基于非线性光学频率变换的人眼安全、中红外激光及太赫兹辐射源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.5-1.6μm人眼安全波段、3-5μm和8-12μm中红外波段是光学频段中三个非常重要的大气窗口,此外,近年来随着人们对太赫兹(THz)波段的逐渐了解,THz辐射也已经被广泛应用到各个基础研究与应用研究领域。实用可靠的光源是这几个波段的应用技术发展的基础。与其他方法相比,利用非线性光学频率变换方法如光学参量振荡器(OPO)、差频(DFG)等将近红外激光转换到以上几个波段,具有可实现全固态、结构紧凑、室温运转、低阈值、高效率、高功率(能量)、可调谐的相干光输出的优点。本文对人眼安全波段的KTP/KTA OPO、3-5μm的中红外KTA OPO以及利用GaSe、ZGP晶体差频实现8-12μm的中红外激光和THz辐射的技术进行了理论和实验研究,并对实验中发现的新现象进行了探索。
     本文的主要创新点可以归纳如下:
     1.对低重复频率、高脉冲能量的人眼安全波段KTP/KTA OPO进行了研究。通过对1064nm激光泵浦的KTP/KTA OPO的相位匹配关系、有效非线性系数、走离角等相关参数进行理论计算和比较,获得了OPO的最佳运转条件。在实验中对电光调Q的脉冲Nd:YAG激光器泵浦的单谐振非临界相位匹配的KTA/KTP OPO进行了研究,采用近内腔泵浦的复合腔结构,实现了高效率、高单脉冲能量的人眼安全波段激光输出。其中KTP OPO在1572nm处的单脉冲输出能量最高为66.5mJ,光光转换效率12.1%,电光转换效率4.47%;KTA OPO在1536nm的单脉冲输出能量的最高能量达74.9mJ,光光转换效率12.14%,电光转换效率4.74%。两实验结果中转换效率均为已报道类似方案的最高值。
     2.利用电光调Q运转的Nd:YAG激光器内腔泵浦KTA OPO实现高能量3.47μm的中红外激光输出。为了使OPO产生的中红外激光有效输出腔外,我们采用双端输出的折叠腔结构,中红外激光的输出总能量达到31mJ,光光转换效率4.76%,电光转换效率约为1.82%,从基频光到闲频光的光子转换效率达87%,这也是已报道的中红外内腔泵浦KTA OPO的最高输出能量和转换效率。
     3.对LD端面泵浦、声光调Q的激光器内腔泵浦的高重复频率人眼安全波段KTA OPO进行了理论和实验研究。在理论上对内腔泵浦的OPO(IOPO)谐振腔进行了分析,并在实验中利用Nd:YVO_4激光器泵浦KTA OPO实现了30kHz、1.03W的1536nm激光输出,光光转换效率12.26%,泵浦阈值只有0.75W。对Nd:YLF和Nd:YVO_4作为泵浦源的KTA IOPO的动力学过程进行了理论分析,并在实验中证明了上能级寿命更长的Nd:YLF晶体作为泵浦激光增益介质更有利于IOPO实现低阈值、高峰值功率的输出。
     4.利用LD端面泵浦、声光调Q的Nd:YVO_4激光器泵浦KTA IOPO实现了高重复频率、高效率的3.47μm中红外激光输出。采用信号光在腔内振荡、闲频光单端输出的直腔结构,LD泵浦功率为9.9W时闲频光的输出功率为435mW,光光转换效率4.4%,从基频光到中红外闲频光的光子转换效率可达64%。
     5.在LD端面泵浦的Nd:YAG激光器泵浦KTA IOPO的实验中发现了KTA的受激拉曼散射效应,并对此现象进行了进一步研究。利用Nd:YAG激光器泵浦KTA晶体,我们首次观察到了1178nm的斯托克斯光输出,并基于KTA晶体的级联受激拉曼散射和倍频效应,实现了从可见光到近红外的多波长激光同时输出,包含573nm、1064nm、1091nm、1120nm、1146nm、1178nm六条谱线,总功率约600mW,每个波长的功率为几十到几百毫瓦。优化实验方案实现了470mW的573nm黄光输出。
     6.对利用GaSe和ZGP晶体差频产生8-12μm中红外激光进行了理论和实验研究。以1064nm激光泵浦的简并点附近双波长KTP OPO在GaSe及ZGP中差频产生中红外激光的理论计算为基础,通过实验在GaSe晶体中差频获得了调谐范围8.28-18.365μm的中红外激光输出,在8.76μm处最高单脉冲能量为31.7μJ,中红外激光的峰值功率为7kW,能量转换效率约为0.9%;在ZGP晶体中差频,获得了7.2-12.2μm的可调谐中红外激光输出,波长为9.22μm时最大输出能量为10μJ,中红外激光的峰值功率约为2.2kW,能量转换效率为0.45%。
     7.对双波长KTP OPO在GaSe晶体中差频产生THz辐射进行了理论和实验研究。通过求解差频的耦合波方程,在理论上分析了晶体吸收系数、晶体长度、泵浦强度等条件对GaSe晶体差频产生THz波过程的影响。在实验中,首次将走离补偿结构的KTP OPO作为差频泵浦源,在GaSe晶体中差频实现了THz波输出,THz波的调谐范围0.186-3.7THz,在1.68THz处峰值功率最高达到11W,OPO的阈值、稳定性以及差频产生THz波的功率等与采用普通的KTP OPO作为泵浦源时有了明显改善。
     8.对利用ZnTe晶体级联差频产生THz辐射的原理和过程进行了理论研究。通过对级联差频耦合波方程的求解,得出了ZnTe晶体中级联差频的最佳泵浦条件和ZnTe晶体的最佳长度,并且分析了晶体吸收、波矢失配及泵浦强度对级联差频的影响。根据我们的计算结果,当泵浦强度为50MW/mm2,泵浦光频率分别为369THz和368THz时,级联差频产生的THz波的强度可达0.815MW/mm2,与普通差频相比提高了7.7倍,能量转换效率为0.815%,光子转换效率超过600%,远远超过Manley-Rowe关系的限制。
The wavelength regions of 1.5-1.6μm eye-safe band, 3-5μm and 8-12μm mid-infrared bands are three important atmospheric windows in the optical spectrum. Moreover, the terahertz (THz) radiation has been widely exploited in basic and application research areas in recent years with the increase of knowledge for people in this area. Practical radiation sources in these bands are the basic elements for applications. Compared with other methods, nonlinear optical frequency conversion technologies such as optical parametric oscillator (OPO) and difference frequency conversion (DFG) can provide us with all-solid-state, compact, room-temperature operating, low-threshold, high-efficiency, high-power (high-energy), tunable and coherent sources, by converting near-infrared lasers to the required wavelength regions mentioned above. In this dissertation, the eye-safe and 3-5μm mid-infrared KTP/KTA OPOs, as well as the 8-12μm and THz radiation sources based on DFG in GaSe and ZGP crystals, are theoretically and experimentally studied. Some new phenomena observed in the experiments are also further explored.
     The main contents and key innovative points are as follows:
     1. The low-repetition-rate, high-pulse-energy eye-safe KTP/KTA OPOs are researched. The optimum operating conditions are derived based on the calculations and comparisons on the phase-matching relations, effective nonlinear coefficients and walk-off angles of KTP OPO and KTA OPO pumped by 1064-nm lasers. In the experiment, high-efficiency, high-pulse-energy eye-safe lasers are achieved from noncritically phase-matched KTP and KTA OPOs pumped by electro-optically Q-switched pulsed Nd:YAG lasers in a compound cavity configuration. The maximum pulse energy of KTP OPO at 1572nm is 66.5mJ, corresponding to the optical-to-optical conversion efficiency of 12.1% and electrical-to-optical conversion efficiency of 4.47%; the maximum pulse energy of KTA OPO at 1536nm is up to 74.9mJ, corresponding to the optical-to-optical conversion efficiency of 12.14% and electrical-to-optical conversion efficiency of 4.74%. The conversion efficiencies are the higher than any other reported results of similar configuration.
     2. The high-pulse-energy mid-infrared KTA OPOs at 3.47μm intracavity pumped by an electro-optical Q-switched Nd:YAG laser are achieved. A folded cavity is adopted in order to fully extract the generated idler wave of the OPO in two directions. The total output energy reaches 31mJ, corresponding to the optical-to-optical conversion efficiency of 4.76% and electrical-to-optical conversion efficiency of 1.82%. The photon conversion efficiency from the fundamental to idler wave is 87%. This is the highest output energy and conversion efficiency of mid-infrared KTA OPOs that have been reported.
