum Electron., vol.16, pp.1027-1031,1986.
    [35]P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, and T. T. Basiev, "Stimulated Raman scattering of picosecond pulses in barium nitrate crystals," Opt. Commun., vol. 97, pp.59-64,1993.
    [36]P. G. Zverev, W. Jia, H. Liu, and T. T. Basiev, "Vibrational dynamic of the Raman-active mode in barium nitrate crystal," Opt. Lett., vol.20, pp.2378-2380,1995.
    [37]C. L. McCray and T. H. Chyba, "High resolution spectral measurements of Raman shifts in barium nitrate," Opt. Mater., vol.11, pp.383-390,1999.
    [38]P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal," Opt. Mater., vol.11, pp.315-334,1999.
    [39]J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, "Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers," Appl. Phys. B, vol.70, pp.159-162,2000.
    [40]A. Major, J. S. Aitchison, and P. W. E. Smith, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp.421-423,2005.
    [41]J. Findeisen, H. J. Eichler, and P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Opt. Commun., vol.181, pp.129-133,2000.
    [42]I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng., vol.36, pp.1660-1669,1997.
    [43]J. Findeisen, H. J. Eichler, and A. A. Kaminskii, "Efficient picosecond PbWO4 and two-wavelength KGd(WO4)2 Raman lasers in the IR and visible," IEEE J. Quantum Electron., vol.35, pp.173-178,1999.
    [44]T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, "Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Commun., vol.232, pp.327-331,2004.
    [45]M. Matsuse, T. Deguchi, H. Ohtsuka, N. Takeyasu, Y. Hirakawa, and T. Imasaka, "Effect of laser pulsewidth on the generation of multi-color laser emission by stimulated Raman scattering and four-wave Raman mixing in a KGd(WO4)2 crystal," Opt. Commun., vol. 223, pp.411-416,2003.
    [46]T. T. Basiev, V. N. Voitsekhovskii, P. G. Zverev, F. V. Karpushko, A. V. Lyubimov, S. B. Mirov, V. P. Morozov, I. V. Mochalov, A. A. Pavlyuk, and G. V. Sinitsyn, "Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2- color centers by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals," Sov. J. Quantum Electron., vol.17, pp.1560-1561,1987.
    [47]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, "All solid-state diode-pumped Raman laser with self-frequency conversion," Appl. Phys. Lett., vol.75, pp.3742-3744,1999.
    [48]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, "Stimulated Raman scattering in Nd:KGW laser with diode pumping," J. Alloy. Compd., vol.300-301, pp.300-302,2000.
    [49]A. Brenier, F. Bourgeois, B. Metrat, N. Muhlstein, and G. Boulon, "Spectroscopic properties and 1.351 μm of Nd3+-doped KY(WO4)2 and KGd(WO4)2 single crystals for Raman conversion," Opt. Mater., vol.16, pp.207-211,2001.
    [50]V. A. Berenberg, S. N. Karpukhin, and I. V. Mochalov, "Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal," Sov. J. Quantum Electron., vol.17, pp. 1178-1179,1987.
    [51]S. V. Kurbasov and L. L. Losev, "Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal," Opt. Commun., vol.168, pp.227-232,1999.
    [52]A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, "Picosecond parametric Raman laser based on KGd(WO4)2," Opt. Commun., vol.240, pp.239-244,2004.
    [53]A. Brenier, C. Tu, J. Li, Z. Zhu, and B. Wu, "Eye-safe laser radiation from stimulated Raman scattering frequency self-conversion in KGd(WO4)2:Nd3+," J. Phy. Con. Matt., vol.13, pp.4097-4103,2001.
    [54]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [55]P. Cerny and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp.360-362,2002.
    [56]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun., vol.209, pp.403-409,2002.
    [57]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet," IEEE J. Quantum Electron., vol.38, pp.1471-1478,2002.
    [58]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. zverev, V. V. Osiko and N. M. Polozkov, "SrWO4: Nd3+ -new material for multifunctional lasers," Opt. Mater., vol.23, pp. 439-442,2003.
    [59]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [60]F. Cornacchia, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and N. Magnani, "Optical spectroscopy of SrWO4:Nd3+ single crystals," J. Phys. Condens. Matter., vol.16, pp. 6867-68876,2004.
