Pr~(3+):ZBLAN光纤中基于4f5d能级的上转换紫外激光理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Study of Upconversion Ultraviolet Laser Based on 4f5d State in Pr~(3+): ZBLAN Fiber
  • 作者:方爱平
  • 论文级别:硕士
  • 学科专业名称:光学
  • 学位年度:2004
  • 导师:戴振文 ; 蒋占魁
  • 学科代码:070207
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-06-01
摘要
世界上第一台激光器诞生四十多年以来,激光技术和激光器的种类取得
    了长足的发展。但是现代学科技术的进步对激光器本身提出了更高的要求,
    使激光技术向全固化、小型化、宽波段、可调谐、紫外和远红外、易操作等
    方向发展。
     由于介质中稀土激活离子的 5d 电子和晶场的强相互作用,4fN-15d 能级
    呈现准连续分布,其宽带荧光发射位于紫外区域。显然,稀土离子的 4fN-15d
    能级可能是产生宽带可调谐紫外激光的理想激光工作能级。在 Ce3+:LiCaAlF6
    /LiLuF4 晶体中已经实现基于 5d 能级的直接激发可调谐紫外激光。由于稀土
    离子的 4fN-15d 能级的直接激发位于真空紫外或近真空紫外波段,增加了激
    光系统的复杂性。所以,通过频率上转换激发实现基于 4fN-15d 能级的紫外
    激光输出具有重要意义。
     为了实现稀土离子掺杂激光材料中基于 4fN-15d 能级的上转换紫外激光
    输出,理论上研究其上转换激发和激光过程的动力学行为是十分必要的。本
    论文的研究目的是,从理论上研究上转换泵浦稀土掺杂离子 4fN-15d 能级产
    生紫外激光的可行性。
     首先本论文研究了在 Yb3+:Pr3+:ZBLAN 和 Pr3+:ZBLAN 光纤中 4f5d 能级
    上转换激发动力学过程。结果表明,在 Yb3+:Pr3+:ZBLAN 光纤中,通过 Yb3+
    敏化激发 Pr3+离子和 Pr3+激发态共振吸收的上转换激发途径,可以实现 4f5d
    能级的上转换激发,而且该能级与 I6或者 S0能级之间存在明显的粒子数反
     1 1
    转;在 Pr3+: ZBLAN 光纤中,通过两步共振激发可以实现 4f5d 能级上转换激
    发,该能级与 I6、1S0能级以及 H4、3F4的最高 Stark 能级间可形成粒子数反
     1 3
    转;比较而言,在 Pr3+:ZBLAN 光纤中比较容易实现 Pr3+的 4f5d 能级和 4f2
    能级之间的粒子数反转,进而实现 4f5d 能级上转换紫外激光。另外,还计算
     第 107 页
     共 114 页
    
    
    吉林大学硕士学位论文
    了光纤中泵浦光的衰减过程、吸收系数、各能级的粒子数密度分布、有效光
    纤长度、4f5d 总荧光功率和泵浦效率等上转换激发过程参量。
     另外,本文分别以 H4和 I6作为激光能级,研究了 Pr3+:ZBLAN 光纤中
     3 1
    4f5d 上转换紫外振荡器的激光特性。计算结果给出两种激光系统的第一和第
    二阈值泵浦功率、激光输出功率、斜率效率和最佳光纤长度等激光参量。结
    果表明,3H4 为激光能级的激光器中,阈值都随光纤长度的增加而增大。激
    光器的斜率效率随着光纤长度的增长而增大,当光纤足够长时,斜率效率趋
    于常数(10%)。给定激光器基本特征参数,存在一个最佳光纤长度使激光输
    出功率最大,在大泵浦功率的极限下,最佳光纤长度大约为 14 m。1I6 为激
    光能级的激光器中,较短的光纤长度和较高的输出镜反射率需要较低的阈
    值。低 Pr3+浓度和高背景损耗不利于高输出功率。斜率效率与光纤长度有明
    显的关系。给定光纤长度,存在一个饱和泵浦功率使得输出功率最大。第一
    和第二泵浦光的饱和泵浦功率随光纤长度的增加线性地增大,而且第二饱和
    泵浦功率比第一饱和泵浦功率大得多。给定激光器基本特征参数,存在一个
    最佳的光纤长度使输出功率最大。
     我们的计算表明,4f5d 上转换紫外光纤激光器的斜率效率只有 10%左
    右,而光光转换效率更低,如果能够构建 4f5d 上转换紫外光纤放大器,实现
    对前一级激光振荡器的功率放大,从而实现较大功率的激光输出,将具有十
    分重要的现实意义。本文以 H4为激光下能级,研究了 Pr3+:ZBLAN 光纤中
     3
    4f5d 上转换紫外放大器的工作特性。计算结果给出放大器的信号光饱和功
    率、输出功率、斜率效率和最佳光纤长度等激光参量。结果表明,输入信号
    光存在一个饱和功率,当大于饱和功率时,输出功率几乎与输入信号光功率
    大小无关。信号光饱和功率几乎不随泵浦功率和光纤长度而变化,大约为 2