     3. Eye-safe KTA OPOs intracavity pumped by end-pumped acousto-optically (A-O) Q-switched high-repetition-rate lasers are theoretically and experimentally researched. Based on the theoretical analysis on the cavity parameters of intracavity pumped OPOs (IOPOs), we achieve a 30-kHz, 1.03-W KTA OPO at 1536nm in the experiment, pumped by an A-O Q-switched Nd:YVO_4 laser. The optical-to-optical conversion efficiency is 12.26% and the threshold is as low as 0.75W. The dynamic processes of KTA IOPOs using Nd:YLF and Nd:YVO_4 as the pump lasers are compared, which conclude that laser materials with higher energy storage ability are more suitable in low-threshold, high-peak-power IOPOs.
     4. A high-repetition-rate 3.47-μm mid-infrared KTA IOPO is achieved, pumped by an LD-end-pumped A-O Q-switched Nd:YVO_4 laser. With a linear cavity in which the signal wave is resonant and the idler is coupled out in one direction, the maximum mid-infrared output power is 435mW when the LD pump power is 9.9W. The optical-to-optical conversion efficiency is 4.4% and the photon conversion efficiency from fundamental to idler wave reaches 64%.
     5. Stimulated Raman scattering (SRS) in KTA is observed in the experiment of eye-safe IOPO pumped by a Nd:YAG laser and further experiments are performed on this phenomenon. We first report the Stokes wave at 1178nm in KTA pumped by a Nd:YAG laser. Based on cascaded SRS and self-frequency-doubling in KTA, we achieve a multi-wavelength laser with wavelengths from visible to the near-infrared, including spectra of 573nm, 1064nm, 1091nm, 1120nm, 1146nm and 1178nm. The output power for each line is from tens to hundreds of milliwatts. The yellow laser at 573nm reaches 470mW with an optimized scheme.
     6. The difference frequency generation (DFG) of 8-12μm mid-infrared laser in GaSe and ZGP crystals is theoretically and experimentally researched. Firstly we calculated the phase-matching relations, effective nonlinear coefficients and walk-off angles of the DFG process based on a dual-wavelength KTP OPO working near the degenerate point pumped by a 1064nm laser. In the experiment, the tuning range of 8.28-18.365μm is achieved using a GaSe crystal. The maximum generated mid-infrared pulse energy is 31.7μJ at 8.76μm, corresponding to the peak power of 7kW and the energy conversion efficiency of about 0.9%. With a ZGP crystal for DFG, the maximum mid-infrared pulse energy is 10μJ at 8.76μm, the peak power of which is 2.2kW and the energy conversion efficiency is about 0.45%.
     7. THz difference frequency generation (DFG) in GaSe based on a dual-wavelength KTP OPO is researched. The DFG process is theoretically analyzed considering the effects of absorption, crystal length and pump intensity, etc. A walk-off compensated dual-wavelength KTP OPO is firstly employed as the pump source for DFG. The generated THz wave is tunable from 0.186 to 3.7THz, with the maximum peak power of 11W at 1.68THz. The stability and threshold of the KTP OPO, as well as the generated THz power is obviously improved compared with that using a common KTP OPO.
     8. Theoretical analysis is performed on the principles and process of cascaded DFG for THz wave in a ZnTe crystal. We obtain the optimum pump condition and crystal length through solving the coupling wave equations of cascaded DFG, and analyze the influence of absorption, wave-number mismatch and pump intensity on the cascade DFG process. Based on our calculations in which the pump intensity of 50MW/mm2 and the pump frequencies of 369THz and 368THz are taken for example, the generated THz intensity at 1THz reaches 0.815MW/mm2. The output intensity is increased by 7.7 times, corresponding to the energy conversion efficiency of 0.815%. The photon conversion efficiency reaches 600%, which goes far beyond the Manley-Rowe limit.
引文
[1] T. H. Maiman, Stimulated optical radiation in ruby, Nature, 1960, 187: 493-494
    [2] V. P. Gapontsev, S. M. Matitsin, A. A. Isineer et al., Erbium glass lasers and their applications, Opt. & Laser Technol., 1982, 14(4): 189-196
    [3] P. Laporta, S. Taccheo, S. Longhi et al., Diode-Pumped microchip Er-Yb:glass laser, Opt. Lett. 1993, 18(15):1232-1234
    [4] A. Levoshkin, A. Petrov and J. E. Montagne, High-efficiency diode-pumped Q-switched Yb:Er:glass laser, 2000, 185(4): 399-405
    [5]霍玉晶,杨成伟,陈千颂,脉冲激光测距光源进展,激光与红外,2002,32(3):131-134
    [6]金锋,人眼安全拉曼激光技术的发展,激光与光电子学进展,2003,40(6):40-42
    [7] T. W. Monarski, S. M. Hannon and P. Gatt, Eye-safe coherent lidar detection using a 1.5-μm Raman laser, Proc. SPIE, 2001, 4377: 229-236
    [8] E. V. Raevsky, A. V. Gulin, N. S. Ustimenko, et al., Laser oscillation of Nd:KGd(WO4)2 in the 1.538μm eye-safe range, Proc. SPIE, 2000, 4035: 362-366
    [9] N. S. Ustimenko, A. V. Gulin, and V. A. Pashkov, Experimental study of energy, temporal, and spatial characteristics of miniature SRS self-conversion Nd3+:KGd(WO4)2 lasers, Proc. SPIE, 2002, 4723:690
    [10] A. Yu. Abazadze, G. M. Zverev, Yu. M. Kolbatskov, et al., Study of a Nd3+:KGW crystal laser transversely pumped by laser diode bars,Quantum Electron., 2003, 34: 2
    [11] J. H. Huang, J. P. Lin, R. B. S, et al., Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal, Opt. Lett., 2007, 32(9): 1096-1098
    [12] Y. T. Chang, K. W. Su, H. L. Chang et al., Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium, 2009, 17(6): 4330-4335
    [13] M. K. Oshman and S.E. Harris, Theory of optical parametric oscillation internal to the laser cavity, IEEE J. Quantum Electron., 1968, 4(8): 491-502
    [14] T. Debuisschert, J. Raffy, J. -P. Pocholle, et al., Intracavity optical parametric oscillator: study of the dynamics in pulsed regime, J. Opt. Soc. Am. B, 1996, 13(7): 1569~1587
    [15] L. R. Marshall, J. J. Kasinski and R. L. Burnham, Diode-pumped eye-safe laser source exceeding 1% efficiency, Opt. Lett., 1991, 16(21): 1680-1682
    [16] M. S. Web, P. F. Moulton, J. J. Kasinski et al., High-average-power KTiOAsO4 optical parametric oscillator, Opt. Lett., 1998, 23(15):1161-1163
    [17]姚宝权,王月珠,鞠有伦等,利用KTP光学参量振荡器获得可调谐人眼安全激光,中国激光,2000,27(11):992-996
    [18]吕卫,于意仲,李喜福,小型一体化1.57μm人眼安全激光频率转换KTP OPO,光电子?激光,2002,13(2):120-124
    [19] R. S. Conroy, C. F. Rae, G. J. Friel, et al., Compact low-threshold Q-switched intracavity optical parametric oscillator, Opt. Lett., 1998, 23(17): 1348-1350
    [20] R. F. Wu, K. S. Lai, H. F. Wong et al., Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO, Opt. Express, 2001, 8(13): 694-698
    [21] R. F. Wu, K. S. Lai and C. L. C. Lindy, Watt-level PPRTA OPO pumped by Nd:YALO laser, 2003. CLEO'03.
