侧面泵浦Nd:YAG-KGW波长捷变喇曼激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了侧面泵浦Nd:YAG-KGW波长捷变固体喇曼激光器技术。
     为研发多功能集成一体小型化的可控多波长固体激光器,尝试解决两个技术问题:(1)传导冷却方式下,泵浦与散热之间的“空间干涉”问题;(2)多波长激光器的波长受控输出即“波长捷变”问题。针对这两个技术问题,提出了两个相应的技术解决方案:分布式侧面泵浦技术和可控多波长固体喇曼激光器波长快速切换受控输出技术。
     首先研究了喇曼基波源激光模块的分布式侧面泵浦技术。设计了分段间隔侧泵结构,提出并设计了交错分布补偿式侧泵结构;进行了热光效应仿真;设计了两个分段间隔侧泵的1064nm激光器验证实验,从实验层面上检验了方法和技术的有效性。理论分析和实验结果表明:分布式侧泵平衡了泵浦与散热之间的“空间冲突”,减小了激光棒径向平均温度梯度,减少了热光危害。
     其次研究了固体喇曼激光器的波长受控输出技术。设计了双波长捷变的‘T’型腔方案:利用钨酸钆钾KGd(WO_4)_2喇曼晶体(KGW)的偏振依靠属性,并借助λ/2电光偏振开关实现两个一级喇曼线的双波长捷变。提出并设计了两个新型谐振腔—‘H’型腔和喇曼可扩展腔,来实现喇曼激光器的多波长捷变运转。
     最后对分布式侧面泵浦波长捷变固体喇曼激光器进行了实验研究。设计了一个单波长运转的喇曼激光器实验,从实验层面考查了采用分段间隔侧泵激光器模块作为喇曼激光器基波源的应用效果及仿真计算的有效性,实验获得最大脉冲能量126mJ、峰值功率21MW,Diode-Stokes光-光效率18.2%;设计了分段间隔侧泵双波长捷变固体喇曼激光器实验,从实验层面考查了双波长快速切换受控输出技术的有效性。输出1177nm(1159nm)波长时,脉冲能量达114mJ(98mJ) ,峰值功率为19MW(15MW) , Diode-Stokes光-光效率为15.3%(13.2%);对于采用传导致冷方式的Nd:YAG-KGW喇曼激光器,这些指标是迄今为止最好的指标。
     研究表明:分布式侧泵是解决“空间冲突”,摆脱复杂液冷装置的有效方法;波长快速切换受控输出技术是实现多波长调制和编码的有效解决方案。
This thesis focuses on a segmented circular LD arrays side-pumped all-solid-state Nd:YAG /KGd(WO_4)_2 Raman laser operating in wave-agility.
     Side-pumped geometry design of lasers concerns on how to solve the space conflict between pump and heat-removal device due to the demands for larger lateral surface of a laser rod. The thesis tries to provide a configuration of the segmented periodical side pumping to get rid of the complex liquid cooling system and balance the space conflict. It has probably potential to be used in compact and miniature laser systems, especially in low and medium power applications.
     The investigation of wavelength-agility lidar focuses on how to solve the quick wavelength-switch among multiwave. The thesis tries to provide a practical method of quick wavelength-switch to realize the wavelength-selective, output-modulated and coding operation in a solid-state Raman laser.
     First, segmented circular LD arrays side-pumped and the side-pumped structure with alternating compensated arrangement have been proposed to solve the space conflict between pump and heat-removal device. Design optimization and simulation on the temperature distribution and the thermo-optic effects of laser rods have been performed. Two experiments on segmented side-pumped Nd: YAG a laser rod have also been carried out to verify the availability of side-pumped geometry design. The results indicate the conflict can be balanced better by the segmented side-pumped geometry in a periodical arrangement between circular LD arrays and holders. This novel design has great potential to be used in compact and miniature laser systems.