    mW。在相同条件下,放大器的输出功率和斜率效率(输入信号功率大于 1 mW)
    比振荡器的高 2 至 3 倍,所以,利用放大器可显著提高激光器的输出功率和
    斜率效率。给定放大器基本特征参数,存在一个最佳光纤长度使得输出功率
     第 108 页
     共 114 页
    
    
    吉林大学硕士学位论文
    达到最大。当放大器的输入信号功率大于 1 mW 时,光纤放大器的最佳光纤
    长度比振荡器的长得多。
     由于放大器需要另外提供信号光输入,这将给整个激光器系统的结构带
    来复杂性。主振荡器功率放大器(MOPA)激光系统可以很好地解决这个问题。
    本文以 H4为激光下能级研究了上转换紫外主振荡器功率放大器的激光动力
     3
    学行为,计算结果给出最佳主振荡器光纤长度以及 MOPA 输出功率、斜率效
    率和最佳光纤长度等激光参量。结果表明,存在一个最佳主振荡器长度使输
    出功率最佳,最佳主振荡器长度与 MOPA 长度和泵浦功率无关,约为 1 m。
    随着 MOPA 长度的增加,斜率效率趋于常数(27%);和单纯的放大器相比,
    MOPA 的输出功率和斜率效率与相同条件下放大器的相当,所以,MOPA 完
    全可以替代
It has been over forty years since the first laser system was successfully
    demonstrated in the world. In this period, laser techniques and category has been
    largely developed. However, the development in the modern scientific field needs
    more improvement on the laser system itself, which make lasers develop toward
    all-solid-state, miniaturization, tenability, ultraviolet and far infrared,
    easy-operation.
     For the trivalent RE ions doped in host materials, the energy levels belonging
    to the 4fN-15d configuration present continuous due to the strong coupling
    between the 5d electron of the active ion and its crystalline field environment and
    hence radiative transitions from these levels produce broad-band UV spectral
    emissions. Obviously, the 4fN-15d levels are possible upper laser levels for
    broad-band tunable UV laser. Tunable UV laser based on 5d upper levels have
    been realized in LiCaAlF6/LiLuF4 crystals doped with Ce3+. However, since
    4fN-15d direct excitation occurs in or near the vacuum UV spectrum region, this
    excitation is not easily accessible by conventional laser sources and brings forth
    complexity of UV laser system. Therefore, realizing 4fN-15d upconversion
    excitation of RE dopant is a significant approach.
     To realize upconversion UV laser based on 4fN-15d state in laser medium,
    theoretical studies of upconversion excitation kinetics and upconversion UV laser
    kinetics based on 4f N-15d state are necessary. In this thesis, we theoretically study
    the feasibility of realizing upconversion UV laser based on 4f N-15d state in
    Pr3+:ZBLANfiber.