    [22] Y. F. Chen, S. W. Chen, S. W. Tsai et al., High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B, 2003, 76:263-266
    [23] W. ?endzian, J. K. Jabczyński, P. Wachulak, et al., High-repetition-rate, intracavity-pumped KTP OPO at 1572 nm, Appl. Phys. B, 2005, 80: 329-332
    [24] J. G. Miao, H. M. Tan, H. K. Bian, et al., Low threshold narrow pulse width eye-safe intracavity optical parametric oscillator at 1573nm, Opt. Comm., 2006, 265: 349-353
    [25] Z. Liu, Q. Wang, X. Zhang et al., Efficient acousto-optically Q-switched intracavity Nd:YAG/KTiOAsO4 optical parametric oscillator, Appl. Phys. B, 92: 37-41
    [26] Z. J. Liu, Q. P. Wang, X. Y. Zhang, et al., Intracavity optical parametric oscillator pumped by an actively Q-switched Nd:YAG laser, Appl. Phys. B, 2008, 90: 439-443
    [27] H. T. Huang, J. L. He, X. L. Dong, et al., High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B, 2008, 90: 43-45
    [28] Y. Yin and N. Yin, 23 kHz eye-safe intra-cavity OPO laser, CLEO, 2004, 2(3): 1-3
    [29] H. Zhu, G. Zhang, H. Chen et al., High-efficiency intracavity Nd:YVO4/KTA optical parametric oscillator with 3.6W output power at 1.53μm, Opt. Express, 2009, 17(23): 20669-20674
    [30]金锋,翟刚,李晶等,高重频人眼安全光参变振荡器实验研究,激光技术,2006,30(1):20-22
    [31]李涛,卓壮,李晓敏等,激光二极管侧面抽运声光调Q Nd:YAG/KTA1.57μm人眼安全光参量振荡激光器,中国激光,2006,33(10):1305-1308
    [32] Y. Y. Wang, D. G. Xu, Y. Z. Yu, et al., High-peak-power, high-repetition-rate intracavity optical parametric oscillator at 1.57μm, Chin. Opt. Lett., 2007, 5(20): 93-95
    [33] W. Y. Cheng, S. Z. Zhao, Z. Zhuo, et al., Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator, Opt. Lasers Eng., 2008, 46: 12-17
    [34]李宇飞,曲瑜,孙渝明等,LD侧泵的声光调Q Nd:YAG/ KTP人眼安全激光器,光子学报,2007,36 (4):591-594
    [35] Z. Liu, Q. Wang, X. Zhang et al., 2.54W 1535nm KTiOAsO4 optical parametric oscillator within a diode-side-pumped acousto-optically Q-switched Nd :YAG laser, J. Phys. D: Appl. Phys. 2008, 41:135112
    [36] B. T. Zhang, X. L. Dong, J. L. He et al., High-power eye-safe intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser, Laser Phys. Lett., 2008, 5(12): 869-873
    [37] X. L. Dong, B. T. Zhang, J. L. He et al., High-power 1.5 and 3.4μm intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser, Opt. Commun., 2009, 282: 1668-1670
    [38] J. -F. Yang, B. -T. Zhang, J. -L. He et al., Intracavity optical parametric oscillator based on GTR-KTP pumped by diode-side-pumped acousto-optically Q-switched Nd:YAG laser, Appl. Phys. B, 2010, 98: 49-54
    [39] R. Dabu, A. Stratan, C. Fenic, et al., Eye-safe singly resonant KTP parametric oscillator pumped inside a Nd:YAG laser cavity, Opt. Eng., 2001, 40(3): 455-459
    [40] E. V. Raevsky, V. L. Pavlovitch and V. A. Konovalov, Efficient eye-safe intracavity KTP optical parametric oscillator, Proc. SPIE, 2002, 4630: 75-81
    [41] A. I. Vodchits, V. I. Dashkevich, N. S. Kazak et al., Eye-safe source based on an optical parametric oscillator, J. Appl. Spectrosc, 2006, 73(2): 285
    [42]包照日格图,裴博,1.57μm非临界相位匹配KTP参量振荡器,激光与红外,2001,31(5):304-305,311
    [43]金锋,时顺森,翟刚等,1.57μm内腔光学参量振荡器研究,红外与激光工程,2002,31(1):48-50,67
    [44]金锋,翟刚,李晶等,全固态人眼安全OPO激光器,激光技术,2002,26(3):201-203
    [45] Wan Yong, Zeng Qin-Yong, Zhu Da-Yong, et al., High repetition rate pulsed laser of twin wavelengths from KTiOPO4 optical parametric oscillation, Chin. Phys. 2004, 13(9): 1402-1405
    [46] X. Liu, C. Lu, X. Wang et al., Efficient intracavity optical parametric oscillator with diode side pumped electro-optic Q-switched laser, Chin. Opt. Lett., 2006, 4(11): 664-666
    [47] H. Zhu, G. Zhang, C. Huang et al., Electro-optic Q-switched intracavity optical parametric oscillator at 1.53μm based on KTiAsO4, Opt. Commun., 2009, 282: 601-604
    [48] K. Zhong, Y. Y. Wang, D. G. Xu et al., Efficient Compound-Cavity Eye-Safe KTP OPO at 1.57μm Pumped by an Electro-Optic Q-Switched Nd:YAG Laser, Chin. Phys. Lett., 2009, 26(6): 064210
    [49] K. Zhong, Y. Y. Wang, D. G. Xu et al., Efficient electro-optic Q-switched eye-safe optical parametric oscillator based on KTiAsO4, Appl. Phys. B, 2009, 97: 61-66
    [50] L. Fulop, L. Fulbert and E. Molva, Optical parametric oscillator pumped with a passively Q-switched microchip laser, CLEO’98, 136
    [51] Y. Yashkir and H. M. van Driel, Passively Q-switched 1.57-μm intracavity optical parametric oscillator, Appl. Opt., 1999, 38: 2554
    [52] A. Agnesi, S. Dell’Acqua, and G. Reali, Diode-pumped quasi-cw intracavity optical parametric oscillator at 1.57μm with efficient pulse shortening, Appl. Phys. B, 2000, 70: 751-753
    [53] W. Zendzian, J. K. Jabczyński, and J. Kwiatkowski, Intracavity optical parametric oscillator at 1572nm wavelength pumped passively Q-switched diode-pumped Nd:YAG laser, Appl. Phys. B, 2003,76: 355
    [54]牛志强,李宇飞,孙渝明等,1.57μm内腔式OPO激光输出特性的研究,光电子?激光,2006,17(5):641-643
    [55]刘旭,卢长勇,王小兵等,角锥棱镜腔Cr4+:YAG被动调Q内腔式光参量振荡器,中国激光,2007,34(4):485-490
    [56] J. Miao, B. Wang, J. Peng, et al., Highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-pumped passively Q-switched laser, Appl. Phys. B 2007, 88: 193-196
    [57] J. Miao, J. Y. Peng, B. S. Wang, et al., Compact low threshold Cr:YAG passively Q-switched intracavity optical parametric oscillator, Opt. Commun., 2008, 281: 2265-2270
    [58] J. Miao, J. Peng, B. Wang et al., Compact KTA-based intracavity optical parametric oscillator driven by a passively Q-switched Nd:GdVO_4 laser, Appl. Opt., 47(23):4287-4291
    [59] Y. F. Chen, S.W. Chen, L.Y. Tsai, et al., Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO_4 laser, Appl. Phys. B, 2004, 79: 823-825
    [60] Y. F. Chen, Y. C. Chen, S.W. Chen, et al., High-power efficient diode-pumped passively Q-switched Nd:YVO_4/KTP/Cr~(4+):YAG eye-safe laser, Opt. Commun., 2004, 234: 337-342
    [61] L. Y. Tsai, Y. F. Chen, S. T. Lin, et al., Compact efficient passively Q-switched Nd:GdVO_4/PPLN/Cr4~+:YAG tunable intracavity optical parametric oscillator, Opt. Express, 2005, 13(23): 9543-9547
    [62] Y. F. Chen, L.Y. Tsai, Comparison between shared and coupled resonators for passively Q-switched Nd:GdVO_4 intracavity optical parametric oscillators, Appl. Phys.B, 2006, 82: 403-406
    [63] Y. F. Chen, K. W. Su, Y. T. Chang et al., Compact efficient eye-safe intracavity optical parametric oscillator with a shared cavity configuration, Appl. Opt., 2007, 46(17): 3597-3601
    [64] Y. P. Huang, H. L. Chang, Y. J. Huang et al., Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator, 2009, 17(3):1551-1556
    [65] M. Beck, D. Hofstetter, T. Aellen et al., Continuous wave operation of a mid-infrared semiconductor laser at room temperature, Science, 2002, 295: 301-305
    [66] J. S. Yu, S. R. Darvish, A. Evan et al., Room-temperature continuous-wave operation of quantum-cascade lasers atλ~4μm, Appl. Phys. Lett., 2006, 88: 04111
    [67] C. Lin, M. Frau, O. Dier et al., Low threshold room-temperature continuous-wave operation of 2.24–3.04μm GaInAsSb/AlGaAsSb quantum-well lasers, 2004, 84(25): 5088-5090
    [68] E. Sorokin, S. Naumov, and I. T. Sorokina, Ultrabroadband infrared solid-state lasers, IEEE J. Selected Topics in Quantum Electron., 2005, 11(3): 690-712
    [69] I. T. Sorokina, Cr2+-doped II-VI materials for lasers and nonlinear optics, Opt. Mater., 2004, 26: 395-412
    [70] J. Schnerder, Mid-infrared fluoride fiber lasers in multiple cascade operation, IEEE Photon. Technol. Lett., 1995, 7(4): 354-356
    [71] I. T. Sorokina, and K. L. Vodopyanov, Solid-state mid-infrared laser sources, Berlin: Springer, 2003
    [72] L. E. Myers, R. C. Eckardt, M. M. Fejer et al., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, 1995, 12(11): 2012-2116
