TMT三镜系统Tilt Mechanism组件技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三十米望远镜三镜系统(TMTM3S)最突出的特点是结构庞大、工况复杂、精度高且低速性能要求苛刻,大大提高了其设计和检测的难度。TMT三镜系统的结构与常见的地平式望远镜基本相同,但工作状况却差异很大,使得其设计思路及分析方法都有别与以往的设计。本文的工作主要是针对TMT三镜系统的结构特点,通过科学的计算和仿真,选取最佳设计方案,并对结构进行相应的优化,最终达到设计要求。
     本文首先从系统的最低谐振15Hz设计要求出发,通过合理的刚度分配,确定各结构件的设计期望,为之后的设计分析提供指导。然后,根据三镜系统转盘的功能性要求,提出两种方案,并进行了相应的仿真和分析。对于选定的TMT三镜系统整体方案,基于工况分析,设计了从三镜镜室到三镜基座间合理的力学传递路径,进而研究了多种轴承布置形式,并通过理论计算得到三镜系统促动器力学量程以及行程的设计要求。其次,关键部件的设计方法以及复杂部件的简化手段是关键的技术要点。为了衡量TMT三镜系统的结构性能,本文建立了三镜系统的整体有限元参数化模型,并对七个主要工作位置的98个工况进行了仿真,计算得到了三镜镜面形心的平移量最大可达1.28mm,镜面法线的角位移最大可达62",系统的第一阶谐振频率可达15.1Hz。最后,通过坐标变换的方法推导了终端设备随动直角坐标在三镜坐标系下相对于基体坐标系的转换矩阵,进而采用蒙特卡罗法对随机误差进行了仿真合成,合成结果显示,现有条件下加工和装配引入的随机误差导致的Tilt轴的测角误差最大可达4.1"RMS,并从统计学的角度上对于整个多轴系统的误差特性进行了研究。
     基于整体—部分—整体的思想,通过模型简化,系统级刚度分配,组件选型与设计,到最终的系统精度分析,完成了对TMT三镜系统Tilt轴系原理、结构以及误差特性的分析。
     本文对TMT三镜系统的Tilt轴系设计及选型进行了大量的理论分析和有限元仿真,并使用数值和工程优化手段对结构进行了相应优化。分析表明,经过本文的选型与设计,得到的TMT三镜系统Tilt轴系统的设计能够满足TMT的各方面要求。同时,本文设计过程中权衡了各组件的成本与性能的关系,达到了子系统与整体系统设计的有机结合。
     为解决诸多具有挑战性的问题,本文做出了大量深入的理论研究。这些研究为TMT三镜系统,以及TMT整体系统的建设完成起着重要的推动作用。同时,对大型光学望远镜的设计、加工和制造提供了大量参考。
The tertiary mirror system (M3S) of thirty meter telescope (TMT) is the largesttertiary mirror in the world. It is a huge structure with high precision and wonderful lowspeed performance under many working cases, which makes it a challenge. Even more,we are inexperienced with the innovative methods to do the measurement. M3S issimilar to an azimuth-altitude (az-alt) telescope. But its working conditions are quiteeven worse, which prompts us to apply the new method to complete a perfect product.This paper mainly focuses on the design for Tilt mechanism of M3S. Many scientificcomputing and simulations are applied to study every feasible solution. And the finaldesign seems to be good according to the analysis.
     Above all, a stiffness allocation has been developed to guide the designer. Then,there are two plans proposed on the basis of M3S functional requirement. One is aparallel manipulator, while the other one is a classic solution. Plenty of research andsimulations are accomplished to guarantee a correct design. According to the load path,some analyses were done to determine which bearing layout is the best choice. We alsofocus on the driver design. A linear actuator is employed to supply the support force.The stroke and mounting dimensions are determined. It also attracts many attentions tostudy the key components design. It’s particularly useful that a parameterized finitemodel is constructed to investigate the mainly deflection of M3S in all the conditions.The analysis results show that the maximum deflection can be up to1.28mm and the deflection angle is about62", while the first modal frequency is15.1Hz. Finally, MonteCarlo simulation method is applied to study the pointing presion by the various errorsfrom a statistical point of view, and there are a lot of interesting conclusions, of whichthe maximum measurement error of the tilt axis is about4.1"RMS.