     Next,the quick wavelength-switch among multiwave of Raman laser has been investigated. The three designs of T-shape folded cavity configuration, H-shape and Raman extended cavity configuration have been demonstrated. The investigation focuses on T-shape folded cavity configuration. Aλ/2 electro-optical switch SW was introduced in the configuration, by which we can conveniently control the linear polarization direction of fundamental beam. By virtue of the polarization-dependent property of KGd(WO_4)_2 crystal, the purpose of controlling and selecting Raman wavelengths can be finally reached. The related parameters in Raman laser have been calculated. The simulation on thermal loading in Raman crystal and the curvature optimization of Raman mirrors have also been performed.
     The experiment of segment-pumped Nd:YAG-KGW Raman laser operating in 1177nm validated that the fundamental resource employing segmental side-pumped Nd:YAG module is available in intracavity Raman laser. A maximum pulse energy of 126mJ and a peak power of 21MW are achieved, corresponding to an overall Diode-Stokes conversion efficiency of 18.2%. The experimental results support the validity of calcaulation and simulation in Raman laser.
     Finally, the experimental investigation on a segmented circular LD arrays side-pumped all-solid-state Nd: YAG /KGd(WO_4)_2 Raman laser operating in two colors modulation has been carred out. The output wavelength can be switched quickly between 1159nm and 1177nm and the Raman output modulated in spectra-time domains was achieved. Raman pulse energy up to 114mJ at 1177nm and 98mJ at 1159nm were obtained respectively, corresponding to an overall Diode-Stokes conversion efficiency of 15.3% at 1177nm and 13.2% at 1159nm. To our knowledge, these are the best performance reported to date for an EO Q-switched tunable folded cavity Nd:YAG-KGW Raman laser with conductive cooling and air exchanging.
     The investigation reveals that the segmented LD arrays side-pumped configuration provides a way to get rid of the complex liquid cooling system and the quick wavelength-switch among multiwave of Raman laser provides a solution to realize the output-modulated and coding operation in spectra-time domains.
引文
[1] T. H. Maiman. Stimulated optical radiation in ruby. Nature 1960, 187: 493-494.
    [2]周炳琨.激光原理.第4版,北京:国防工业出版社, 2000.
    [3]李适民.激光器件原理与设计.北京:国防工业出版社, 1998.
    [4]曹三松.高功率半导体激光器评述.激光技术2000, 24(4): 203-207.
    [5] O. Svelto. Principles of lasers. 4th ed, New York: Plenum Press, 1998.
    [6] T. Y. Fan and R. L. Byer. Diode laser-pumped solid-state lasers. IEEE Journal of Quantum Electronics 1988, 24(6):895-912.
    [7]吕百达.固体激光器件.北京:北京邮电大学出版社, 2002
    [8]蓝信钜.激光技术.北京:科学出版社,2005.
    [9] C. V. Raman and K. S. Krishnan. A new type of secondary radiation. Nature 1928, 121: 501-502.
    [10]姚建铨.非线性光学频率变换及激光调谐技术.北京:科学出版社, 1995.
    [11] E. J. Woodbury and WK Ng. Ruby laser operation in the near IR. Proc. IRE 1962, 50: 2367.
    [12] E. O. Amman and J. Falk. Stimulated Raman scattering at KHz pulse repetition rates. Appl. Phys. Lett. 1975, 27: 662.
    [13] E. O. Amman. Simultaneous simulated Raman scattering and optical frequency mixing in lithium iodate. Appl. Phys. Lett. 1979, 34: 838.
    [14] A. S. Eremenko, S. N. Karpukhin, and A. I. Stepanov. Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals. Sov. J. Quantum Electron. 1980, 10:113.
    [15]张承铨.国外军用激光仪器手册.北京:兵器工'业出版社, 1989.
    [16] J. A. piper and H. M. Pask. Crystalline Raman Lasers. IEEE Journal of Selected Topics in Quantum Electronics 2007, 13: 692-704.
    [17] T. T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko,R.C. Powell. Raman spectroscopy of crystals for stimulated Raman scattering. Optical Materials 1999, 11: 307-314.
    [18] T. T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko,R.C. Powell. Comparative spontaneous Raman spectroscopy of crystals for Raman lasers. Appl. Opt. 1999, 38(3): 594-598.