     第 110 页 共 114 页
    
    
    吉林大学硕士学位论文
     Firstly, by utilizing steady population rate equations and propagation
    equations, we investigate the kinetics of 4f5d upconversion excitation of Pr3+ in
    Pr3+:Yb3+:ZBLAN and Pr3+:ZBLAN fiber. In Pr3+:Yb3+:ZBLAN fiber, 4f5d
    upconversion excitation can be realized through Yb3+ sensitized excitation and
    Pr3+ excitated state absorption. And there exist the population inversions between
    4f5d state and I6 or S0 level. In Pr3+:ZBLAN fiber, 4f5d upconversion excitation
     1 1
    can be realized through two-step excitation. And there exist the population
    inversions between 4f5d state and I6, S0 level or the highest Stark level of H4,
     1 1 3
    3F4 level. It is relatively easier to realize population inversions between 4f5d state
    and the level of 4f2 and even to realize UV laser in Pr3+:ZBLAN fiber than in
    Pr3+:Yb3+:ZBLAN fiber. In addition, the distributions of powers and absorption
    coefficients along the fiber, population density of all levels, the effective fiber
    length, fluorescence power and pump efficiency are calculated and discussed.
     Secondly, we investigate the laser kinetics for upconversion UV oscillator
    based on transitions from the 4f5d state to the H4 state and I6 state in
     3 1
    Pr3+:ZBLAN fiber, respectively. The threshold pump powers, output power, slope
    efficiency and optimum cavity length are calculated and discussed. There exists
    lots of difference between these two laser system. In upconversion UV oscillator
    based on transitions from the 4f5d state to the H4 state, threshold pump powers
     3
    and slope efficiency become higher as the fiber length is increased. When the
    fiber length is long enough, slope efficiency tends to a constant (10%). Given the
    characteristics of the laser, there exists an optimum cavity length to obtain
    optimum output power. And the optimum cavity length is 14 m when pump
    powers are large enough. In upconversion UV oscillator based on transitions from
    the 4f5d state to the I6 state, high reflectivity R2 and short fiber cavity length are
     1
    better for low threshold pump powers. Great background loss and low pump
引文
[1] 朱莉, 第一台激光器的诞生, 松辽学刊, 1994, 3, 90.
    [2] J. P. Gordon, H. J. Zeiger, C. H. Townes, The master-new type of
     microwave amplifier, frequency standard, and spectrometer, Phys. Rev.,
     1955, 99(4), 1264.
    [3] 朱莉,物理学现代应用,吉林大学出版社(长春),1991.
    [4] 李庄, 激光器的新进展, 激光生物学报, 1998, 7(2), 135.
    [5] 王素, 李书涛, 激光器以及发展动向, 安徽师大学报, 1994, 17(4), 94.
    [6] 巨养锋, 阮双琛, Ce3+可调谐固体紫外激光器研究进展, 光子学报, 2000,
     29(Z1), 161.
    [7] 陈丽江, 陈秀娥, 光纤激光器和光纤放大器的基础及发展状况, 国外激
     光, 1994, 11, 5.
    [8] 李毛和, 胡和方, 林凤英, 上转换氟化物光纤激光器, 功能材料, 1997,
     28(4), 350.
    [9] C. J. Koester, E. Snitzer, Amplification in a fiber laser, Appl. Opt., 1964,
     3(10), 1182.
    [10] L. F. Stokes, M. Chodorow, H. J. Show, All single-mode fiber resonator,
     Opt. Lett., 1982, 7(6), 288.
    [11] 张国威, 可调谐激光技术, 国防工业出版社(北京), 2002.
    [12] 巨养锋, 罗烽, 姜连勃等, 深圳大学学报, 2001, 18(3), 13.
    [13] Brian Pryor, 调谐紫翠宝石激光器在紫外得到应用, 激光集锦, 1999, 10,
     73.
    [14] M. A. Dubinskii, V. V. Semashko, A. K. Naumov, et al., Ce3+-doped
     colquiriite A new concept of all-solid-state tunable ultraviolet laser, J. Mod.
     Opt., 1993, 40, 1.
     第 100 页 共 114 页
    
    
    吉林大学硕士学位论文
    [15] N. Sarukura, Z. Liu, Y. Segawa, et al., Direct and passive subnanosecond
     pulse-train generation from a self-injection-seeded ultraviolet solid-stae
     laser, Opt. Lett., 1995, 20(6), 599.
    [16] L. F. Johnson, H. J. Guggenheim, Infrared-pumped visible laser, Appl. Phys.
