高功率光纤激光器理论及医学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器以其无与伦比的性能优势吸引了研究人员的兴趣和产业界的重视。本论文主要研究了利用激光加热基座法生长复合单晶光纤激光器和保偏大模场面积的光纤激光器,并利用它们设计了用于良性前列腺增生( benign prostatic hyperplasia,BPH)的大功率磷酸氧钛钾(KTP)倍频激光器,使用这种器械的选择性激光前列腺切除术(photoselective vaporization of the prostate,PVP)将是非常有应用前景的。
     介绍了光纤激光器研究的理论基础,包括光纤激光的物理原理,构造有源光纤的掺杂稀土元素(即或镧系元素)的原子结构、能级分布和光谱特性等内容;提出了光纤激光器的一个比较合理的分类方法,给出了其结构和典型的谐振腔的设计方法;重点阐述了掺杂稀土离子的双包层和光子晶体光纤激光器,这是当前获得高功率光纤激光的基础;介绍了基于光纤中非线性效应的受激拉曼散射(SRS)和受激布里渊散射(SBS)光纤激光器,光纤孤子激光器,超连续谱激光器和超快光纤激光器等各种在理论上和实践中都十分重要的光纤激光器;讨论了光放大器并给出了光纤激光器的速率方程;详细分析了光纤激光器在各领域中的应用,指出光纤激光器有着全面取代传统固体激光器和气体激光器的潜力,但真正做到这一点尚需时日,同时它们还可能面临来自半导体激光器的强有力的竞争。
     研究了生长单晶光纤的各种方法,包括激光加热基座生长方法、毛细管反馈熔化生长、确定边界薄膜反馈生长和浮带与基座生长等生长方法,说明了激光加热基座生长方法的特点,为它的进一步应用打下基础。
     讨论了获得超短脉冲的调Q方法,尤其是令人感兴趣的被动调Q方法。利用激光加热基座生长方法(LHPG),将Nd:YAG和Cr4+:YAG生长成一体化的单晶光纤,得到了被动调Q复合单晶光纤激光器,给出了其速率方程理论,并数值计算了其各项性能参数,与实验结果取得良好的一致。所获得的被动调Q复合单晶光纤激光器有很好的性能指标,完全有实用价值。
     研究了有望构成更高平均功率连续激光器或更高峰值功率脉冲激光器的新材料——光子晶体光纤,介绍了其拉制方法,说明光子晶体光纤具有极强的光学非线性效应、高的双折射特性、奇异的色散特性和永无截止的单模传输特性等各项新颖奇特而且优异的性能指标,一句话,就是它是最有可能拥有完美的驾驭光子的能力的器件!还给出了光子晶体光纤的各种理论和数值分析法。
     研究了BPH的激光切除术,为此进行了猪肝组织、猪肌肉组织和狗前列腺组织的激光气化的对比研究,并与波长1064nm的钕激光和2100nm的钬激光的疗效进行比较,发现含血液丰富组织的532纳米的选择性吸收是KTP倍频激光在用于良性前列腺增生治疗时受到青睐的原因,与已有报道结果相符合,进一步证明了绿色KTP倍频激光器用于BPH治疗的美好前景。
     提出了将复合单晶被动调Q光纤激光器用作种子光源,再利用保偏大模场面积光纤放大器将其放大到百瓦以上的设计方法,从而将基于振荡功率放大结构的高功率激光器的放大级数精简到最少,并由具有温度管理装置的KTP倍频,这样将能以极高效率获得高功率的绿色激光输出,整套装置将设计简洁,工作可靠,性能优良。
The unparalleled predominance of fiber lasers has attracted interests of researchers throughout the world and great attentions of industry. Composite crystal fiber lasers and polarization-maintain large-mode-area fiber amplifiers are researched and combined to form the high power green laser that may be used for therapy of benign prostatic hyperplasia(BPH). The photoselective vaporization of the prostate(PVP) using the laser system is promising.