    [73] X. Ding, S. M. Zhang, H. M. Ma et al., Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate, Chin. Phys. B, 2008, 17(1): 211-216
    [74] M. Peltz, U. B(?)der, A. Borsutzky et al., Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA, Appl. Phys. B, 73: 663-670
    [75] Y. Peng, W. Wang, X. Wei et al., High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN, Opt. Lett., 34(19): 2897-2899
    [76] P. A. Budni, L. A. Pomeranz, M. L. Lemons et al., 10W mid-IR Holmium pumped ZnGeP_2 OPO, OSA TOPS Advanced Solid state Lasers, 1998, 19: 226-229
    [77] E. Lippert, G. Rustad, G. Arisholm et al., High power and efficient long wave IR ZnGeP2 parametric oscillator, Opt. Express, 2008, 16(18): 13878-13884
    [78] L. J. Li, B. Q. Yao, Y. L. Ju et al., 8.3μm singly resonant ZnGeP_2 optical parametric oscillators pumped by a Tm, Ho:GdVO_4 laser, Laser Phys., 2009, 19(10): 1957-1959
    [79] W. Shi, and Y. J. Ding, A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540μm for variety of potential applications, 2004, 84(10): 1635-1637
    [80] K. L. Vodopyanov, and V. Chazapis, Extra-wide tuning range optical parametric generator, Opt. Commun., 1997, 135: 98-102
    [81] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Berlin: Springer, 1997
    [82]李港,激光频率的变换与扩展,北京:科学出版社,2005
    [83]石顺祥,陈国夫,赵卫等,非线性光学,西安:西安电子科技大学出版社,2003
    [84]董春明,王善朋,陶绪堂,中红外非线性光学晶体的研究进展,人工晶体学报,2006,35(4):785-789
    [85] P. G. Schunemann, Improved NLO crystals for mid-IR laser applications, Proc. of SPIE, 2007, 6455: 64550R
    [86] J. A. Giordmaine and R. C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett., 1965, 14(24): 973-976
    [87] A. S. Pine, Doppler-limited molecular spectroscopy by differency-frequency mixing, 1974, J. Opt. Soc. Am, 1974, 64(12): 1683-1690
    [88] S. K. Wong, R. Oliver, K. L. Schepler et al., Difference-frequency generation of 4μm radiation from Nd:YAG lasers, Opt. Lett., 1994, 19(18): 1433-1435
    [89] R. Lavi, A. Englander, and R. Lallouz, Highly efficient low-threshold tunable all-solid-state intracavity optical parametric oscillator in the mid infrared, Opt. Lett. 1996, 21(11):800-802
    [90] G. Mennerat, and P. Kupecek, High-energy narrow-linewidth tunable source in the mid-infrared, Tech. Digest (Opt. Soc. Am., Washington), 1998: 47-49
    [91]王克强,裴博,3.76μm中红外激光参量振荡器,中国激光,2000,27(8):691-693
    [92]李春,安毓英,曾小东等,3-5μm角度调谐LiNbO_3晶体光参量振荡器的技术研究,光子学报,2002,31(8):937-940
    [93]姚宝权,王月珠,柳强等,中红外LiNbO_3和KTP光参量振荡器的比较研究,哈尔滨工业大学学报,2003,35(10):1228-1231
    [94] Y. Wan, G. Lan, X. Z. Su et al., High energy output complex cavity pump optical parametric oscillator in the mid-infrared, Laser Technol., 2005, 29(4): 340-342, 346
    [95] W. R. Bosenberg, A. Drobshoff, J. I. Alexander et al., 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator, Opt. Lett., 1996, 21(17): 1336-1338
    [96] S. Yamaguchi, K. Wake, and J. Sato, Performance of mid-infrared difference frequency spectrometer employing a periodically poled LiNbO3 for next generation environmental monitoring, Chin. Opt. Lett. 2007, 5: S105-108
    [97] D. Marinov, J. Rey, and M. W. Sigrist, Mid-infrared spectroscopic investigation of methylamines by a continuous-wave difference-frequency- generation-based system, Appl. Opt. 2008, 47(12): 1956-1962
    [98] T. L. Zhang, B. G. Zhang, D. G. Xu et al., 1-W, high-repetition-rate room temperature operation of mid-infrared optical parametric oscillator based on periodically poled MgO-doped LiNbO, Chin. Phys. B, 2008, 17(2): 633-636
    [99] F. Ji, R. Lu, B. Li et al., Mid-infrared tunable dual-wavelength generation based on a quasi-phase-matched optical parametric oscillator, Opt. Commun. 2009, 282: 126-128
    [100] C. Rahlff, Y. Tang, W. Sibbett et al., High-repetition-rate, mid-infrared KTA-OPO at 3.44μm, CLEO, 1996: 267-268
    [101] L. R. Marshall, Efficient multiwatt 2-5μm tunable sources, CLEO, 1996: 368-369
    [102] B. Ruffing, A. Nebel, and R. Wallenstein, All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator, Applied Physics B, 1998, 67:537-544
    [103] T. J. Edwards, G. A. Turnbull, M. H. Dunn et al., High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator, Appl. Phys. Lett., 1998, 72(13): 1527-1529
    [104] G. Vysniauskas, D. Burns, and E. Bente, Development of a nanosecond high energy KTA OPO system operating at 2.9μm, CLEO, 2002: 333
    [105] S. Das, Nd:YAG pumped tunable singly resonant optical parametric oscillator in mid-infrared, J. Phys. D, 2009, 42: 085107
    [106]王滨,任刚,李彤等,中红外砷酸钛氧钾光参变振荡器的实验研究,激光技术,2007,31(3):225-227
    [107] K. Zhong, J. S. Li, H. X. Cui et al., Low Threshold and High Conversion Efficiency Nanosecond Mid-Infrared KTA OPO, Chin. Phys. Lett., 2009, 26(12): 124213
    [108] K. Zhong, J. Q. Yao, D. G. Xu et al., High-pulse-energy high-efficiency mid-infrared generation based on KTA optical parametric oscillator, Appl. Phys. B, 2010, DOI: 10.1007/s00340-010-3932-y
    [109] S. Nicolas, O. Nordseth, G. Rustad et al., High-energy mid-IR source based on two-stage conversion from 1.06μm, Advanced Solid-State Photones, 2005: 417-422
    [110] B. Q. Yao, G. L. Zhu, Y. L. Ju et al., A ZnGeP2 Optical Parametric Oscillator with Mid-IR Output Power 3W Pumped by a Tm,Ho:GdVO4 Laser, Chin. Phys. Lett., 2009, 26(2): 024209
    [111]鲁燕华,王卫民,彭跃峰等,磷锗锌光学参量振荡器技术研究,强激光与粒子束,2006,18(8):1261-1264
    [112] K. Kato, Parametric oscillation at 3.2μm in KTP pumped at 1.064μm, IEEE J. Quantum Electron., 1991, 27(5): 1137-1140
    [113] P. E. Powers, C. L. Tang, and L. K. Cheng, High-repetition-rate femtosecond optical parametric oscillator based on RbTiOAsO4, Opt. Lett., 1994, 19(18): 1439-1441
    [114] G. R. Holtom, R. A. Crowell, and L. K. Cheng, Femtosecond mid-infrared optical parametric oscillator based on CsTiOAsO4, Opt. Lett., 1995, 20(18): 1880-1882
    [115] R. Urschel, A. Fix, R. Wallenstein et al., Generation of tunable narrow-band midinfrared radiation in a type I potassium niobate optical parametric oscillator, J. Opt. Soc. Am. B, 1995, 12(4): 726-730
    [116] D. Brida, C. Manzoni, G. Cirmi et al., Generation of broadband mid-infrared pulses from an optical parametric amplifier, Opt. Express, 2007, 15(23): 15035-15040
    [117] C. Kieleck, M. Eichhorn, A. Hirth et al., High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2μm holmium laser, Opt. Lett., 2009, 34(3): 262-264
    [118] R. C. Eckardt, Y. X. Fan, R. L. Byer et al., Broadly tunable infrared parametric oscillator using AgGaSe2, Appl. Phys. Lett., 1986, 49(11): 608-610
    [119] S. Chandra, T. H. Allik, J. A. Hutchinson et al., OPO performance in the 6-14μm band from 1.57μm pumped AgGaSe2, OSA TOPS Advanced Solid state Lasers, 1997, 10: 270
    [120] K. L. Vodopyanov, J. P. Maffetone, I. Zwieback et al., AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3μm, Appl. Phys. Lett., 1999, 75(9): 1204-1206
    [121] Y. Ehrlich, S. Pearl, and S. Fastig, High brightness tunable tandem optical parametric oscillator at 8-12μm, OSA/ASSP, 2004, TuB15
    [122] P. Ketteridge, P. Budni, I. Lee et al., 8 micron ZGP OPO pumped at 2 microns, OSA TOPS on Advanced Solid-state Lasers, 1996, 1: 168-170
    [123] T. H. Allik, S. Chandra, D. M. Rines et al., 7-12μm generation using a Cr,Er:YSGG pump laser and CdSe and ZnGeP2 OPOs, OSA TOPS Advanced Solid State Lasers, 1997, 10: 265-266
    [124] P. A. Ketteridge, P. A. Budni, P. G. Schunemann et al., Tunable all solid state average power ZGP OPO at 2.7 and 8.5 microns, OSA TOPS Advanced Solid State Lasers, 1998, 19: 233-235
    [125] I. T. McKinnie, G. J. Wagner, S. Christensen et al., Dual-band mid-wave/long-wave ZGP OPO pump-tuned by a Cr:ZnSe laser, CLEO, 2002: 170-171
    [126] G. Rustad, S. Nicolas, E. Lippert et al., Tuning and dual wavelength operation of a ZGP OPO in the 8-11 micron range, OSA/ASSP, 2003: 333-338