    [19] P. G. Zverev, T.T. Basiev, V.V. Osiko, A.M. Kulkov,V.N. Voitsekhovskii, V.E. Yakobson.Physical, chemical and optical properties of barium nitrate Raman crystal. Optical Materials 1999, 11: 315-334.
    [20] T. T. Basiev, V. N. Voitsekhovskii, P. G. Zverev, F. V. Karpushko, A. V. Lyubimov, S. B. Mirov, V. P. Morozov, I. V. Mochalov, A. A.Pavlyuk, G. V. Sinitsyn, V. E. Yakobson. Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2? color centers by stimulated Raman scattering in Ba(NO_3)_2 and KGd(WO4)2 crystals. Sov. J. Quantum Electron. 1987, 17: 1560
    [21] J. T. Murray, R. C. Powell, and N. Peyghambarian. Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO_3)_2 nonlinear crystals. Opt. Lett. 1995, 20: 1017
    [22] E. O. Amman. Simultaneous simulated Raman scattering and optical frequency mixing in lithium iodate. Appl. Phys. Lett. 1979, 34: 838
    [23] H. M. Pask and J. A. Piper. Diode-pumped LiIO3 intracavity Raman lasers. IEEE J. Quantum Electron. 2000, 36:949
    [24] C. Zhang, X. Y. Zhang, Q. P. Wang, S. Z. Fan, X. H. Chen, Z. H. Cong, Z. J. Liu, Z. Zhang, H. J. Zhang and F. F. Su. Efficient extracavity Nd:YAG/BaWO4 Raman laser. Laser Phys. Lett. 2009, 6: 505
    [25] Li Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal. Opt. Lett. 2009,34: 1687
    [26] A. I. Vodchits, V. A. Orlovich, P .A. Apanasevich, T.T. Basiev, P.G. Zverev. Nonlinear optical properties of BaWO4 crystal. Optical Materials 2007, 29: 1616–1619.
    [27] Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. H. Fan, H. J. Zhang, and X. T. Tao. Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser. Opt. Lett. 2009, 34: 2610
    [28] X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, Z. J. Liu, S. Z. Fan, and H. J. Zhang. Diode side-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser with high average output power of over 10W at 1180nm. Laser Phys. Lett. 2009, 6: 363
    [29] H. Ogilvy, H. M. Pask, and J. A. Piper. All-solid-state, multi-kilohertz. 1.5μm intracavity Raman laser based on Nd:YVO4 and KGd(WO4)2. OSA/ASSP. 2004, 94:325
    [30] A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu. Tetragonal vanadates YVO4 and GdVO4-new efficientχ(3)-materials for Raman lasers. Opt. Commun. 2001, 194: 201
    [31] H. M. Pask. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 2003, 27: 1
    [32] I. V. Mochalov. Laser and nonlinear properties of the potassium gadolinium tungstate lasercrystal KGd(WO4)2(KGW:Nd). Opt. Eng. 1997, 36: 1660
    [33] R. Barbucha, M. Kocik, J. Mixeraczyk, G. Koziol, and J. Borecki. Laser direct imaging of high-density interconnect patterns on PCB. in Workshop on Laser Applications in Europe. W. Gries, and T. P. Pearsall, eds. (SPIE, Dresden GERMANY, 2006), pp. L1570
    [34] G. Hennig, K.-H. Selbmann, and A. Brockelt. Laser Engraving in Gravure Industry. In Workshop on Laser Applications in Europe (SPIE, Dresden, Germany, 2006), p. 61570.
    [35] K. L. Boehlen, P. T. Rumsby, N. Sykes, and C. Lefevre. High speed laser cutting of microstructures with submicron details. in Conference on High-Power Laser Ablation VI, C. R.Phipps, ed. (SPIE, Taos, NM, 2006), pp. F2611-F2611.
    [36] I. Mys, and M. Schmidt. Laser micro welding of copper and aluminum. in Conferenceon Laser-Based Micropackaging (SPIE, San Jose, CA, United States, 2006), p. 610703.