     Lett., 1971, 19, 44.
    [17] M. B. Brown, W. A. Shand, Infrared quanatum counter action in Er-doped
     fluorides lattices, Phys. Rev. Lett., 1964, 12(3), 367.
    [18] D. C. Nguyen, G. E. Faulker, and M. Dulick, Blue-green (450nm)
     upconversionTm3+:YLF laser, Appl. Opt., 1989, 28(8), 3553.
    [19] F. Auzel, Y. Chen, Photon avalanche luminescence of Er3+ in LiYF4 crystal,
     J. Lumin., 1995, 65(1), 45.
    [20] 赵谡玲, 侯延冰, 董金凤, 稀土离子上转换发光的研究, 半导体光电,
     2000, 21(4),241.
    [21] J. S. Chivian, W. E. Case, D. D. Eden, The photon avalanche: A new
     phenomenon in Pr3+- based infrared quantum counters, Appl. Phys. Lett.,
     1979, 35(2), 124.
    [22] 张思远, 毕宪章, 稀土光谱理论, 吉林科学技术出版社(长春), 1991.
    [23] L. F. Johnson, H. J. Guggenheim, T. C. Rich, et al., Infrared-to-visible
     conversion by rare-earth ions in crystals, J. Appl. Phys., 1972, 43(3),
     1125.
    [24] R. Scheps, Upconversion laser processes, Prog. Quant. Electr., 1996,
     20(4), 271.
    [25] Y. Zhao, An analytical model for Pr3+-doped fluoride fibre upconversion
     lasers, Opt. Commun., 1997, 134, 470.
    [26] S. Nicolas, E. Descroix, M. F. Joubert, et al., Potentiality of Pr3+- and Pr3+
     +Ce3+- doped crystals for tunable UV upconversion lasers, Opt. Mater.,
     第 101 页 共 114 页
    
    
    吉林大学硕士学位论文
     2003, 22, 139.
    [27] F. Duclos, P. Urquhart, Thulium-doped ZBLAN blue upconversion fiber
     laser: theory, J. Opt. Soc. Am. B, 1995, 12(4), 709.
    [28] F. E. Auzel, Material and devices using double-pumped phosphors with
     energy transfer, Proc. IEEE, 1973, 61(6), 758.
    [29] Y. Chen, F. Auzel, Investigation of multiphonon assisted side band
     absorptions in rare-earth-doped halide glasses and crystal, J. Non-Crys. Sol.,
     1995, 184, 278.
    [30] R. S. Quimby, M. G. Drexhage, M. J. Suscavage, Efficient frequency
     up-conversion via energy transfer in fluoride glassed, Electron. Lett., 1987,
     23(1), 32.
    [31] D. C. Hanna, Recent development in visible light sources, Phil. Trans. Roy.
     Soc. Lond., 1996, 354, 779.
    [32] 倪嘉缵, 洪广言, 稀土新材料及新流程进展, 科学出版社(北京), 1998.
    [33] Wm. S. Heaps, L. R. Elias, W. M. Yen, Vacuum-ultraviolet absorption bands
     of trivalent lanthanides in LaF3, Phys. Rev. B, 1976, 13(1), 94.
    [34] P. Dorenbos, Predictability of 5d level positions of the triply ionized
     lanthanidesinhalogenidesandchalcogenides, J. Lumin., 2000, 87-89, 970.
    [35] Z. Liu, H. Ohtake, N. Sarukura, et al., Subnanosecond tunable ultraviolet
     pulse generation from a low-Q, short-cavity Ce:LiCAF laser, J. Appl.
     Phys., 1997, 36(10B), L1384.
    [36] N. Sarukura, Z. Liu, S. Lzumida, et al., All-solid-state tunable ultraviolet
     subnanosecond laser with direct pumping by the fifth harmonic of a
     Nd:YAG laser, Appl. Opt., 1998, 37(27), 6446.
    [37] N. Sarukura, Z. Liu, H. Ohtake, et al., Ultraviolet short pulses from an
     all-solid-state Ce:LiCAF master-oscillator-power-amplifier system, Opt.
     第 102 页 共 114 页
    
    
    吉林大学硕士学位论文
     Lett., 1997, 22(13), 994.