    [127] S. Haidar, K. Miyamoto, and H. Ito, Generation of tunable mid-IR (5.5–9.3μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator, Opt. Commun. 2004, 241: 173-178
    [128] H. R. Lee, J. Yu, N. P. Barnes et al., High pulse energy ZnGeP2 singly resonant OPO, 2004: 394-397
    [129] M. W. Haakestad, G. Arisholm, E. Lippert et al., High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2, OSA/ASSP, 2008, MC45
    [130] K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone et al., ZnGeP2 optical parametric oscillator with 3.8–12.4-μm tenability, Opt. Lett. 2000, 25(11): 841-843
    [131] H. R. Lee, J. Yu, N. P. Barnes et al., An Injection-seeded Narrow Linewidth Singly Resonant ZGP OPO, OSA/ASSP, 2006, MC1
    [132] F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator, J. Opt. Soc. Am. B, 2001, 18(6): 818-822
    [133] K. Miyamoto, K. Suizu, J. Shikata et al., Wavelength-agile 5-10μm generation by Galvano-controlled double crystal KTP-OPO, OSA/CLEO, 2006, CTuZ2
    [134] K. L. Vodopyanov, and P. G. Schunemann, Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold, Opt. Lett., 2003, 28(6): 441-443
    [135] K. L. Vodopyanov, O. Levi, P. S. Kuo et al., Optical parametric oscillation in quasi-phase-matched GaAs, Opt. Lett., 2004, 29(16): 1912-1914
    [136] R. L. Herbst and R. L. Byer, Singly resonant CdSe infrared parametric oscillator, Appl. Phys. Lett. 1972, 21(5): 189-191
    [137] Y. Isyanova, A. Dergachev, D. Welford et al., Multi-wavelength, 1.5-10μm tunable, tandem OPO, OSA/ASSL, 1999, 26: 548-553
    [138] M. A. Waston, M. V. O’Connor, D. P. Shepherd et al., Synchronously pumped, mid-infrared CdSe optical parametric oscillator, CLEO/Europe, 2003: 284
    [139] A. Zakel, S. D. Setzler, P. G. Shunemann et al., Optical parametric oscillator based on Cadmium Germanium Arsenide, CLEO, 2002: 172
    [140] K.L. Vodopyanov, L.A. Kulevskii, V.G. Voevodin et al., High efficiency middle IR parametric superradiance in ZnGeP2 and GaSe crystals pumped by an erbium laser, Optics Commun., 1991, 83: 322.
    [141] V. L. Vodopyanov, Parametric generation of tunable infrared radiation in ZnGeP2 pumped at 3μm, J. Opt. Soc. Am. B, 1993, 10(9): 1723-1729
    [142] V. L. Vodopyanov, Mid-infrared optical parametric generator with extra-wide (3–19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells, J. Opt. Soc. Am. B, 1999, 16(9): 1579-1586
    [143] V. Petrov, Y. Tanaka, and T. Suzuki, Parametric generation of 1-ps pulses between 5 and 11μm with a ZnGeP2 crystal, IEEE J. of Quantum Electron., 1997, 33(10): 1749-1755
    [144] K. L. Vodopyanov, Megawatt peak power 8–13μm CdSe optical parametric generator pumped at 2.8μm, Opt. Commun. 1998, 150: 210-212
    [145] F. Rotermund, V. Petrov, E. Noack et al., Optical parametric generation of femtosecond pulses up to 9μm with LiInS2 pumped at 800nm, CLEO, 2001: 393
    [146] K. L. Vodopyanov, G. M. H. Knippels, A. F. G. van der Meer et al., Optical parametric generation in CGA crystal, Opt. Commun., 2002, 202: 205-208
    [147] P. S. Kuo, K. L. Vodopyanov, M. M. Fejer et al., Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs, Opt. Lett. 2006, 31(1): 71-73
    [148] K. Finsterbusch, A. Bayer, and H. Zacharias, Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe, Appl. Phys. B, 2004, 79: 457-462
    [149] M. Yumoto, M. Yamashita, T. Ogawa et al., Rapidly-tunable mid-infrared coherent light source with difference frequency generation, OSA/CLEO, 2006, CtuR5
    [150] K. Kato, High-power difference-frequency generation at 5-11μm in AgGaS2, IEEE J. Quantum Electron., 1984, 20(7): 698-699
    [151] R. Utano, and M. J. Ferry, 8-12μm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO, OSA TOPS Advanced Solid State Lasers, 1997, 10: 267-269
    [152] K. S. Abedin, S. Haidar, Y. Konno et al., Difference frequency generation of 5–18μm in a AgGaSe2 crystal, Appl. Opt. 1998, 37(9): 1642-1646
    [153] S. Haidar, K. Nakamura, E. Niwa et al., Mid-infrared (5–12-μm) and limited (5.5–8.5-μm) single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS2, Appl. Opt. 1999, 38(9): 1798-1801
    [154] J. F. Xia, J. Song, and D. Strickland, Development of a dual-wavelength Ti:sapphire multi-pass amplifier and its application to intense mid-infrared generation, Opt. Commun. 2002, 206: 149-157
    [155] S. Haidar, and H. Ito, Periodically poled lithium niobate optical parametric oscillator pumped at 0.532μm and use of its output to produce tunable 4.6–8.3μm in AgGaS2 crystal, Opt. Commun. 2002, 202: 227-231
    [156] T. Imahoko, Z. Zhang, Y. Takada et al., Tunable femtosecond high power mid-infrared laser pulses, CLEO, 2005: 635-636
    [157] T. Dahinten, U. Pl?dereder, A. Sellmeier et al., Infrared pulses of 1 picosecond duration tunable between 4μm and 18μm, IEEE J. Quantum Electron., 1993, 29(7): 2245-2250
    [158] F. Rotermund, V. Petrov, and F. Noack, Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12μm) using HgGa2S4 and AgGaS2, Opt. Commun., 2000, 185: 177-183
    [159] W. Chen, S. Tinturier, F. Borel et al., Continuous-Wave mid-infrared difference-frequency generation in lithium-based semiconductors (LiInS2 and LiInSe2), CLEO/IQEC, 2004, CFI2
    [160] W. Chen, E. Poullet, R. Bocquet et al., Tunable continuous-wave mid-infrared radiation by laser difference-frequency generation in LiInSe2, CLEO/Europe, 2005: 245
    [161] W. Chen, E. Poullet, J. Burie et al., Widely tunable continuous-wave mid-infrared radiation (5.5–11μm) by difference-frequency generation in LiInS2 crystal, Appl. Opt., 44(19): 4123-4129
    [162] W. Chen, J. Cousin, M. W. Sigrist et al., LiInS2 and LiInSe2: new nonlinear crystals for continuous-wave difference-frequency generation in the mid-infrared, CLEO, 2006: 88-89
    [163] O. Levi, T. J. Ping, T. Skauli et al., Difference frequency generation of 8-μm radiation in orientation-patterned GaAs, Opt. Lett., 2002, 27(23): 2091-2093
    [164] S. E. Bisson, T. J. Kulp, O. Levi et al., Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs, Appl. Phys. B, 2006, 85: 199-206
    [165] S. Basilyev, S. Schiller, A. Nevsky et al., Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs, Opt. Lett., 2008, 33(13): 1413-1415
    [166] S. C. Pei, S. Y. Tu, and A. H. Kung, Mid-IR generation by difference frequency mixing of two pulsed PPLN OPOs in ZnGeP2, Quantum Electron. and Laser Science Conference (QELS), 2005: 791-793
    [167] S. Haidar, K. Miyamoto, and Ito, Generation of continuously tunable, 5-12μm radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP2 crystal, J. Phys. D: Appl. Phys, 2004, 37: 3347-3349
    [168] K. L. Vodopyanov, and P. G. Schunemann, Efficient difference-frequency generation of 7-20μm radiation in CdGeAs2, Opt. Lett., 1998, 23(14): 1096-1098
    [169] R. Ha?dar, Ph. Kupecek, E. Rosencher et al., Mid-infrared coherent sources using enhanced nonlinear frequency conversion in isotropic semiconductors, CLEO/Europe, 2003: 211
    [170] A. Mustelier, E. Rosencher, Ph. Kupecek et al., Difference frequency generation in quasi-phase matched diffusion bonded ZnSe plates, OSA/CLEO, 2004, CThKK3
    [171] M. Raybaut, A. Godard, R. Ha?dar et al., Generation of 8-12μm radiation by self-difference frequency mixing in Cr:ZnSe, OSA/CLEO, 2005, CWE7
    [172] G. N. Kulipanov, Experiments on 400-W average power Novosibirsk terahertz free electron laser, IRMMW-THz 2006:12
    [173] M. Kuntze, S. Alberti, G. Dammertz et al, Advanced high-power Gyrotrons, IEEE Trans. on Plasma Science, 2003, 31(1): 25-31
    [174] R. Kohler, A. Tredicucci, F. Beltran et al, Terahertz semiconductor-heterostructure laser, Nature, 2002, 417: 156-159