    [37] A. S. Holmes, J. E. A. Pedder, and K. L. Boehlen. Advanced laser micromachining processes for MEMS and optical applications. in Conference on High-Power Laser Ablation VI, C. R. Phipps, ed. (SPIE, Taos, NM, 2006), pp. E2611-E2611.
    [38]袁启明.激光技术在医学领域的应用与发展.现代医学仪器与应用2007, 19(5): 26-32
    [39]羊毅;陆祖康;周海宪;邹盛怀.激光技术在武器系统中的应用.应用光学2000, S1:5-8.
    [40]付伟,军用激光技术的发展现状.电光与控制1996, 1:23-30.
    [41]郭纲,周伟,叶名兰.激光技术在导弹和空天对抗中的应用.飞航导弹2009, 2:40-43.
    [42] W. Koechner. Solid-State Laser Engineering. New York: Springer Sci. Business Media. 2006
    [43] D. L. Yu and D. Y. Tang. Experimental Study of a High_Power CW Side-Pumped Nd:YAG Laser. Opt.Laser Tech. 2003, 35: 37
    [44] B. T. Zhang, X. L. Dong, J. L. He, H. T. Huang, K. J. Yang, C. H. Zuo, J. L. Xu, and S. Zhao. High-power eye-safe intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser. Laser Phys. Lett. 2008, 5: 869
    [45] H. Bruesselbach and D.S.Sumida. A 2.65-kW Yb:YAG Single-Rod Laser. IEEE J. Sel. Topics Quantum Electron. 2005, 11: 600
    [46] V. Kubeccaronek, W. Zendzian, J.K. Jabczynski, J. Kwiatkowski, H. Jelinkova, A. Stintz, and J. C. Diels。Side pumped Nd:YAG slab laser mode-locked using multiple quantum well saturable absorbers. Laser Phys. Lett. 2008, 5: 29
    [47] Y. X. Guo, M.L. Gong, H.Z. Xue, C. Li, P. Yan, Q. Liu, and G. Chen. Laser diodes semicircular side-pumped laser rod with a round-shaped output. Laser Phys. Lett. 2006, 3: 345
    [48] T. Ishii. Conduction-Cooled Solid-State Laser System for Satellite. Patent No. JP 135859,1999
    [49] M. J Gething AMRAES(Edited). Jane’s Electro-Optics Systems. 2006-2007(12). Great Britain: Cambridge University Press.
    [50] M. J. Gething AMRAES(Edited). Jane’s Electro-Optics Systems 2007-2008(13). Kings Lynn: Biddles Ltd,.
    [51]孙晓泉,吕跃广.激光对抗原理.北京:解放军出版社, 2000
    [52]刘京郊.光电对抗技术与系统.北京:中国科学技术出版社, 2004.
    [53]闫秀生.激光导引头波门型式的分析及超前同步干扰概念的提出.中国电子学会光电对抗与无源干扰专题研讨会.黄山.1994. 143-146
    [54] C. S. Naiman, and S. D. Pompian, MULTI-COLOR, MULTI-PULSE LASER. Patent No. US6199794 B1, 2001
    [55]李港.激光频率的变换与扩展--实用非线性光学技术.北京:科学出版社, 2005.
    [56]丁振东,邢晖,等.激光测距的高重频干扰分析.光电技术应用2007, 22(2): 1-3.
    [57]周治伟,孙晓泉等.激光测距干扰与反干扰技术研究.红外与激光工程2005, 34(6): 646-650.
    [58]安化海,闫秀生,郑荣山.激光制导信号的编码分析与识别处理技术.光电对抗及无源干扰1996,(3):26-30.
    [59]童忠诚.激光导引头与激光告警机编码识别技术比较.光电技术与系统文选.第十一届全国光电技术与系统学术会议.电子工业出版社, 2005.
    [60] Thomas E. Bayston, et al. Pulse code recognition and system. U.S Patent No.5023888, Jun.11, 1991.