    [61]B. Alain, G. H. Jia, and C. Y. Tu, "Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd3+ crystal," J. Phys. Condens. Matter., vol.16, pp.9103-9108,2004.
    [62]J. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in Zinc Oxide," Phys. Rev., vol. 142, pp.570-574,1966.
    [63]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S.Z. Fan, Z. J. Liu, J. Chang, S. S.Zhang, S. M. wang and Y. R. Liu "Highly Efficient Raman Frequency Converter With Strontium Tungstate Crystal," IEEE J. Quantum Electron., vol.42, pp.78-84,2006.
    [64]A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun., vol.183, pp.277-287,2000.
    [65]V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser," Laser Phys. Lett., vol.3, pp.71-74,2006.
    [66]G. M. A. Gad and H. J. Eichler, "Highly efficient 1.3pμm second-Stokes PbWO4 Raman laser," Opt. Lett., vol.28, pp.426-428,2003.
    [67]Y. F. Chen, "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Opt. Lett., vol.29, pp.2172-2174,2004.
    [68]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253,2004.
    [69]Y, F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett., vol.29, pp.1915-1917,2004.
    [70]F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, and S. Z. Fan, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D., vol.39, pp. 2090-2093,2006.
    [71]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Electron., vol.42, pp.927-933,2006.
    [72]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp. 2632-2634,2004.
    [73]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.78, pp.685-687,2004.
    [74]T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode pumped 500-picosecond Nd:GdVO4 Raman laser," Laser Phys. Lett., vol.1, pp.237-240,2004.
    [75]J. Falk, R. Moshrefzadeh, "Oblique Raman and polariton scattering in lithium iodate,' IEEE J. Quantum Electron., vol.21, pp 110-113,1985.
    [76]J. T. Murray, W. L. Austin, R. C. Powell, in:W. R. Bosenberg, M. M. Fejer (Eds.), OSA Trends in Optics and Photonics on Advanced Solid State Lasers, Opt. S. A. Washington DC,1998.
    [77]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers," Opt. Commun., vol.194, pp. 201-206,2001.
    [78]J. R. O' Connor, "Unusual crystal-field energy levels efficient laser properties of YVO4:Nd," Appl. Phys. Lett., vol.9, pp.407-409,1966.
    [79]A. W. Tucher, M. Birnbaun, C. L. Fincher, and L. G. Deshazer, "Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm," J. Appl. Phys., vol.47, pp.232-234,1976.
    [80]A. W. Tucher, M. Birebaun, C. L. Fincher, and J. W. Erler, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys., vol.48, pp.4907-4911, 1977.
    [81]R. A. Fields, M. Birnbaum, and C. L. Fincher, "Highly efficient Nd:YVO4 diode-laser end-pumped laser," Appl. Phys. Lett., vol.51, pp.1885-1886,1987.
    [82]J. J. Zayhowski and C. Dill III, "Coupled-cavity electrooptically Q-switched Nd:YVO4 microchip lasers," Opt. Lett., vol.20, pp.716-718,1995.
    [83]Y. F. Chen, "Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers:influence of thermal fracture," IEEE J. Quantum Electron., vol.35, pp.234-239,1999.
    [84]T. Jensen, V. C. Ostroumov, J. P. Meyn, G Huber, A. I. Zaqumennyi, and I. A. Shcherbkov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B, vol.58, pp.373-379,1994.
    [85]V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett., vol.28, pp.2366-2368,2003.
    [86]T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuchi, and K. Kodaira, "Efficient laser performance of Nd:GdVO4 crystals grown by the floating zone method," Opt. Lett., vol.28, pp.2333-2335,2003.
    [87]C. P. Wyss, W. Luthy, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, and I. A. Shcherbakov, "Performance of a diode-pumped 5W Nd3+:GdVO4 microchip laser at 1.6 m," Appl. Phys. B, vol.68, pp.659-661,1999.
    [88]C. He and T. H. Chyba, "Solid-state barium nitrate Raman laser in the visible region,' Opt. Commun, vol.135, pp.273-278,1997.
    [89]H. M. Pask, S. Myers, and J. A. Piper, "High average power, all-solid-state external resonator Raman laser," Opt. Lett., vol.28, pp.435-437,2003.
    [90]G M. A. Gad and H. J. Eichler, "Highly efficient 1.3μm second-Stokes PbWO4 Raman laser," Opt. Lett., vol.28, pp.426-428,2003.