     The basic theory including physical principles of the fiber laser, the atomic structure, energy level and spectral characteristic of doped lanthanide has been introduced. Fiber lasers have been classified and the design of their resonant cavity has been provided. At present, double clad doped rare-earth fiber lasers and photon crystal fiber lasers are the most important approaches to scale the output power. Moreover, SRS and SBS fiber lasers based the nonlinear effect in the fiber, fiber soliton lasers, supercontinuum and ultrafast fiber lasers with great value both in theory and in practice have been discussed. Optical amplifiers and the rate equations then have been studied. The applications of fiber lasers in various fields have also been analyzed particularly. Finally the potential of fiber lasers substituting the traditional solid lasers and gas lasers has been pointed out but the time that it come true is in the future, at the same time they will also confront the possible competition which come from diode lasers.
     Various methods of the growth of crystal fibers have been investigated and they are Laser Heated Pedestal Growth(LHPG), capillary-fed melt growth, Capillary-Bridgeman growth and Float-zone or pedestal growth. Subsequently, the character of LHPG technique has been showed. It paves the way for the use of LHPG technique in this chapter.
     Q-switching technique, especially the interesting passively Q-switching, for getting ultrashort pulse has been discussed. Composite crystal fibers incorporating Nd:YAG and Cr4+:YAG are grown by the laser heated pedestal growth technique, which is considered to be a powerful tool for rapid growth of high-melting temperature oxides and incongruent melting compositions. After handling the composite crystal fiber laser is demonstrated. Using the velocity rate theory, the parameters are calculated by numerically method and they are well in accord with the experiment results. The composite passively Q-switching crystal fiber lasers can obtain excellent performance.
     Photonic crystal fibers (PCFs), the revolutionary power in the fiber family, and their produce techniques have been introduced. They have very intensive optical nonlinear effect, high birefringence, fantastic dispersion, ceaseless single mode transmission characteristic and dreamlike performance parameters. They can be used to form lasers with higher average power or peak value power. In a word they are the instruments that can rein the photon imaginably! Various theories and numerical analyzing methods of the photonic crystal fiber laser have been listed.
     Laser prostatectomy of BPH has been studied. Therefore various laser-induced bio-tissue vaporization experiments have been carried out and the reasonable parameters of the laser tissue vaporization have been searched. Consequently the photoselective vaporization of the prostate with green laser is the preferred for lots of advantages of the method. The results are in accordance with the reports that have been released and exhibit the refulgent prospect of the green laser used in therapy of BPH.
     Utilizing the composite crystal passively Q-switching fiber laser and polarization maintain large mode area fiber as the seed light signal and amplifier respectively, the signal light is amplified to more than 100W and is doubled frequency by the KTP crystal with temperature manager equipment thereby high power green output can be obtained. The laser system has the predominance of simple design, high reliability, and high power.
引文