    [61] Thomas E. Bayston, et al. Method and system for pulse interval modulation. U.S. Patent No.5026125, Jun.25, 1991
    [62]侯振宁.激光有源干扰原理及技术.光机电信息2002, 21(3): 4-6
    [63]童忠诚.激光角度欺骗干扰效能分析.航天电子对抗2003, 5: 43-45
    [64] H. Bruesselbach and D. S. Sumida. High-Power Side-Diode-Pumped Yb:YAG Laser. OSA/ASSP. 1997, 10: 285-287.
    [65] N. Pavel, Y. Hirano, S. Yamamoto, Y. Koyata, and T. Tajime. Improved pump-beam distribution in a diode side-pumped solid-state laser with a highly diffuse, cross-axis beam delivery system. Appl. Opt. 2000, 39(6): 986-992.
    [66] S. Lee, S. K. Kim, M. Yun, H. S. Kim, B. H. Cha, and H. J. Moon. Design and fabrication of a diode-side-pumped Nd:YAG laser with a diffusive optical cavity for 500-W output power. Appl. Opt. 2002, 41(6): 1089-1094.
    [67] S. Fujikawa, K. Furuta, and K. Yasui. 28% electrical-efficiency operation of a diode-side-pumped Nd:YAG rod laser. Opt. Lett. 2001, 26(9): 602-604.
    [68] S. Fujikawa, K. Furuta, S. Koimo, T. Kojima, and K. Yasui. 1-kW high-quality beam generation from a diode-side-pumped Nd:YAG rod laser. OSA/ASSP. 2002, 68: 543-546.
    [69] K. Furuta, T. Kojima, S. Fujikawa, and J. I. Nishimae. Diode-pumped 1 kW Q-switched Nd:YAG rod laser with high peak power and high beam quality. Appl. Opt. 2005, 44(19): 4119-4122.
    [70] H. M. Pask, S. Myers, and J. A. Piper. High average power, all-solid-state external resonator Raman laser. Opt. Lett. 2003, 28(6): 435-437.
    [71] S. H. Ding, X. Y. Zhang, Q. P Wang, J. Chang, S. M. Wang, and Y. Liu. Modeling of Actively Q-Switched Intracavity Raman Lasers. IEEE J. Quantum Electron. 2007, 43(8): 722-729.
    [72] Y. F. Chen. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal. Opt. Lett. 2004, 29(18): 2712-2714.
    [73] Y. F. Chen. High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration. Opt. Lett. 2004, 29(16): 1915-1917.
    [74] X. H. Chen, X.Y. Zhang, Q.P. Wang, P. Li, and Z.H. Cong. Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser. Laser Phys. Lett. 2009, 6(1):26–29.
    [75] J. T. Murray and W. L. Austin, 2.5W Eye-safe Solid-state Raman Laser. OSA/ASSP. 1999,26: 575-578
    [76] T. T. Basieva, Y. K. Danileikoa, M. E. Doroshenkoa, A. V. Fedin, A. V. Gavrilov, V. V. OSjkOa, and S. N. Smetanin. High-Energy BaWO4 Raman Laser Pumped by a Self-Phase-Conjugated Nd:GGG laser. Laser Optics 2003 V. E. Sherstobitov, L. N. Soms, ed. Proc. of SPIE Vol. 5481: 23-26.
    [77] T. T. Basieva, Y. K. Danileikoa, M. E. Doroshenkoa, and V. V. OSjkOa, S. N. Smetanin. Powerful BaWO4 Raman laser pumped by a self-phase-conjugated Nd:YAG and Nd:GGG lasers. OSA/ASSP 2004, TuB11
    [78] H. M. Pask and J. A. Piper. Efficient all-solid-state yellow laser source producing 1.2-W average power. Opt. Lett. 1999, 24(21): 1490-1492.
    [79] X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu. Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser. Opt. Lett. 2008,33(7): 705-707.
    [80] L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal. Opt. Lett. 2009, 34(11): 1687-1689.
    [81] X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z.H. Cong. Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser. Laser Phys. Lett. 2009, 6(1): 26-29.