    [91]Y. Urata, S. Wada, H. Tashiro, and T. Fukuda, "Doping of an absorbent into a Raman crystal for suppression of higher-order Stokes generation," Opt. Lett., vol.25, pp. 752-754,2000.
    [92]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, S. S. Zhang, J. Chang, S. M. Wang, and Y. R. Liu, "Theoretical models for the extracavity Raman laser with crystalline Raman medium," Appl. Phys. B, vol.85, pp.89-95,2006.
    [93]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. Wang, and Y. Liu, "Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal," Opt. Express, vol.13, pp. 10120-10128,2005.
    [94]P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals," Opt. Mater., vol.11, pp.335-352,1999.
    [95]J. T. Murray, W. L. Austin, and R. C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater., vol.11, pp.353-371,1999.
    [96]A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, "Sub-nanosecond microchip laser with intracavity Raman conversion," Appl. Phys. B, vol.76, pp.509-514,2003.
    [97]H. Ogilvy, H. M. Pask, J. A. Piper, and T. Omatsu, "Efficient frequency extension of a diode-side-pumped Nd:YAG laser by intracavity SRS in crystalline materials," Opt. Commun., vol.242, pp.575-579,2004.
    [98]E. O. Ammann, "High-average-power Raman oscillator employing a shared-resonator configuratio," Appl. Phys. Lett., vol.32, pp.52-54,1978.
    [99]W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, "Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Opt. Commun., vol. 194, pp.401-407,2001.
    [100]A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, "Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Lett, vol.30, pp.1701-1703,2005.
    [101]R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, "Far infrared cw Raman laser gain in 14NH3," IEEE J. Quantum Electron., vol.17, pp. 1123-1127,1981.
    [102]M. Poelker and P. Kumar, "Sodium-Raman laser: direct measurements of the narrow-band Raman gain," Opt. Lett., vol.17, pp.399-401,1992.
    [103]A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, "Multimode pumped continuous-wave solid-state Raman laser," Opt. Lett., vol.29, pp.2524-2526,2004.
    [104]H. M. Pask, "Continuous-wave, all-solid-state, intracavity Raman laser," Opt. Lett., vol. 30, pp.2454-2456,2005.
    [105]V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser," Laser Phys. Lett., vol.3, pp. 71-74,2006.
    [106]L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, "High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,' Opt. Lett., vol.34, pp.1687-1689,2009.
    [107]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp. 2951-2953,2007.
    [108]H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, "Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite," Opt. Lett., vol.34, pp.2763-2765,2009.
    [109]H. Y. Zhu, Y. M. Duan, G Zhang, C. H. Huang, Y. Wei, H. Y. Shen, Y. Q. Zheng, L. X. Huang, and Z. Q. Chen, "Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light," Opt. Express, vol.17, pp.21544-21550,2009.
    [110]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [111]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, "Theoretical and experimental study on the-Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol. 18, pp.12111-12118,2010.
    [112]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp.3335-3337,2005.
    [113]H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, "Wavelength-versatile visible and UV sources based on crystalline Raman lasers,' Prog. Quantum Electron., vol.32, pp.121-158,2008.
    [114]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y Tu, "Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707,2008.
    [115]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, and H. J. Zhang, "Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm," Laser Phys. Lett., vol. 6, pp.363-366,2009.
    [116]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.78, pp.685-687,2004.
    [117]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253,2004.
    [118]V. E. Kisel, A. E. Troshin, N. A. Tolstik,V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Q-switched Yb3+:YVO4 laser with Raman self-conversion," Appl. Phys. B, vol.80, pp.471-473,2005.
    [119]J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, "Growth, properties and Raman shift laser in tungstate crystals," J. Cryst. Growth., vol.292, pp. 377-380,2006.
    [120]T. T. Basiev, M. E. Doroshenko, L.I. Ivleva,I. S. Voronina, V. A. Konjushkin, V. V. Osiko, and S. V. Vasilyev, " Demonstration of high self-Raman laser performance of a diode-pumped SrMoO:Nd3+ crystal," Opt. Lett., vol.34, pp.1102-1104,2009.
    [121]T. Omatsu, A. Lee, H. M. Pask, and J. Piper, "Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal," Appl. Phys. B, vol.97, pp.799-804,2009.