[1] Snitzer E. Optical Maser Action of Nd+3 in a Barium Crown Glass. Phys. Rev. Let.,1961, 7(12): 444
    [2] Koester C. J., Snitzer E.. Amplification in a fiber laser. Appl. Opt.,1964,3(10): l182
    [3] Letokhov V. S., Pavlik. B .D. Nonlinear Amplification of surface light wave in active optical fiber. Sov. J. Tech. Phys.,1966,36:835
    [4] Kao K. C., Kockhham G. A. Dielectric-fiber surface waveguides for optical frequencies. IEE Proc. 1966, 113(7):1151~1154
    [5] Poole S. B., Payne D. N., Mears R. J., et al. Fabracation of low–loss optical fibers containing rare-earth ions. Electron. Lett.,1986,LT-4(7):870~876
    [6] I. P.Alcock, AC Tropper, AI Ferguson et al. Q-switched operation of a neodymium-doped monomode fibre laser, Electron. Lett. 1986, 22: 84~85
    [7] Millar C. A. Concentration and co-doping dependence of 4F3/2 to 4I11/2 lasing behaviour of Nd silica fibres. In: OFC1987. Reno,USA.Conference on Optical Fiber Communication,1987.224~226
    [8] Millar I. D. New all-fiber laser. In: OFC1987. Reno.USA. Conference on Optical Fiber Communication,1987.410~415
    [9] Zurn M., Voigt J., Brinkmeyer E., et al. Line narrowing and special hole burning in single mode Nd3+-fiber lasers. Opt. Lett.,1987,12(5):316
    [10] Shimitzu M. et al. High efficiency Nd-doped fibre lasers using direct-coated dielectric mirrors. Electron. Lett.,1987, 23: 126~129
    [11] Amano S. Lasing characteristics of Nd: phosphat glass fiber laser. In: ECOC. Helsinki, Finland: European Conference on Optical Communicaton, 1987.182~189
    [12] Gozen T. Y., Kikukaka, Yoshidaet M. et al. Development of high Nd3+ content VAD single-mode fiber by the molecular stuffing teching technique. in: Optical Fiber Communication,vol.1 of 1998 OSA Technical Digest Series (Optical Society of America, 1988):paper WQ1
    [13] LF Mollenauer, K Smith. Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Optics Letters, 1988, 13(8): 675-677
    [14] Liu K.et al. 10mW superfluorescent single-mode fibre sorce at 1060nm, Electron. Lett, 1987, 23: 67
    [15] Miniscalco W. J., Andrews L. J., Thompson B. A., et al. 1.3μm fluoride fibre laser. Electron. Lett.,1988,24(1):28~29
    [16] Snitzer E., Hakima H. P. F, Tumminelli R., et al. Double-clad offset core Nd fiber laser. Proc. Conf. OpticaL Fiber Sensors.1988,Postdeadline Paper PD5
    [17] Paschotta R., Nilsson J., Tropper A. C., et al. Ytterbium-Dope Fiber Amplifibers. IEEE J. Quantum Electronics,1997,33(7) :1049
    [18] Digonnet M. J. F. 1st Ed. Rare Earth Doped Fiber Lasers and Amplifiers. New York. Marcel Dekker, 1993.45~90
    [19] Agrawal G. P. Fiber-Optic Communication Systems.2nd ed. New York. Wiley, 1995. 10~50
    [20] Kashyap R. Fiber Bragg Gratings.1st Ed. San Diego, CA.Academic Press, 1999. 25~40
    [21] Pask H. M., Archambault J. L., Hanna J. L., et al. Operation of cladding-pumped Yb3+-doped silica fibre laser in 1μm region. Electronics Letters, 1994,30(11): 863~865
    [22] Kosinski G., Inniss D. High-power fiber lasers. in: Digest of Lasers and Electro-optics. San Francisco: CLEO, 1998. 78
    [23] Dominic V., MacCormack S., Waarts R., et al. 110W fiber laser. Electron. Lett., 1999, 36(14): 1158~1160
    [24] 明海, 张国平,谢建平.光电子技术.第一版.安徽:中国科学技术大学出版社,1997.50~55
    [25] 聂秋华.光纤激光器和放大器技术.北京:电子工业出版社, 1997.1~100
    [26] 孙军强,刘德明,黄德修等.窄线宽多波长掺铒光纤激光器.中国激光,2000,A27(9):773
    [27] 吕可诚,刘伟伟,李乙钢等.高效率掺 Yb 双包层光纤激光器.中国激光, 2000,27(8):775
    [28] 宁鼎,王文涛,阮灵等.掺 Yb~3+双包层石英光纤的研制及其激光特性.中国激光,2000,A 27(11):987~991
    [29] 楼棋洪,周军,朱健强等.百瓦级掺镱双包层光纤激光器.中国激光,2003, 30( 12):1064
    [30] 楼棋洪,周军,朱健强等.国产双包层掺镱光纤实现 440W 的连续高功率激光输出.中国激光,2005, 32(11):20