    [82] N. Takei, S. Suzuki, and F. Kannari. 20-Hz operation of an eye-safe cascade Raman laserwith a Ba(NO_3)_2. Appl. Phys. B. 2002,74: 521
    [83] Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen. Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission. Opt. Express 2008, 16: 8286-8291.
    [84] R. P. Mildren, H. M. Pask and J. A. Piper. High-Efficiency Raman converter generating 1.5W of red-orange output. OSA/ASSP 2006, MC3.
    [85] R. P. Mildren, M. Convery, H. M. Pask and J. A. Piper. Efficient, all-solid-state, Raman laser in the yellow, orange and red. Opt. Express. 2004,12:785
    [86] R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper. Discretely tunable, all-solid-state laser in the green, yellow, and red. Opt. Lett. 2005,30: 1500
    [87] R. P. Mildren, H. Ogilvy, and J. A. Piper. Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320nm. Opt. Lett. 2007,32:814
    [88] J. P. Ning, Z. Q. Cai, Z. Q. Chen, Y. Q. Zhan. Study on Uniform of Pump Distributivity in a LD Side-Pumped Nd∶YAG Laser. CHINESE JOURNAL OF LASERS 2004,31(4):390~394
    [89] Y. Chen, B. Chen, M. K. R. Patel, M. Bass. Calculation of thermal-gradient-induced stress birefringence in slab lasers. IEEE J. Quantum Electron.,2004,40(7):909~916
    [90] Q. Lu, U. Wittrock, S. Dong. Photoelastic effects in Nd: YAG rod and slab lasers. Optics & Laser Technology .1995.27(2):95~101
    [91]李强,何利杰,金煜坚. LD泵浦固体激光介质内增益分布与输出特性研究.激光与红外2007, 37(10): 1047-1049
    [92]张彪,杨爱粉,杨照金,杨鸿儒.高功率LD阵列侧面泵浦激光晶体的增益分布研究.激光与红外2008, 38(9): 883-886
    [93] M. Gong, H. Zhang, H. Kang, D. Wang, L. Huang, P. Yan, and Q. Liu. A Chamfered_Edge_Pumped Pla_nar Waveguide Solid_State Laser. Laser Phys. Lett. 2008, 5: 518
    [94] H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong. An End_Pumped Nd:YAG Planar Waveguide Laser with an Optical to Optical Conversion Efficiency of 58%. Laser Phys. Lett. 2008, 5: 879
    [95] Y. Wang, M. Gong, P. Yan, L. Huang, and D. Li. Sta_ble Polarization Short Pulse Passively Q_SwitchedMonolithic Microchip Laser with [110] Cut Cr4+:YAG,. Laser Phys. Lett. 2009, 6: 788
    [96] G. L. DesAutels, D. Daniels, J. O. Bagford and M. Lander. High power large bore CO2 laser small signal gain coefficient and saturation intensity measurements. J. Opt. A: Pure Appl. Opt. 2003, 5: 96-101.