    [122]T. T. Basiev, S. N. Smetanin, A. V. Fedin, and A. S. Shurygin, "Intracavity SRS conversion in diode-pumpedmultifunctional Nd+:SrMoO4 laser crystal," Quantum Electron., vol.40, pp.704-709,2010.
    [123]A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, "High efficiency, multi-Watt C W yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,' Opt. Express, vol.16, pp.21958-21963,2008.
    [1]H. M. Pask, "Review design and operation of solid-state Raman lasers," Prog. Quantum Electron., vol.27, pp.3-56,2003.
    [2]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp. 307-314,1999.
    [3]H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron., vol.36, pp.949-955,2000.
    [4]J. Simons, H. M. Pask, P. Dekker, J. Piper, "Small-scale, all-solid-state, frequency-doubled ntracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Opt. Commun., vol.229, pp.305-310,2004.
    [5]T. Murrayj, R. C. Power, and N. Peyghambarian, "Properties of stimulated Raman scattering in crystals," Lumin, vol.66 & 67, pp.89-93,1996.
    [6]T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [7]J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quantum Electron., vol.13, pp.692-704,2007.
    [8]A. Cereyon, B. Champagnon, V. Martinez, L. Maksimov, O. Yanush, and V. N. Bogdanov, "xPbO-(1-x)GeO2 glasses as potential materials for Raman amplification," Opt. Mater., vol.28, pp.1301-1304,2006.
    [9]M. D. O'Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater., vol.30, pp.946-951,2008.
    [10]R. Jose, G. Qin, Y. Arai, and Y. Ohishi, "Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers," J. Opt. Soc. Am. B., vol. 25, pp.373-382,2008.
    [11]V. G. Plotnichenko, V. O. Sokolov, and V. V. Koltashev, "Dianov Raman band intensities of tellurite glasses," Opt. Lett., vol.30, pp 1156-1158,2005.
    [12]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman Scattering," Opt. Mater., vol.11, pp.307-314,1999.
    [13]T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers," Applied Optics., vol.38, pp.594-598,1999.
    [14]P. Cerny and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp.360-362,2002.
    [15]C. Rivero, R. Stegeman, M. Couzi, D. Talaga, T. Cardinal, K. Richardson, and G. Stegeman, "Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses," Opt. Express., vol.13, pp.4759-4769,2005.
    [16]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet," IEEE J. Quantum Electron., vol.38, pp.1471-1478,2002.
    [17]P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Evaluation of BaWO4 steady-state Raman gain in single- and double-pass," Arrangement Advanced Solid-State Lasers., vol.50, pp.225-230,2001.
    [18]周炳琨等,“激光原理,”国防工业出版社,2009.
    [19]王青圃等,“激光原理,”山东大学出版社,2003.
    [20]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [21]P. Cerny, H. Jelnkov, P. G. Zverev, T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quantum Electron., vol.28, pp.113-143,2004.
    [22]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4- new efficient χ(3)- materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [23]J. Findeisen, H. J. Eichler, and P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Opt. Commun., vol.181, pp.129-133,2000.
    [24]R. Stegeman, C. Rivero, G. Stegeman, P. Delfyett, "Raman gain measurements in bulk glass samples," J. Opt. Soc. Am. B., vol.22, pp.1861-1867,2005.
    [25]V. A. Lisinetskii, S. V. Rozhok, D. N. Bus'ko, R. V. Chulkov, A. S. Grabtchikov, V. A. Orlovich, T. T. Basiev, and P. G. Zverev, "Measurements of Raman gain coefficient for barium tungstate crystal," Laser Phys. Lett., vol.2, pp.396-400,2005.
    [26]M. Katsuragawa and K. Hakuta, "Raman gain measurement in solid parahydrogen," Opt. Lett., vol.25, pp.177-179,2000.
    [27]V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, "Raman band intensities of tellurite glasses," Opt. Lett, vol.30, pp.1156-1158,2005.
    [1]Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett., vol.29, pp.1915-1917,2004.
    [2]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp. 2632-2634,2004.
    [3]F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D:Appl. Phys., vol.39, pp.2090-2093,2006.
    [4]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp. 3335-3337,2005.
    [5]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [6]R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express, vol.12, pp. 785-790,2004.
    [7]H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, "Wavelength-versatile visible and UV sources based on crystalline Raman lasers," Prog. Quantum Electron., vol.32, pp.121-158,2008.