    [38] M. A. Dubinskii, A. C. Cefalas, E. Sarantopoulou, et al., Efficient
     LaF3:Nd3+-based vacuum-ultraviolet laser at 172 nm, J. Opt. Soc. Am. B,
     9(6),1992, 1148.
    [39] 周炳琨, 高以智, 陈倜嵘, 激光原理, 国防工业出版社(北京), 2000(第四
     版).
    [40] B. Calvas, P. Urquhart, Erbium-doped fiber amplifiers laser, J. Opt. Soc.
     Am. B, 1993, 10, 666.
    [41] D. Pean, P. Urquhart, J. C. Favreau, Green upconversion erbium-doped fiber
     amplifiers pumped into I11/2 and F7/2: a numerical simulation, Opt.
     4 4
     Commun., 1994, 107, 489.
    [42] Y. Zhao, An analytical model for Pr3+-doped fluoride fibre upconversion
     laser, Opt. Commun., 1997, 134, 470.
    [43] J. A. Medeiros Neto, D. W. Hewak, H. Tate, Application of a modified
     Judd-Ofelt theory to praseodymium-doped fluoride glasses, J. Non-crys.
     Sol., 1995,183, 201.
    [44] R. N. Brown, J. J. Hutta, Material dispersion in high optical quality heavy
     metal fluoride glasses, Appl. Opt., 1985, 24, 4500.
    [45] B. R. Judd. Optical absorption intensities of rare-earth ions, Phys. Rev.,
     1962, 127, 750.
    [46] G. S. Ofelt. Intensities of crystal spectra of rare-earth ions, J. Chem. Phys.,
     1962, 37, 511.
    [47] 黄大海, 李承芳, 钟家柽, Pr3+/Yb3+共掺 ZBLAN 玻璃吸收与发光特性的
     研究,中国激光, 1998, A25(12), 1122.
    [48] M. J. Weber, Spontaneous emission Probabilities and quantum efficiencies
     for excited states of Pr3+ in LaF3, J. Chem. Phys., 1968, 48(10), 4774.
     第 103 页 共 114 页
    
    
    吉林大学硕士学位论文
    [49] 王劼, 陈一竤, 干福熹, Pr3+离子在氟化物玻璃(ZBLAN)中的能级和光
     学吸收特性, 光学学报, 1996, 16(1), 78.
    [50] E. Sarantopoulou, Z. Kollia, A. C. Cefalas et al., Crystal field splitting of
     the 4f5d electronic configuration of Pr3+ ions in wide band gap fluoride
     dielectric crystals, Opt. Commun., 2002, 208, 345.
    [51] M. J. Weber. Probabilities for radiative and nonradiative decay of Er3+ in
     LaF3, Phys. Rev., 1967, 157(2): 262.
    [52] T. Kushida, Energy transfer and cooperative optical tanstions in rare-earth
     doped inorganic materials. I. Tansition probability calculation, J. Phys. Soc.
     Japan, 1973, 34(5), 1318.
    [53] T. Miyakawa, D.L. Dexter, Phonon sidebands, multiphonon relaxation of
     excited states, and phonon-assisted energy transfer between ions in solids,
     Phys. Rev. B, 1970, 1(7), 2961.
    [54] J. Y. Allain, M. Monerie, H. Poignant, Ytterbium-doped fluoride fibre laser
     operating at 1.02μm, Electron Lett., 1992, 28(11), 988.
    [55] A. C. Tropper, J. N. Carter, R. D. T. Lauder, et al., Analysis of blue and
     red laser performance of the infrared-pumped praseodymium-doped
     fluoride fiber laser, J. Opt. Soc. Am. B, 1994 ,11(5), 886.
    [56] W. Demtroder Laser Spectroscopy, Berlin: Springer-verlag 1996(第二版).
    [57] A.A. Kaminskii. Laser crystals, Berlin: Springer-verlag, 1981.
    [58] Xue Yi-Yuan, An Hong-Lin, Fu, Li-Bin, et al., Compact single-mode
     distributed bragg reflector fiber laser, Chin. Phys. Lett., 2000, 17(2), 109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700