    [175] A. Moreti, A. Bertolini, G. Carelli et al, The vinyl bromide optically pumped far infrared laser: new large offset emissions, IEEE J. of Quantum Electron., 2001, 37(4): 489-493
    [176] P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. of Am. B, 1996, 13(11): 2424-2436
    [177] S. L. Chuang, S. Schmitt-Rink, B. I. Greene et al, Optical rectification at semiconductor surfaces, Phys. Rev. Lett., 1992, 68(1): 102-105
    [178] W. Shi, Y. J. Ding, N. Fernelius, et al, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27(16): 1454-1456
    [179] K. Imai, K. Kawase, J. Shikata, Injection-seeded terahertz-wave parametric oscillator, Appl. Phys. Lett., 2001, 78(8): 1026-1028
    [180] M. Theuer, G. Torosyan, C. Rau et al, Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler, Appl. Phys. Lett., 2006, 88: 071122
    [181] K.–L. Yeh, M. C. Hoffmann, J. Hebling et al, Generation of 10μJ ultrashort terahertz pulses by optical rectification, Appl. Phys. Lett., 2007, 90: 171121
    [182] S. Ya. Tochitsky, J. E. Ralph, C. Sung et al, High-power terahertz radiation source based on difference frequency mixing of CO2 laser lines, CLEO, 2005, CMW3
    [183] S. Ya. Tochitsky, J. E. Ralph, C. Sung et al, Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs, J. of Appl. Phys., 2005, 98: 026101
    [184] F. Zernike, P. R. Berman, Generation of far infrared as a difference frequency, Phys. Rev. Lett., 1965, 15(26): 999-1001
    [185] F. Zernike, Phasematched far-infrared difference frequency generation, Bull. Am. Phys. Soc., 1967, 12: 687
    [186] F. Zernike, Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb, Phys. Rev. Lett., 1969, 22(18): 931-933
    [187] B. Lax, R. L. Aggarwal, and G. Favrot, Far-infrared step-tunable coherent radiation source: 70μm to 2 mm, Appl. Phys. Lett., 1973, 23(12): 679-681
    [188] R. L. Aggarwal, B. Lax, and G. Favrot, Noncollinear phase matching in GaAs, Appl. Phys. Lett., 1973, 22(7): 329-330
    [189] K. Kawase, M. Mizuno, S. Sohma et al., Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser, Opt. Lett., 1999, 24(15): 1065-1067
    [190] K. Kawase, T. Hatanaka, H. Takahashi et al., Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25(23): 1714-1716
    [191] T. Taniuchi, J. Shikata, and H. Ito, Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator, Electron. Lett., 2000, 36(16): 1414-1416
    [192] T. Taniuchi, H. Adachi, S. Okada et al., Continuously tunable THz and far-infrared wave generation from DAST crystal, Electron. Lett., 2004, 40(9): 549-551
    [193] T. Taniuchi, S. Ikeda, Y. Mineno et al., Terahertz Properties of a New Organic Crystal, 4’-Dimethylamino-N-methyl-4-stilbazolium p-Chlorobenzenesu- lfonate, Jap. J. Appl. Phys., 2005, 44(29): 932-934
    [194] K. Miyamoto, H. Minamide, M. Fujiwara et al., Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal, Opt. Lett., 2008, 33(3): 252-254
    [195] J. Liu, F. and Merkt, Generation of tunable Fourier-transform-limited terahertz pulses in 4-N, N-dimethylamino-4’-N’-methyl stilbazolium tosylate crystals, Appl. Phys. Lett., 2008, 93: 131105
    [196] T. Tanabe, K. Kato, J. Nishizawa et al., Frequency-tunable high-power terahertz wave generation from GaP, J. Appl. Phys., 2003, 93(8): 4610-4615
    [197] T. Tanabe, K. Kato, J. Nishizawa et al., Tunable terahertz wave generation in the 3- to 7-THz region from GaP, Appl. Phys. Lett, 2003, 83(2): 237-239
    [198] W. Shi, and Y. J. Ding, Tunable coherent radiation from terahertz to microwave by mixing two infrared frequencies in a 47-mm-long GaSe crystal, Int. J. High Speed Electron. Sys., 2006, 16(2): 589-595
    [199] W. Shi and Y. J. Ding, Generation of backward terahertz waves in GaSe crystals, Opt. Lett., 2005, 30(14): 1861-1863
    [200] W. Shi and Y. J. Ding, Continuously tunable and coherent terahertz radiation by means of phasematched difference-frequency generation in zinc germanium phosphide, Appl. Phys. Lett., 2003, 83(5): 848-850
    [201] W. Shi and Y. J. Ding, Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP, Opt. Lett., 2005, 30(9): 1030-1032
    [202] S. Ya. Tochitsky, C. Sung, S. E. Trubnick et al., High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines, J. Opt. Soc. Am. B, 2007, 24(9): 2509-2516
    [203] D. Creeden, J. C. McCarthy, P. A. Ketteridge et al., Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects, Opt. Express, 2007, 15(10): 6478
    [204] J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs, Opt. Lett., 2007, 32(10): 1284-1286
    [1] Y. R. Shen, The principles of nonlinear optics, New York: John Wiley & Sons, 1984
    [2] M. Born and E. Wolf, Principles of optics, Oxford: Pergamon Press, 1975
    [3] A Yariv, Quantum Electronics, New York: Wiley, 1988
    [4]钱士雄,王恭明,非线性光学——原理与进展,上海:复旦大学出版社,2001
    [5]石顺祥,陈国夫,赵卫等,非线性光学,西安:西安电子科技大学出版社,2003
    [6]季家镕,冯莹,高等光学教程——非线性光学与导波光学,北京:科学出版社,2008
    [7] S. K. Wong, R. Oliver, K. L. Schepler et al., Difference-frequency generation of 4μm radiation from Nd:YAG lasers, Opt. Lett., 1994, 19(18): 1433-1435
    [8] S. Haidar, K. Miyamoto, and Ito, Generation of continuously tunable, 5-12μm radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP2 crystal, J. Phys. D: Appl. Phys, 2004, 37: 3347-3349
    [9] K. Kawase, T. Hatanaka, H. Takahashi et al., Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25(23): 1714-1716
    [10] W. Shi, Y. J. Ding, N. Fernelius, et al, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27(16): 1454-1456
    [11] G. C. Bhar, L. K. Samanta, D. K. Ghosh et al., Tunable parametric ZnGeP2 crystal oscillator, Sov. J. Quantum Electron., 1987, 17: 860-861
    [12] T. G. Giallorenzi and C. L. Tang, Quantum theory of spontaneous parametric scattering of intense light, Phys. Rev., 1968, 166(2): 225-233
    [13] R. L. Byer and S. E. Harris, Power and bandwidth of spontaneous parametric emission, Phys. Rev., 1968, 168(3): 1064-1068
    [14] A. H. Kung, Generation of tunable picosecond VUV radiation, Appl. Phys. Lett., 1974, 25(11): 653-654
    [15] A. Seilmeier, K. Spanner, A. Laubereau et al., Narrow-band tunable infrared pulses with sub-picosecond time resolution, Opt. Commun., 1978, 24(3): 237-242
    [16] J. E. Bjorkholm, Efficient optical parametric oscillation using doubly and singly resonant cavities, Appl. Phys. Lett., 1968, 13(2): 53-56
    [17] D. S. Smith, H. D. Riccius, and R. P. Edwin, Refractive indices of lithium niobate, Opt. Commun., 1976, 17(3): 332-335
    [18] G. J. Edwards and M. Lawrence, A temperature dependent dispersion equation for congruently grown lithium niobate, Opt. Quantum Electron, 1984, 16: 373-375
    [1] S. Ashidate, S. Murashima, and N. Fujii, Development of a helicopter-mounted eye-safe laser radar system for distance measurement between power transmission lines and nearby trees, IEEE Trans. Power Deliv, 2002, 17(2): 644-648
    [2] A. J. McGrath, J. Munch, G. Smith et al., Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing, Appl. Opt., 1998, 37(24): 5706-5709
    [3] J. E. Nettleton, B. W. Schilling, D. N. Barr et al., Monoblock laser for a low-cost, eyesafe, microlaser range finder, Appl. Opt., 2000, 39(15): 2428-2432
    [4] P. Laporta, S. Taccheo, S. Longhi et al., Diode-pumped microchip Er-Yb:glass laser, Opt. Lett., 1993, 18(15): 1232-1234
    [5] J.E. Hellstr?m, G. Karlsson, V. Pasiskevicius et al., Passive Q-switching at 1.54μm of an Er–Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber, Appl. Phys. B, 2005, 81: 49-52
    [6] S. Kück, K. Petermann, U. Pohlmann et al., Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12, Appl. Phys. B, 1994, 58: 153-156
    [7] J. Huang, J. Lin, R. Su et al., Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal, Opt. Lett., 2007, 32(9): 1096-1098