    [8]H. Y. Zhu, Y. M. Duan, G, Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, "Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite," Opt. Lett., vol.34, pp.2763-2765,2009.
    [9]H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, H. Y. Shen, Y. Q. Zheng, L. X. Huang, and Z. Q. Chen, "Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light," Opt. Express, vol.17, pp.21544-21550,2009.
    [10]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [11]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol. 18, pp.12111-12118,2010.
    [12]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, "Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707,2008.
    [13]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, and H. J. Zhang, "Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10 W at 1180 nm,"Laser Phys. Lett, vol.6, pp. 363-366,2009.
    [14]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol.78, pp.685-687,2004.
    [15]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253,2004.
    [16]V. E. Kisel, A. E. Troshin, N. A. Tolstik,V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, "Q-switched Yb3+:YVO4 laser with Raman self-conversion,"Appl. Phys. B, vol.80, pp.47-473,2005.
    [17]J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, "Growth, properties and Raman shift laser in tungstate crystals," J. Cryst. Growth., vol.292, pp. 377-380,2006.
    [18]T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, I. S. Voronina, V. A. Konjushkin, V. V. Osiko, and S. V. Vasilyev, " Demonstration of high self-Raman laser performance of a diode-pumped SrMoO:Nd3+ crystal," Opt. Lett., vol.34, pp.1102-1104,2009.
    [19]T. Omatsu, A. Lee, H. M. Pask, and J. Piper, "Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal," Appl. Phys. B, vol.97, pp. 799-804 (2009).
    [20]T. T. Basiev, S.N. Smetanin, A.V. Fedin, and A.S. Shurygin, "Intracavity SRS conversion in diode-pumpedmultifunctional Nd3+:SrMoO4 laser crystal," Quantum Electron., vol. 40, pp.704,2010.
    [21]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt. Mater., vol.23, pp. 439-442,2003.
    [22]S. P. Porto and J. F. Scott, "Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4,' Phys. Rev., vol.157, pp.716-719,1967.
    [23]T. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in Zinc Oxide," Phys. Rev., vol. 142, pp.570-574,1966.
    [24]J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, "Growth and thermal properties of SrWO4 single crystal," J. Appl. Phys., vol. 100, pp.061513-063513-6,2006.
    [25]S. P. S. Porto, and J. F. Scott, "Raman Spectra of CaWO4, SrWO4, CaMoO4, and SrMo04," Phys. Rev., vol.157, pp.716-719,1967.
    [26]T. T. Basiev, A. A. Sobol, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216, 2000.
    [27]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314,1999.
    [28]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt.Mater., vol.23, pp. 439-442,2003.
    [29]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [30]J. Sulc, H. Jelinkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, and P. G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater., vol.30, pp.195-197, 2007.
    [31]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, "Highly efficient Raman rrequency converter with strontium tungstate crystal," IEEE J. Quantum Electron., vol.42,78-84,2006.
    [32]Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia and C. Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,' Appl. Phys. B, vol.93, pp.327-330,2008.
    [33]L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, "Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser," Appl. Phys. B, vol.94, pp.553-557,2009.
    [34]Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z.J. Zhu, F. G. Yang, Z. Y. You, "Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser," Laser Phys. Lett., vol.7, pp. 491-494,2010.
    [35]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, "Optimization of Cr+Doped Saturable-Absorber Q-Switched Lasers," IEEE J. Quantum Electron., vol.33, pp.2286-2294,1997.
    [36]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, " Modeling of passively Q-switched lasers," J. Opt. Soc. Am. B, vol.17, pp.1166-1175,2000.
    [37]S. H. Ding, X. Y. Zhang, Q. P. Wang, J. Zhang, S. M. Wang, Y. R. Liu, and X. H. Zhang, "Numerical modelling of passively Q-switched intracavity Raman lasers," J. Phys. D: Appl. Phys., vol.40, pp.2736-2747,2007.
    [38]V. Petrov, M. C. Pujol, X. Mateosl, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, "Growth and properties of KLu(WO4)2,and novel ytterbium and thulium lasers based on this monoclinic crystalline host," Laser & Photon. Rev., vol.1, pp.179-212,2007.
    [39]X. Mateos, V. Petrov, M. Aguilo, R.M. Sole, J. Gavalda, J. Massons, F. Diaz, and U. Griebner, "Continuous-wave laser oscillation of Yb3+in monoclinic KLu(WO4)2,' IEEE J. Quantum Electron., vol.40, pp.1056-1059,2004.