    [31] 周军,楼祺洪,朱健强等.采用国产大模场面积双包层光纤的 714W 连续光纤激光器.光学学报,2006,26 (7):1119~1120
    [32] 李伟,武子淳,陈曦等.大功率光纤激光器输出功率突破 1kW.强激光与粒子束,2006,18: 890
    [33] Jeong Y., Sahu J. K., Payn D. N., et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express, 2004,12 : 6088
    [34] 黄章勇.光纤通信用光电子器件和组件.第一版.北京海淀西土城路 10 号: 北京邮电大学出版社,2001.200~250
    [35] O'Sullivan M. S., Chrostowski J., Desurvire E., et al. High-power narrow-linewidth Er+3-doped fiber laser. Opt. Lett.,1989,14(9):438
    [36] Johnson S. G., Joannopoulos J. D. Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Applied Physics Letters, 2000, 77(22): 3490
    [37] Cregan R. F. Single-mode photonic band gap guidance of light in air. Science,1999, 285:1537~1539
    [38] Hansen K. P., Broeng J., Skovgaard P. M. W., et al. High-power photonic crystal fiber lasers: Design, handling and subassemblies. Proc. Of SPIE,2005, 5709:273
    [39] Folkenberg J. R., Nielsen M. D., Mortensen N. A., et al. Polarization maintaining large mode area photonic crystal fiber. Opt. Express,2004,12:956
    [40] Massicot J. F., Wyatt R., Ainslie B. J., et al. High gain broadband 1.6 μm Er3+ doped silica fibre amplifier. Electron. Lett., 1990,26(20):1645~1646
    [41] Wyatt R. High power broadly tunable erbium-doped silica fibre laser. Electron. Lett.,1989, 25(22): l498
    [42] Armitage J. R., Wyan R., Ainslie B. J., et al. Highly efficient 980nm operation of anYb+3-doped silica fibre laser. Electron. Lett.,1989, 25(5) : 298
    [43] S. Zemon, G. Lambert. Enhancement of donor-related photoluminescence intensity due to hear-band-gap excitation of high purity GaAs. Solid state communications , 1989, 70(99): 855-858
    [44] Desurvir E., Simpsom J. R.. Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers. Opt. Lett., 1990, 15(10): 547
    [45] Hanna D. C., Percival R. M., l. R. Perry, et al. An Ytterbium-doped Monomode Fibre Laser: Broadly Tunable Operation from 1.010μm to 1.162μm. J. Mod. Opt., 1990, 37(4): 517~525
    [46] Zarinetchi F., Smith S. P., Ezekiel S. Stimulated Brillouin fiber-optic laser gyroscope. Opt. Lett., 1991, 16(4): 229
    [47] Huang S., Toyama K., Nicati P. A., et al. Brillouin fiber optic gyro with push-pull phase modulator and synthetic heterodyhe detection. Proc. SPIE ,1993 ,1795:48~59
    [48] Huang S., Thevenaz L.,Toyama K., et al. Optical Kerr-Effect in Fiber-optic Brillouin Ring Laser Gyroscopes. IEEE Photon. Technol. Lett ,1993,5(3):365
    [49] G.HM. van Tartwijk, G. P. Agrawal. Laser instabilities: a modern perspective. Prog. Quant. Electron. , 1998, 22(2): 43~120
    [50] 谢树森,雷仕湛.光子技术.北京:科学出版社,2004.669
    [51] L. E. Nelson, D. J. Jones, K. Tamura et al. Ultrashort-pulse fiber ring lasers. Appl. Phys. B., 1997,65(2): 277~294
    [52] Dianov E. M. Optical Amplifibers and Application. OSA, TOPS,1997,30:91~ 96
    [53] F. Sanchez, P. Leboudex, et al. Effects of ion pairs on the dynamics of erbium-doped fiber lasers. Phys. Rev. A, 1993, 48, 2220~2229
    [54] Dinand M., Schutte C. Theoretical Modeling of Relxation Oscillations in Er-doped waveguide Lasers. J. Lightwave Technol.,1995,13(1):14
    [55] Rangel-Rojo R., M. Mohebi. Study of the onset of self-pulsing behaviour in an Er-doped fibre laser. Opt. Commun., 1997, 137: 98
    [56] Lacot E., Stoeckel F., Chenevier M. Dynamics of an erbium-doped fiber laser. Phys. Rev. A ,1994,49(5) ,3997~4008
    [57] VanWiggeren G. D., Roy R. Communication with Chaotic Lasers. Science, 1998, 279(5354):1198~1200
    [58] Henry D. I. Abarbanel, Matthew B. Kennel, Michael Buhl. Chaotic dynamics in erbium-doped fiber ring lasers . Phys. Rev. A , 1998,60: 2360~2374