    [8] I. T. Sorokina, and K. L. Vodopyanov, Solid-state mid-infrared laser sources, Berlin: Springer, 2003
    [9] M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications, Berlin: Springer, 2007
    [10]王与烨,全固态内腔光学参量振荡及内腔倍频技术的研究:[硕士学位论文],天津;天津大学,2006
    [11]山东华特中晶光电科技有限公司产品目录,http://www.witcore.com
    [12] B. Boulanger, J.P. Féve, G. Marnier et al., Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4 and CsTiOAsO4, Pure Appl. Opt., 1998, 7: 239-256
    [13] K. Kato and E. Takaoka, Sellmeier and thermo-optic dispersion formulas for KTP, Appl. Opt., 2002, 41(24): 5040-5044
    [14] K. Kato and N. Umemura, Sellmeier and thermo-optic dispersion formulas for KTiOAsO4, CLEO, 2004, 2: 3-5
    [15] L. R. Marshall and A. Kaz, Eye-safe output from noncritically phase-matched parametric oscillators, J. Opt. Soc. Am. B, 1993, 10(9): 1730-1736
    [16] T. Debuisschert, J. Raffy, J. -P. Pocholle et al., Intracavity optical parametric oscillator: study of the dynamics in pulsed regime, J. Opt. Soc. Am. B, 1996, 13(7): 1569-1587
    [1] M. E. Innocenzi, H. T. Yura, C. L. Fincher et al., Thermal modeling of continuous-wave end-pumped solid-state lasers, Appl. Phys. Lett., 1990, 56(19): 1831-1833
    [2] F. Song, C. Zhang, X. Ding et al., Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers, Appl. Phys. Lett., 2002, 81(12): 2145-2147
    [3]吕百达,激光光学(第三版),北京:高等教育出版社,2003
    [4] X. Peng, L. Xu, and A. Asundi, Power scaling of diode-pumped Nd:YVO4 lasers, IEEE J. Quantum Electron., 2002, 38(9): 1291-1299
    [5] S. J. Brosnan and R. L. Byer, Optical parametric oscillator threshold and linewidth studies, IEEE J. Quantum Electron., 1979, 15(6): 415-431
    [6] W. Koechner, Solid-State Laser Engineering , Berlin: Springer, 1996
    [7] T. Debuisschert, J. Taffy, J. -P. Pocholle et al., Intracavity optical parametric oscillator: study of the dynamics in pulsed regime, J. Opt. Soc. Am. B, 1996, 13(7): 1569-1587
    [8] Y. F. Chen, S. W. Chen, S. W. Tsai et al., High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B, 2003, 76: 263-266
    [9] Y. F. Chen, S. W. Chen, S. W. Tsai et al., Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57μm, Appl. Phys. B, 2003, 77: 505-508
    [10] H. T. Huang, J. L. He, X. L. Dong et al., High-repetition-rate eye-safe intracavity KTA OPO driven by a diode-end-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B, 2008, 90: 43-45
    [11] H. Zhu, G. Zhang, H. Chen et al., High-efficiency intracavity Nd:YVO4\KTA optical parametric oscillator with 3.6 W output power at 1.53μm, Opt. Express, 2009, 17(23): 20669-20674
    [12] C. J. Flood, D. R. Walker, and H. M. van Driel, CW diode pumping and FM mode locking of a Nd:KGW laser, Appl. Phys. B, 1995, 60: 309-312
    [13] G. Mcconnell, A. I. Ferguson, and N. Langford, Additive-pulse mode locking of a diode-pumped Nd3+:YVO4 laser, Appl. Phys. B, 2002, 74: 7-9
    [14] K. Kato and N. Umemura, Sellmeier and thermo-optic dispersion formulas for KTiOAsO4, CLEO, 2004, 2: 3-5
    [1] J. A. Piper and H. M. Pask, Crystalline Raman lasers, IEEE J. Selected Topics Quantum Electron., 2007, 13(3): 692-704
    [2] H. M. Pask and J. A. Piper, Practical 580nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser, Opt. Commun., 1998, 148: 285-288
    [3] H. M. Pask and J. A. Piper, Efficient all-solid-state yellow laser source producing 1.2-W average power, Opt. Lett., 1999, 24(21): 1490-1492
    [4] J. Simons, H. Pask, P. Dekker et al., Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm, Opt. Commun., 2004, 229: 305-310
    [5] R. P. Mildren, M. Convery, H. M. Pask et al., Efficient, all-solid-state, Raman laser in the yellow, orange and red, Opt. Express, 2004, 12(5): 785-790
    [6] S. Li, X. Zhang, Q. Wang et al., Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14W at 590nm, Opt. Lett., 2007, 32(20): 2951-2953
    [7] S. Li, X. Zhang, Q. Wang et al., Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled Nd:YAG/GdVO4 Raman laser, 2008, J. Phys. D: Appl. Phys., 41: 055104
    [8] Y. T. Chang, H. L. Chang, K. W. Su et al., High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation, Opt. Express, 2009, 17(14): 11892-11897
    [9] P. Dekker, H. M. Pask, and J. A. Piper, All-solid-state 704mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser, Opt. Lett., 2007, 32(9): 1114-1116
    [10] G.H. Watson, Polarized Raman spectra of ktioaso4 and isomorphic nonlinear-optical crystals, J. Raman Spectrosc., 1991, 22: 705
    [11] C. Tu, A. R. Guo, R. Tao et al., Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals, J. Appl. Phys., 1996, 79(6): 3235-3240
    [12] Z. Liu, Q. Wang, X. Zhang et al., A KTiOAsO4 Raman laser, Appl. Phys. B, 2009, 94: 585-588
    [13] Z. Liu, Q. Wang, X. Zhang et al., A diode side-pumped KTiOAsO4 Raman laser, Opt. Express, 2009, 17(9): 6968-6974
    [14] Z. J. Liu, Q. P. Wang, X. Y. Zhang et al., 1120 nm second-Stokes generation in KTiOAsO4, Laser Phys. Lett., 2009, 6(2): 121-124
    [15] Z. Liu, Q. Wang, X. Zhang et al., Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573nm, Opt. Lett., 2009, 34(14): 2183-2185
    [16]石顺祥,陈国夫,赵卫等,非线性光学,西安:西安电子科技大学出版社,2003
    [17] E. O. Ammann and Joel Falk, Stimulated Raman scattering at kHz pulse repetition rates, Appl. Phys. Lett., 1975, 27(12): 662-664
    [18] J. T. Murray, R. C. Powell, and N. Peyghambarian, Generation of 1.5-mm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals, Opt. Lett., 1995, 20(9): 1017-1019
    [19] P. G. Zverev, T. T. Basiev, V. V. Osiko et al., Physical, chemical and optical properties of barium nitrate Raman crystal, Opt. Mat. 1999, 11: 315-334
    [20] A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii et al., All solid-state diode-pumped Raman laser with self-frequency conversion, Appl. Phys. Lett., 1999, 75(24): 3742-3744
    [21] A. Major, J. S. Aitchison, P. W. E. Smith et al., Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-μm spectral region by use of a KGd(WO4)2 crystal, Opt. Lett., 2005, 30(4): 421-423
    [22] A. Brenier, F. Bourgeois, G. Métrat et al., Spectroscopic properties at 1.351μm of Nd3+-doped KY(WO4)2 and KGd(WO4)2 single crystals for Raman coversion, Opt. Mat., 2001, 16: 207-211
    [23] P. ?erny, P. G. Zverev, H. Jelínkováet al., Efficient Raman shifting of picosecond pulses using BaWO4 crystal, Opt. Commun., 2000, 177: 397-404
    [24] P. ?erny and H. Jelínková, Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal, Opt. Lett., 27(5): 360-362
    [25] P. (?)erny, W. (?)endzian, J. Jabczyński et al., Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal, Opt. Commun., 2002, 209: 403-409
    [26] T. T. Basiev, A. A. Sobol, P. G. Zverev et al., Comparative spontaneous Raman spectroscopy of crystals for Raman lasers, Appl. Opt., 38(3): 594-598
    [27] T. T. Basiev, A. A. Sobol, Yu. K. Voronko et al., Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers, Opt. Mat., 2000, 15: 205-216
    [28] Z. Cong, X. Zhang, Q. Wang et al., Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser, Opt. Lett., 2009, 34(17): 2610-2612
    [29] A. A. Kaminskii, C. L. McCray, H. R. Lee et al., High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals, Opt. Commun., 2000, 183: 277-287
    [30] S. Ding, X. Zhang, Q. Wang et al., Theoretical and experimental study on the self-Raman laser with Nd:YVO4 Crystal, IEEE J. Quantum Electron., 2006, 42(9): 927-933
    [31] Y. F. Chen, Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal, Opt. Lett., 2004, 29(18): 2172-2174
    [32] Y. F. Chen, High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration, Opt. Lett., 2004, 29(16): 1915-1917