     From allocating the stiffness and working for the preliminary design to final systemaccuracy analysis, the procedure follows a reasonable design methodology. The supportprinciple of the tilt axis system and the structure characteristics even with the errorsimulation were analyzed.
     The design decisions were made by lots of theoretical analysis and finite elementsimulation. All analysis showed that the final design could meet the requirements.Meanwhile, it deals well with balancing the cost and the performance for eachcomponent, which makes the subsystem in keeping with the overall system.
     This paper completes a plenty of work for M3S, and will promote the TMTconstruction process. Meanwhile, many experiences can be learned by this paper.
引文
[1] Design Requirements Document For Tertiary Mirror System (M3S),TMT.OPT.TEC.11.139.DRF01, June5,2014
    [2] Thirty Meter Telescope Construction Proposal, September12,2007, University ofCalifornia, California Institute of Technology, The Association of CanadianUniversities for Research in Astronomy, TMT Observatory Corporation
    [3]张景旭.地基大口径望远镜系统结构技术综述[J].中国光学,2012(4):327-336.
    [4] Tertiary Mirror Blank Specifications. TMT.OPT.SPE.06.006.REL02
    [5] Howard J, Ashby D, Kern J. Performance of the Large Binocular Telescope'shydrostatic bearing system[C]//SPIE Astronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2010:773358-773358-9.
    [6] Gabriel E, Bastin C, Piérard M. The3,6m optical telescope for ARIES: the controlsystem[C]//SPIE Astronomical Telescopes+Instrumentation. International Society forOptics and Photonics,2012:845128-845128-10.
    [7] Ninane N, Bastin C, de Ville J, et al. The3,6m Indo-Belgian Devasthal OpticalTelescope: assembly, integration and tests at AMOS[C]//SPIE AstronomicalTelescopes+Instrumentation. International Society for Optics and Photonics,2012:84442U-84442U-10.
    [8] K rcher H J, Weis U, Dreyer O, et al. The azimuth axes mechanisms for the ATSTtelescope mount assembly[C]//SPIE Astronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2012:84440A-84440A-10.
    [9] Mountain C M, Gillett F C. The revolution in telescope aperture[J]. AURA:National Optical Astronomy Observatory,1998.
    [10]Iye M, Karoji H, Ando H, et al. Current performance and on-going improvementsof the8.2m Subaru Telescope[J]. arXiv preprint astro-ph/0405012,2004.
    [11]周超.大口径望远系统建模及仿真分析研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011.
    [12]Dhatt G, Lefran ois E, Touzot G. Finite element method[M]. John Wiley&Sons,2012.
    [13]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [14]Kwon Y W, Bang H. The finite element method using MATLAB[M]. CRC press,2000.
    [15]曾攀.有限元分析及应用[M].清华大学出版社有限公司,2004.
    [16]Cook R D. Concepts and applications of finite element analysis[M]. John Wiley&Sons,2007.
    [17]中国加入TMT国际合作计划科学目标.[EB/OL].http://tmt.bao.ac.cn,2010-01-19.
    [18]系统动力学[M].清华大学出版社,1994.
    [19]Inman D J. Engineering vibration[M]. New Jersey: Prentice Hall,2001.
    [20]师汉民,谌刚,吴雅.机械振动系统[J].武汉:华中理工大学出版杜,1992,120:12l.
    [21]Russell B. The principles of mathematics[M]. WW Norton&Company,1996.
    [22]Weisheit B. Telescope Mountings, Drives, and ElectricalEquipment[M]//Handbook of Practical Astronomy. Springer Berlin Heidelberg,2009:95-131.