    [59] Luo L. G., Chu P. L. Optical secure communications with chaotic erbium-doped fiber lasers. J. O pt. Soc. Am. B ,1998, 15(10) : 2524~2530
    [60] GD van Wiggeren, R. Roy. Chaotic communication with time-delayed optical systems. Int. J. Bifur. Chaos, 1999, 9: 2129~2130
    [61] Luo L. G., ChuP. L., Liu H. F. 1-GHz optical communication system using chaos in erbium-doped fiber lasers. IEEE Photon.Technol.Lett.,2000, 12(3) :269
    [62] Loh W. H., Atkinson D., Morkel P. R., et al. Diode-pumped selfstarting passively modelocked neodymium-doped fiber laser. Electron. Lett.,1993, 29(9) :808
    [63] Fermann M. E., Hofer M., Haberl F., et al. Additive-pulse-compression mode locking of a neodymium fiber laser. Opt.Lett.,1991,16(4):244
    [64] Matsas V. J., Newson T. P., Richardson D. J., et al. Selfstarting passively modelocked fiber ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett. ,1992, 28(15): 1391
    [65] Geister G., Ulrich R. Integrated-optical Q-switch/mode locker for a Nd+3 fiber laser. Appl. Phys. Lett, 1990, 56(6): 509~511
    [66] Loh W. H., Atkinson D., Morkel P. R., et al. Pasively mode-locked Er fiber laser using a semiconductor nonlinear mirror. IEEE Photon. Technol. Lett., 1993,5(1): 35
    [67] Agrawal G. P. Nonlinear Fiber Optics.1st Ed. San Diego. Academic Press. 1989.184~193
    [68] Zhao Y., Shu C. A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses. Appl. Phys. Lett. , 1998,72 (13):1556~1558
    [69] Kiyan R., Deparis O., Potiez O., et al. Stabilization of actively mode-locked Er-doped f iber lasers in the rational-harmonic f requency-doubling mode-locking regime. Opt. Lett. , 1999, 24 (15): 1029~1031
    [70] Prabhu M., Saitou T., Taniguchi A., et al. High-effciency broad-band supercontinuum generation centered at 1483.4nm using Raman fiber laser. in: Optical Fiber Communication Conference. 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WP3
    [71] Wang Anting, Xing Meishu, Chen Guanghui, et al. Double-pass ytterbium-doped
    [58] Henry D. I. Abarbanel, Matthew B. Kennel, Michael Buhl. Chaotic dynamics in erbium-doped fiber ring lasers . Phys. Rev. A , 1998,60: 2360~2374
    [59] Luo L. G., Chu P. L. Optical secure communications with chaotic erbium-doped fiber lasers. J. O pt. Soc. Am. B ,1998, 15(10) : 2524~2530
    [60] GD van Wiggeren, R. Roy. Chaotic communication with time-delayed optical systems. Int. J. Bifur. Chaos, 1999, 9: 2129~2130
    [61] Luo L. G., ChuP. L., Liu H. F. 1-GHz optical communication system using chaos in erbium-doped fiber lasers. IEEE Photon.Technol.Lett.,2000, 12(3) :269
    [62] Loh W. H., Atkinson D., Morkel P. R., et al. Diode-pumped selfstarting passively modelocked neodymium-doped fiber laser. Electron. Lett.,1993, 29(9) :808
    [63] Fermann M. E., Hofer M., Haberl F., et al. Additive-pulse-compression mode locking of a neodymium fiber laser. Opt.Lett.,1991,16(4):244
    [64] Matsas V. J., Newson T. P., Richardson D. J., et al. Selfstarting passively modelocked fiber ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett. ,1992, 28(15): 1391
    [65] Geister G., Ulrich R. Integrated-optical Q-switch/mode locker for a Nd+3 fiber laser. Appl. Phys. Lett, 1990, 56(6): 509~511
    [66] Loh W. H., Atkinson D., Morkel P. R., et al. Pasively mode-locked Er fiber laser using a semiconductor nonlinear mirror. IEEE Photon. Technol. Lett., 1993,5(1): 35
    [67] Agrawal G. P. Nonlinear Fiber Optics.1st Ed. San Diego. Academic Press. 1989.184~193