    [33] Y. F. Chen, Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser, Opt. Lett., 2004, 29(11): 1251-1253
    [34] A. A. Kaminskii, K. Ueda, H. J. Eichler et al., Tetragonal vanadates YVO4 and GdVO4 - new efficientχ(3)-materials for Raman lasers, Opt. Commun., 2001, 194: 201-206
    [35] Y. F. Chen, Efficient 1521-nm Nd:GdVO4 Raman lasers, Opt. Lett., 2004, 29(22): 2632-2634
    [36] Y. F. Chen, Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser, Appl. Phys. B, 2004, 78: 685-687
    [37]刘兆军,高效非线性光学频率变换研究:[博士学位论文],山东:山东大学,2008
    [38] Y. T. Chang, Y. P. Huang, K. W. Su et al., Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission, Opt. Express, 2008, 16(11): 8286-8291
    [39]谢树森,雷仕湛,光子技术,北京:科学出版社,2004
    [40] R. SuBmann, Th. Webber, E. Riedle et al., Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell, Opt. Commun., 1992, 88: 408-414
    [41] K. Kato and N. Umemura, Sellmeier and thermo-optic dispersion formulas for KTiOAsO4, CLEO, 2004, 2: 3-5
    [1] M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications, Berlin: Springer, 2007
    [2] R. C. Eckardt, Y. X. Fan, R. L. Byer et al., Broadly tunable infrared parametric oscillator using AgGaSe2, Appl. Phys. Lett., 1986, 49(11): 608-610
    [3] E. Lippert, G. Rustad, G. Arisholm et al., High power and efficient long wave IR ZnGeP2 parametric oscillator, Opt. Express, 2008, 16(18): 13878-13884
    [4] M. W. Haakestad, G. Arisholm, E. Lippert et al., High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2, OSA/ASSP, 2008, MC45
    [5] L. J. Li, B. Q. Yao, Y. L. Ju, Y. Z. Wang et al., 8.3μm singly resonant ZnGeP2 optical parametric oscillators pumped by a Tm, Ho:GdVO4 laser, Laser Phys., 2009, 19(10): 1957-1959
    [6] K. L. Vodopyanov and L. A. Kulevskii, New dispersion relationships for GaSe in the 0.65-18μm spectral region, Opt. Commun., 1995, 118: 375-378
    [7] G. C. Bhar, L. K. Samanta, D. K. Ghosh et al., Tunable parametric ZnGeP2 crystal oscillator, Sov. J. Quantum Electron., 1987, 17(7): 860-861
    [8] K. Kato and E. Takaoka, Sellmeier and thermo-optic dispersion formulas for KTP, Appl. Opt., 2002, 41(24): 5040-5044
    [9] G. Ghosh, Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures, Appl. Opt., 1998, 37(7): 1205-1212
    [10] D. E. Zelmon and E. A. Hanning, Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9μm with implications for phase matching in optical frequency-conversion devices, J. Opt. Soc. Am. B, 2001, 1307-1310
    [11] S. Das, G. C. Bhar, S. Gangopadhyay et al., Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications: revisited, Appl. Opt., 2003, 42(21): 4335-4340
    [1] F. Zernike, P. R. Berman, Generation of far infrared as a difference frequency, Phys. Rev. Lett., 1965, 15(26): 999-1001
    [2] D. H. Auston, A. M. Glass, and P. Legur, Tunable far-infrared generation by difference frequency mixing of dye lasers in reduced (black) lithium niobate, Appl. Phys. Lett., 23(1): 47-48
    [3] Y. Sasaki, A. Yuri, K. Kawase et al., Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal, Appl. Phys. Lett., 2002, 81(18): 3323-3325
    [4] T. Tanabe, K. Kato, J. Nishizawa et al., Tunable terahertz wave generation in the 3- to 7-THz region from GaP, Appl. Phys. Lett, 2003, 83(2): 237-239
    [5] W. Shi, Y. J. Ding, N. Fernelius, et al, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27(16): 1454-1456
    [6] W. Shi and Y. J. Ding, Continuously tunable and coherent terahertz radiation by means of phasematched difference-frequency generation in zinc germanium phosphide, Appl. Phys. Lett., 2003, 83(5): 848-850
    [7] S. Ya. Tochitsky, C. Sung, S. E. Trubnick et al., High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines, J. Opt. Soc. Am. B, 2007, 24(9): 2509-2516
    [8] K. Kawase, T. Hatanaka, H. Takahashi et al., Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25(23): 1714-1716
    [9] W. Shi, and Y. J. Ding, A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540μm for variety of potential applications, 2004, 84(10): 1635-1637
    [10] W. Shi, and Y. J. Ding, Tunable coherent radiation from terahertz to microwave by mixing two infrared frequencies in a 47-mm-long GaSe crystal, Int. J. High Speed Electron. Sys., 2006, 16(2): 589-595
    [11] M. Cronin-Golomb, Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production, Opt. Lett., 2004, 29(17): 2046-2048
    [12] D. J. Armstrong, W. J. Alford, T. D. Raymond et al., Parametric amplification and oscillation with walkoff-compensating crystals, J. Opt. Soc. Am. B, 1997, 14(2): 460-474第八章
    [1] F. Zernike, P. R. Berman, Generation of far infrared as a difference frequency, Phys. Rev. Lett., 1965, 15(26): 999-1001
    [2] K. Kawase, M. Mizuno, S. Sohma et al., Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser, Opt. Lett., 1999, 24(15): 1065-1067
    [3] K. Kawase, T. Hatanaka, H. Takahashi et al., Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25(23): 1714-1716
    [4] W. Shi, Y. J. Ding, N. Fernelius, et al, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett., 2002, 27(16): 1454-1456
    [5] T. Tanabe, K. Kato, J. Nishizawa et al., Frequency-tunable high-power terahertz wave generation from GaP, J. Appl. Phys., 2003, 93(8): 4610-4615
    [6] W. Shi and Y. J. Ding, Generation of backward terahertz waves in GaSe crystals, Opt. Lett., 2005, 30(14): 1861-1863
    [7] D. Creeden, J. C. McCarthy, P. A. Ketteridge et al., Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects, Opt. Express, 2007, 15(10): 6478
    [8] K. Miyamoto, H. Minamide, M. Fujiwara et al., Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal, Opt. Lett., 2008, 33(3): 252-254
    [9] S. Ya. Tochitsky, J. E. Ralph, C. Sung et al, Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs, J. of Appl. Phys., 2005, 98: 026101
    [10] S. Ya. Tochitsky, C. Sung, S. E. Trubnick et al., High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines, J. Opt. Soc. Am. B, 2007, 24(9): 2509-2516
    [11] M. Cronin-Golomb, Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production, Opt. Lett., 2004, 29(17): 2046-2048
    [12] T. Yuan, J. Z. Xu, X. -C. Zhang, Development of terahertz wave microscopes, Infrared Phys. Techn. 2004, 45: 417-425
    [13] G. Imeshev, M. E. Fermann, K. L. Vodopyanov et al., High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser, Opt. Express, 2006, 14(10): 4439-4444
    [14] K. L. Vodopyanov, M. M. Fejer, X. Yu et al., Terahertz-wave generation in quasi-phase-matched GaAs, Appl. Phys. Lett., 2006, 89: 141119
    [15] Y. S. Lee, W. c. Hurlbut, K. L. Vodopyanov, et al., Generation of multicycle terahertz pulses via optical rectification in periodically inverted GaAs structures, Appl. Phys. Lett., 2006, 89: 181104
    [16] F. Y. Lin, H. L. Lu, T. D. Wang et al., High-efficiency THz generation in optically contacted GaAs with near-Brewster angle pumping, Opt. Express, 2007, 15(21): 13654-13659
    [17] J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs, Opt. Lett., 2007, 32(10): 1284-1286
    [18] K. L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs, Laser & Photon. Rev., 2008, 2: 11-25
    [19] J. E. Schaar, K. L. Vodopyanov, P. S. Kuo et al., Terahertz Sources Based on Intracavity Parametric Down-Conversion in Quasi-Phase-Matched Gallium Arsenide, IEEE J. Sel. Topics Quantum Electron., 2008, 14(2): 354-362
    [20] S. E. Trubnick, S. Ya. Tochitsky, and C. Joshi, Fabrication and characterization of Teflon-bonded periodic GaAs structures for THz generation, Opt. Express, 2009, 17(4): 2385-2391
    [21] T. Skauli, P. S. Kuo, K. L. Vodopyanov et al., Improved dispersion relations for GaAs and applications to nonlinear optics, J. Appl. Phys., 2003, 94(10): 6447-6455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700