    [97] N. Hodgson and H. Weber. Optical Resonators-Fundamentals Advanced Concepts andApplications. Berlin: Springer 1997, pp 583-91
    [98] L. P. Duo, B. L. Yang, F. T. Sang, Y. Q. Jin, F. L. Li, and Q. Zhuang. Temporal and 2-D Small-Signal Gain Measurements in a Supersonic COIL. IEEE J. Quantum Electron. 1998, 34(7): 1065-1067
    [99] V. D. Nikolaev, M. V. Zagidullin, M. I. Svistun, B. T. Anderson, R. F. Tate, and G. D. Hager. Results of Small-Signal Gain Measurements on a Supersonic Chemical Oxygen Iodine Laser With an Advanced Nozzle Bank. IEEE J. Quantum Electron. 2002,38(5): 421-428
    [100] B. S. Patel, S. Charan, A. Mallik and P. Swarup. Determination of He-Ne laser parameters using an intra-cavity rotatable reflector. J. Phys. D: Appl. Phys. 1974,7: L40-L44
    [101] B. S. Patel, Determination of Gain, Saturation Intensity, and Internal Losses of a Laser Using an Intracavity Rotatable reflector. IEEE J. Quantum Electron. 1973, 9: 1150-1151
    [102] J. E. Kiefer, T. A. Nussmeier, and F. E. Goodwin. Intracavity CdTe Modulators for CO_2 Lasers. IEEE J. Quantum Electron. 1972,8(2): 173-179
    [103] D. Findlay and R. A. Clay, The measurement of internal losses in 4-level lasers. Phys. Lett. 1966, 20:277
    [104] Schmiedberger, J. Kodymova, O. Spalek, and J. Kovar. Experimental Study of Gain and Output coupling Characteristics of a CW Chemical Oxygen-Iodine Laser. IEEE J. Quantum Electron. 1991, 27(6): 1265-1270
    [105] P. Woskoboinkow and W. C. Jennings. The Measurement of Far-Infrared Laser Gain and Loss Using a Michelson Coupler. IEEE J. Quantum Electron. 1976, 12(10): 613-615
    [106] S. J. Cooper. Output power optimization and gain and saturation irradiance measurements on a RF-pumped HCN waveguide laser. Appl. Opt. 1998, 37(21): 4881-4890
    [107] Y.R. Shen. Principles of Nonlinear Optics. Hoboken: John Wiley &Sons, 1984.
    [108] N. Bloembergen. Nonlinear Optics. New York: Benjamin, 1965.
    [109] A. Yariv. Quantum Electronics. 2th Edition. New York: John Wiley &Sons, 1975.
    [110] P. G. Zverev, T.T. Basiev, A.M. Prokhorov. Stimulated Raman scattering of laser radiation in Raman crystals. Optical Materials 1999,11: 335-352.
    [111] J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duilgnan, and G. Calamef. Beam cleanup with stimulated Raman scattering in the intensity-averaging regime. J. Opt. Soc. Am. B 1986, 3(10): 1408-1427
    [112] J. T. Murray, W. L. Austin, R. C. Powell. Intracavity Raman conversion and Raman beam cleanup. Optical Materials 1999, 11:353-371
    [113] R. S. F. Chang, R. H. Lehmberg, M. T. Duignan, and N. Djeu. Raman Beam Cleanup of a Severely Aberrated Pump Laser. IEEE J. Quantum Electron. 1985, 21(5): 477-487
    [114] R. Frey, A. de Martino, and F. Pradbre. High-efficiency pulse compression with intracavity Raman oscillators. Opt. Lett. 1983, 8(8): 437-439.
    [115] J. R. MURRAY, J. Goldhar, D. Eimerl, and A. Szoke. Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion. IEEE J. Quantum Electron. 1979, 15(5): 342-368.
    [116] H. Pask, M. Revermann, J. L. Blows, and T. Omatsu. Thermal lensing measurements in an intracavity LiIO3 Raman laser. in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper ME13
    [117] H. Pask, J. L. Blows, J. A. Piper, and T. Omatsu, Thermal lensing in a Barium nitrate Raman laser. in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper TuB15.
    [118] S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. H. Fan, Z. J. Liu, J. Chang, S. S. S. Zhang, S. M. Wang, Y. Liu. Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal. Opt. Express 2005. 13(25): 10120-10128.
    [119] M. Born and E. wolf. Principles of optics. 7th edition.北京:世界图书出版公司, 2001.
    [120] K. W. Su, Y. T. Chang, and Y. F. Chen. Efficient high-peak-power diode-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser. Appl. Opt. 2008, 47(35): 6675-6679.
    [121] P. Cerny, H. Jelínková, P. G. Zverev, and T. T. Basiev, Solid state lasers with Raman frequency conversion. Prog. Quantum Electron. 2004, 28: 113-143.
    [122] R. P. Mildren, H. M. Pask, M. Convery, J. A. Piper, and T. Mckay. Efficient diode-pumped yellow, orange and red laser sources based on stimulated Raman scattering in KGd(WO4)2. in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper TuC6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700