    [68] Zhao Y., Shu C. A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses. Appl. Phys. Lett. , 1998,72 (13):1556~1558
    [69] Kiyan R., Deparis O., Potiez O., et al. Stabilization of actively mode-locked Er-doped f iber lasers in the rational-harmonic f requency-doubling mode-locking regime. Opt. Lett. , 1999, 24 (15): 1029~1031
    [70] Prabhu M., Saitou T., Taniguchi A., et al. High-effciency broad-band supercontinuum generation centered at 1483.4nm using Raman fiber laser. in: Optical Fiber Communication Conference. 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WP3
    [71] Wang Anting, Xing Meishu, Chen Guanghui, et al. Double-pass ytterbium-dopedcharacteristics and passively Q-switched laser operation. SPIE, 2002, 4918: 20~29
    [85] Feldman R., Shimony Y. Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser. Optical Materials, 2003, 24(1-2): 393~399
    [86] Siegman A. E. Lasers. 1st ed. Calif: Mill Valley, Uni. Sci. Books, 1986.1024~1026
    [87] Kuo Y. K., Huang M. F. Tunable Cr4+:YSO Q-seitched Cr:LiCAF laser. IEEE J.Quant. Electron., 1995,.31(4): 657~663
    [88] Zhu C.H., Li Z. J. Study on periodicity of giant pulses with passive Q-switched laser. Laser Technology, 2000,24(2): 85~89(in Chinese)
    [89] Wu N., Lu Y., Lu X. Aanlytical Solution for Passive Q-switching with Cr-ion Doped Saturable Absorber. Acta Optica Sinica, 1996, 16, No.12:1813~1818 (in Chinese)
    [90] Kalissky Y., Baranga A. B., Shimony Y. Cr4+ doped garnets:novel laser materials and non-linear saturable absorbers. Optical Materials,1997,8(1): 129~134
    [91] 孙文,江泽文,程国祥.固体激光工程.第一版.北京:科学出版社,2002.39~45
    [92] Hewak D. W. The fabrication and modeling of nonsilica microstructured optical fibers. in Proc OFC2001,TuC4., 2001.1~3
    [93] Ranka J. K. Optical properties of high-delta air-sillic microstructure optic fibers. Opt. Lett., 2000,25:796
    [94] Limpert J., Schreiber T., Nolte S., et al. High-power air-clad large-mode-area photonic crystal fiber laser . Optics Express, 2003, 11:818~823
    [95] Birks T. A., Knight J.C, Russell P. S. J. Endlessly single mode photonic crystal fibre. Opt. Lett. , 1997, 22 :961~ 963
    [96] White T. P., Kuhlmey B. T., McPhedran R. C., et al. Multiploe method for microstructured optical fibers. I. Formulation. J. Opt. Soc. Am. B, 2002, 19(10): 2322~2330
    [97] Kuhlmey B.T., White T. P., Renversez G., et al. Multiploe method for microstructured optical fibers. Ⅱ. Implementation and results. J. Opt. Soc. Am. B, 2002, 19(10) : 2331~2340
    [98] Guo Shangping, Sacharia Albin. Simple plane wave implementation for photonic crystal calculations. J. Opt.Express, 2003,11:167~175
    [99] Koshiba M. Full vector analysis of photonic crystal fibers using the finite element method. J.IEICE Electron , E85-C,2002,4:881~888
    [100] Min Qiu. Analysis of guided modes in photonic crystal fibers using Finite - Difference Time-Domain method. J.Micro and Opt. Tech. Letters, 2001, 30(5):40~42.
    [101] Fabrizio Fogli, Luca Saccomandi, Paolo Bassi, et al. Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers. J. Opt. Express, 2002, 10:54~59
    [102] Kunimasa Saitoh, Masanori Koshiba. Photonic bandgap fibers with high birefringence. J. IEEE Photo. Tech. Lett., 2002,14:1291~1293
    [103] Koshiba M., Tsuji Y. Curvilinear hybrid edge/ nodal elements with triangular shape for guided-wave problems. J. IEEE Journal of Lightwave Technology, 2000, 18: 737~743
    [104] Hoffman R. M., MacDonald R., Slaton J.W., et al. Laser prostatectomy versus transurethral resection for treating benign prostatic obstruction: a systematic review. J Urol, 2003, 169: 210.