    [40]J. Zhang, J. Wang, H. Zhang, F. Xu, Z. Wang, Z. Shao, H. Zhao, and Y. Wang, "Growth and diode-pumped CW lasing of Nd:KLu(WO4)2," J. Cryst. Growth, vol. 284, pp.108-111,2005.
    [41]X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, "Efficient 2-μm continuous-wave laser oscillation of Tm3+ KLu(WO4)2," IEEE J. Quantum Electron., vol.42, pp.1008-1015,2006.
    [42]A. A. Kaminskii, K. Ueda, H. E. Eichler, J. Findeisen, S. N. Bagaev, F. A. Kuznetsov, A. A. Pavlyuk, G. Boulon, and F. Bourgeois, "Monoclinic tungstates KDy(WO4)2 and KLu(WO4)2:New χ(3)-active crystals for laser Raman shifters," Jpn. J. Appl. Phys., vol.37, pp. L923-L926,1998.
    [43]J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, "Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion," Opt. Lett., vol.30, pp.2427-2429,2005.
    [44]Z. H. Cong, X. Y. Zhang, Q. P. Wang, X. H. Chen, S. Z. Fan, Z. J. Liu, H. J. Zhang, X. T. Tao, J. Y, Wang, H. Y. Zhao, and S. T. Li, "The characteristics of intracavity Nd:YAG/KLu(WO4)2 Raman laser," Laser Phys. Lett., vol.7, pp.862-866,2010.
    [45]Z. H. Cong, X. Y. Zhang, Q. P. Wa ng, X. H. Chen, S. Z. Fan, Z. J. Liu, H. J. Zhang, X. T. Tao, J. Y. Wang, H. Y. Zhao, and S. T. Li, "Multi-wavelength operation of intracavity Nd:YAG/KLu(WO4)2 Raman laser," Photonics Global Conference (PGC), pp.1-3, 2010.
    [46]V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, "Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host," Laser & Photon. Rev., vol. 1, pp.179-212,2007.
    [47]J. Hanuza, and L. Macalik, "Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln=Sm—Lu, Y)," Apectrochimica Acta Part A: Molecular Spectroscopy, vol.43, pp.361-373,1987.
    [1]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaW04 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953, 2007.
    [2]H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, "Wavelength-versatile visible and UV sources based on crystalline Raman lasers," Prog. Quantum Electron., vol.32, pp.121-158,2008.
    [3]H. Y. Zhu, Y. M. Duan, G。 Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, "Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite," Opt. Lett., vol.34, pp.2763-2765,2009.
    [4]H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, H. Y. Shen, Y. Q. Zheng, L. X. Huang, and Z. Q. Chen, "Efficient second harmonic generation of double-end diffusion-bonded Nd:YYO4 self-Raman laser producing 7.9 W yellow light," Opt. Express, vol.17, pp.21544-21550,2009.
    [5]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett., vol.34, pp.2610-2612,2009.
    [6]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol. 18, pp.12111-12118,2010.
    [7]R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express, vol.12, pp. 785-790,2004.
    [8]T. Omatsu, A. Lee, H. M. Pask, and J. Piper, "Passively Q-switched yellow laser formed by self-Raman composite Nd:YVO4/YVO4 crystal," Appl. Phys. B Lasers and Opt., vol 97, pp.799-804,2009.
    [9]A. Hamano, S. Pleasants, M. Okida, M. Itoh, T. Yatagai, T. Watanabe, M. Fujii, Y. Iketaki, K. Yamamoto, and T. Omatsu, "Highly efficient 1181 nm output from a transversely diode-pumped Nd3+:KGd(WO4)2 self-stimulating Raman laser," Opt. Commun., vol.260, pp.675-679,2006.
    [10]A. A. Demidovichl, P. A. Apanasevich, and L. E. Batay, "Sub-nanosecond microchip laser with intracavity Raman conversion," Appl. Phys. B:Lasers Opt., vol.76, pp. 509-514,2003.
    [11]W. B. Chen, Y. J. Inagawa, and T. Omatsu, "Diode-Pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Opt. Commun., vol.194, pp.401-407,2001.
    [12]Y. V. Loiko, A. A. Demidovichl, and A. P. Voitovich, " Stokes pulse energy of Q-switched lasers with intracavity Raman conversion," J. Opt. Soc. Am. B, vol.22, pp. 2450-2458,2005.
    [13]A. A. Demidovichl, S. V. Voitikov, L. E. Batay, A. S. Grabtchikov, M. B. Danailov, V. A. Lisinetskii, A. N. Kuzmin, and V. A. Orlovich, "Modeling and experimental investigation of short pulse Raman microchip laser," Opt. Commun., vol.263, pp.52-59, 2006.
    [14]S. H. Ding, X. Y. Zhang, Q. P. Wang, J. Zhang, S. M. Wang, Y. R. Liu, and X. H. Zhang, "Numerical modelling of passively Q-switched intracavity Raman lasers," J. Phys. D: Appl. Phys., vol.40, pp.2736-2747,2007.
    [15]X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, "Theory of intracavity-frequency-doubled solid state four level lasers," Sci. China Ser. E, vol.45, pp.130-139,2002.
    [16]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus and H. Weber, "Modeling of passively Q-switched lasers," J. Opt. Soc. Am. B, vol.17, pp.1166-1175,2000.
    [17]S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, " Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers," Appl. Phys. B:Lasers and Opt, vol 104, pp.819-827,2011.
    [18]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, "Highly efficient diode-pumped actively Q-switchedNd:YAG-SrWO4 intracavity Raman laser," Opt. Lett., vol.33, pp.705-707 (2008).
    [19]Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal," Appl. Phys. B, vol.93, pp.327-330,2008.
    [20]J. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in Zinc Oxide," Phys. Rev., vol. 142, pp.570-574,1966.
    [21]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. zverev, V. V. Osiko, and N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt. Mater., vol.23, pp.439-442, 2003.
    [22]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [23]F. Cornacchia, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, and N. Magnani, "Optical spectroscopy of SrWO4:Nd3+single crystals," J. Phys. Condens. Matter., vol.16, pp. 6867-68876,2004.
    [24]B. Alain, G. H. Jia, and C. Y. Tu, "Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd3+ crystal," J. Phys. Condens. Matter., vol.16, pp.9103-9108,2004.
    [25]J. C. Damen, S. P. S. Porto, and B. Tell, "Raman effect in Zinc Oxide," Phys. Rev., vol. 142, pp.570-574,1966.
    [26]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J Liu, J. Chang, S. S.Zhang, S. M. wang and Y. R. Liu "Highly Efficient Raman Frequency Converter With Strontium Tungstate Crystal," IEEE J. Quantum Electron., vol.42, pp.78-84,2006.
    [27]W. W. Ge, H. J. Zhang, and Y. J. Wang, "The thermal and optical properties of BaWO4 single crystal," J. Crystal Growth, vol.276, pp.208-214,2005.
    [28]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314(1999).
    [29]T. T. Basiev, P.G. Zverev, A. A. Sobol, V. V. Fedorov, M. E. Doroshenko, V. V. Skomyakov, L. I. Ivleva, and V. V. Osiko, "Perspectives of tungstate crystals for Raman lasers," Novel Lasers and Applications-Basic Aspects, Washington DC, pp. LWB6, 1999.
    [30]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [31]P. Cerny, and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp.360-362,2002.
    [32]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet," IEEE J. Quantum Electron., vol.38, pp.1471-1478,2002.
    [33]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun., vol.209, pp.403-409,2002.
    [34]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Opt. Lett., vol.30, pp. 3335-3337,2005.
    [35]J. Sulc, H. Jelinkova, T. T. Basiev, M. E. Doroschenko, L. I. Ivleva, V. V. Osiko, and P. G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater., vol.30, pp.195-197, 2007.
    [36]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp. 2951-2953,2007.
    [37]L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, "High efficiency continuous-wave Raman conversion with a BaW04 Raman crystal," Opt. Lett., vol.34, pp.1687-1689,2009.
    [38]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, C. Zhang, H. H. Xu, H. J. Zhang, and X. T. Tao, "Diode-pumped actively Q-switched intracavity BaWO4 Raman laser with a ceramic Nd:YAG as the gain medium," CLEO/Pacific Rim 2009 Shanghai, China,2009.
    [39]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Express, vol.18, pp.5984-5992,2010.
    [40]Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, "Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Express, vol.18, pp.12111-12118,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700