    [105] Beisland H., Sander S. First clinical experiences on Neodymium YAG laser irradiation of localized prostatic cancer. Scand J urol Nephrol, 1986, 20:113~117
    [106] Sander S., Beisland H. Laser in the treatment of localized prostatic carcinoma. J uro1,1984,132:280~281
    [107] Kandel L., Harrison L., Mc Cullough D., et al. Transurethral laser prostatecomy: creation of a technique for using the Neodymium: Yttrium/Auminum Garnet (YAG) laser in the canine model. J Urol,1986,135:110A
    [108] Gilling P. J., Cass C. B., Malcolm A.R., et al. Combination holmiumand Nd:YAG laser ablation of the prostate: intial clinical experience. J Endouro 1, 1995, 9(2): 151~153
    [109] Gilling P. J., Cass C. B., Cresswell M. D., et al. Holmium laser resection of the prostate: prelimium laser esection of the prostate; preliminary results of a new method for the treatment of benign prostatic hyperplasia. Urology, 1996, 47(1): 48~51
    [110] Ва си льев В. Н., и др. Разрушение биоткани при воздействии лазерного из лздучения. ифж, 1993, 64(5):598~603
    [111] 李希靖,吴秀山,苑宇琦等.强激光对生物组织切割深度的新计算方法.中国生物医学工程学报,2003,22(4):296~299
    [112] 李和杰,刘静,张学学.激光汽化活体生物组织的传热过程分析.航天医学与医学工程,2002,15(2):103~107
    [113] Hale G. M., Querry M. R. Optical constants of water in the 200nm to 200μm wavelength region. Appl. Opt, 1973, 12: 555~563
    [114] Boulnois J. L. Photo physical processes in recent medical laser developments: a review. Lasers Med Sci, 1986, 1: 47~66
    [115] 119Markolf H. Niemz. 激光与生物组织的相互作用——原理与应用.张镇西译. 西安:西安交通大学出版社.1999.11~14
    [116] 120 胡桂林,刘天夫,李希靖.强激光对生物组织热作用的一个分析模型.中国计量学院学报,2000, 1:67~71
    [117] Costello A. J., Bowsher W. G.., Bolton D. M., et al. Laser ablation of the prostate in patients with benign prostatic hypertrophy. Br J Urol,1992,69(6):603~608
    [118] Anson K. M., Watson G. M., Shah T. K., et al. Laser prostatectomy: our initial experience of a technique in evolution. J Endouro1,1993, 7(4):333~336
    [119] McAllister W. J., Absalom M. J., Mir K., et al. Does endoscopiclaser ablation of the prostate stand the time? Five-year results from a multicentre randomizedcontrolled trial of endoscopic laser ablationagainst transurethral resection of the prostate. BJU,2000,85(4):437~439
    [120] Tubaro A., De La Rosete J., Hofner K., et al. Longterm follw-up of contact laser prostatectomy. Eur. Uro1,2000,37(suppl2):520
    [121] Kabalin J. N., Gong M., Issa M. M., et al. Insight into mechanism of neodymium; yttrium-aluminum-gamet last prostatectomy utilizing the high-power contactfree beam technique. Urology, 1995,45(3): 421~426
    [122] Kuntzman R .S., Malek R. S., Barret D. M., et al. Potassium-titanyl-phosphate laset vaporization of the prostate;a comparative functional and pathologic study in canines. Urology, 1996, 48(4): 575~583
    [123] Kuntzman R. S., Malek R. S., Barret D. M., et al. High power(60-watt) potassium-titarryl-phosphate laser vaporization prostatectomy in living canines and in humanand canine cadavers. Urology,1997, 49(5):703~708
    [124] Hofsteter A. Interatitielle thermokoagulation (ITK) von prostatatumoren. Lasermedizin, 1991, 7: 179.
    [125] Martenson A. C., De La Rosete J. J.. Interstitial coagulation in the treatment of benign prostatic hyperplasiausing a diode laser system: results evolving technology. Prostate Cancer Prostatic, 1999, 2(3):148~154
    [126] Floratos D. L., Sonke G.. S., Francisca E. A., et al. Longterm follow-up of laser treatment for lower urinarytract symptoms suggestive of bladder outlet obstruction. Urology, 2000, 56(4):604~609
    [127] Corvin S., Schneede P., Siakavara E., et al. Interstitial laser coagulation combined with minimal transurethral resection of the prostate for the treatment of benign prostatic hyerplasia. J Endoural, 2002,16(6):387~390
    [128] Gilling P. J., Cass C. B., Cresswell M. D., et al. Holmium laser resection of the prostate: preliminary results of anew method for the treatment of benign prostatichyperplasia. Urology, 1996, 47(1):48~51
    [129] Fraundorfer M. R., Gilling P. J. Holmium:YAG laser enucleation of the prostate combined with mechanical morcellation: preliminary results. Eur Urol, 1998, 33(1): 69~72
    [130] Gilling P. J., Kennet K. M., Fraundorfer M. R. Holmium laser resection v transurethral resection of the prostate: results of a randomized trial with 2 years of follow-up. J Endourol, 2000,14(9):757~760
    [131] Matsuoka M., Iida S., Tomiyasu K., et al. Transurethral holmium laser resection of the prostate. J Urol, 2000, 163(2):515~518
    [132] Gilling P. J, Kennet K. M., Fraundorfer M. R. Holmium laser enucleation of the prostate for glands larger than 100g: an endourologic alternative to open prostatectomy. J Endourol, 2000,14(6): 529~531
    [133] Kuntz R. M., Lehrich K. Transurethral holmium laser enucleation versus transvesical open enucleation forprostate adenoma greater than 100 gm.: a randomized prospective trial of 120 patients. J Urol,2002,168 (4pt1 ):1465~1469
    [134] Gilling P. J., Mackey M., Cresswell M., et al. Holmium laser versus transurethral resection of the prostate: arandomized prospective trial with 1-year followup. Urol,1999,162(5):1640~1644
    [135] Kuo R. L., Kim S. C., Lingeman J. E., et al. Holmium laser enucleation of prostate (HoLEP): the Methodist Hospital experience with greater than 75 gram enucleations. J Urol, 2003, 170(1):149~152
    [136] Hurle R., Vavassori I., Piccinelli A., et al. Holmium laser enucleatiion of prostatic hyperplasia. Urology, 2002, 60(3):449~453
    [137] Kollmorgen T. A., Malek R. S., Barret D. M. Laser prostatectomy: two and a half years' experience with aggressive multifocal therapy. Urology, 1996,48(2):217~222
    [138] Cowles R. S. Ⅲ, Kabalin J. N., Childs S., et al. A prospective randomized comparison of transurethral resection to visual laser ablation of the prostate for the treatment of benign prostatic hyperplasia. Urology,1995,46(2):155~160
    [139] Kuntzman R. S., Malek R. S., Barret D. M., et al. High power (60-watt) potassium-titanyl-phosphate laser vaporization prostatectomy in living canines and in human and canine cadavers. Urology, 1997,49(5):703~708
    [140] Malek R. S., Kuntzman R. S., Barrett D. M.. High power potassium-titanyl-phosphate laser vaporization prostatectomy. J Urol, 2000,163(6):1730~1733
    [141] Hai M. A., Malek R. S. Photoselective vaporization of the prostate: initial experience with a new 80W KTP laser for the treatment of benign prostatic hyperplasia. J Endourol, 2003, 17(2):93~96
    [142] Te A. E.,Malloy T. R., Stein B. S., et al. Photoselective laser vaporization of the prostate( PVP) for treatment of benign prostatic hyperplasia(BPH):the first multicenter prospective trial. J Urol, 2003,169(4suppl): 465~468
    [143] Malek R. S., Kuntzman R. S. Photoselective vaporization of the prostate: 5-year experience with high power KTP laser. J Urol, 2003, 169(4 Suppl):390~393
    [144] Sandhu J. S., Vanderbrink B. A., Egan C., et al. High power KTP photoselective laser vaporization protatectomy for the treatment of benign prostatic hyperplasia in men with large prostates. J Urol. 2003,169(4suppl):393~395
    [145] Te A. E. The development of laser prostatectomy. BJU International 2004, 93: 262~265
    [146] Pierre R. J. St., Mordaunt D. W., Injewanetal H. Diode array pumped kilowatt laser, IEEE J. Sel. Top. Quantum Electron, 1997, 3(1):53~58
    [147] Liu A., Norsen M. A., Mead R. D. 60-W green output by frequency doubling of a polarized Yb-doped fiber laser, Opt. Lett. ,2005,30 (1): 67~69
    [148] 唐淳,高清松,童立新.160W 激光二极管抽运电光调 Q 主振荡功率放大器绿光激光器.中国激光,2005,32(11):1455~1458
    [149] Susumu Konno, Tetsuo Kojima, Shuichi Fujikawa, et al. High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser. OPTICS LETTERS , 2000, 25( 2): 105~107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700