    [23]Campbell T F, Elsaie A M. Structural optimization and modeling of large dynamicstructures for controls simulation[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2000:320-329.
    [24]Vincent T L, Joshi S P, Lin Y C. Positioning and active damping of spring-masssystems[J]. Journal of dynamic systems, measurement, and control,1989,111(4):592-599.
    [25]Natsupakpong S, Cenk avu o lu M. Determination of elasticity parameters inlumped element (mass-spring) models of deformable objects[J]. Graphical Models,2010,72(6):61-73.
    [26]Collins M, Kasal B, Paevere P, et al. Three-dimensional model of light frame woodbuildings. I: Model description[J]. Journal of structural engineering,2005,131(4):676-683.
    [27]Sun L, Zhang C, Pan L, et al. Lumped-mass Model and Its Parameters for DynamicAnalysis of Bridge Pier-pile-soil System[J]. JOURNAL-TONGJI UNIVERSITY,2002,30(4):409-415.
    [28]Wu W H, Chen C Y. Simple lumped‐parameter models of foundation usingmass‐spring‐dashpot oscillators[J]. Journal of the Chinese Institute of Engineers,2001,24(6):681-697.
    [29]Hoa S V. Vibration of a rotating beam with tip mass[J]. Journal of sound andVibration,1979,67(3):369-381.
    [30]机械振动手册[M].机械工业出版社,1992.
    [31]机械振动学:测试与分析[M].浙江大学出版社,1991.
    [32]机械振动基础[M].北京航空航天大学出版社,2005.
    [33]Cowper G R. The shear coefficient in Timoshenko’s beam theory[J]. Journal ofapplied mechanics,1966,33(2):335-340.
    [34]Nelson H D. A finite rotating shaft element using Timoshenko beam theory[J].Journal of Mechanical Design,1980,102(4):793-803.
    [35]Park S K, Gao X L. Bernoulli–Euler beam model based on a modified couple stresstheory[J]. Journal of Micromechanics and Microengineering,2006,16(11):2355.
    [36]Hutchinson J R. Shear coefficients for Timoshenko beam theory[J]. Journal ofApplied Mechanics,2001,68(1):87-92.
    [37]Silvestre N, Camotim D. Second-order generalised beam theory for arbitraryorthotropic materials[J]. Thin-Walled Structures,2002,40(9):791-820.
    [38]理论力学:上[M].北京大学出版社,1997.
    [39]Fernandez J P, Asenjo C, Orden A, et al. GTC telescope mechanicsdesign[C]//Astronomical Telescopes and Instrumentation. International Society forOptics and Photonics,2000:92-103.
    [40]The design and construction of large optical telescopes[M]. Springer,2003.
    [41]Broch J T. Mechanical vibration and shock measurements[M]. Brüel&Kjaer,1980.
    [42]Williams E C, Baffes C, Mast T, et al. Advancement of the segment support systemfor the Thirty Meter Telescope primary mirror[C]//SPIE Astronomical Telescopes+Instrumentation. International Society for Optics and Photonics,2008:701810-701810-16.
    [43]杨飞,明名,王富国,等.温度变化对1.23m望远镜光机系统的影响[J].光子学报,2012,41(1):26.
    [44]程景全.天文望远镜原理和设计[M].中国科学技术出版社,2003.
    [45]Yoder Jr P R. Opto-mechanical systems design[M]. CRC press,2005.
    [46]Schipani P, Perrotta F, Molfese C, et al. The VST secondary mirror supportsystem[C]//SPIE Astronomical Telescopes+Instrumentation. International Society forOptics and Photonics,2008:701845-701845-10.
    [47]Gallieni D, Anaclerio E, Lazzarini P G, et al. LBT adaptive secondary units finaldesign and construction[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2003:765-771.
    [48]Geijo E M, Casalta J M, Canchado M, et al. VISTA secondary mirror driveperformance and test results[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2006:627338-627338-10.
    [49]Gray P M, West S C, Gallieni W W. Support and actuation of six secondaries forthe6.5-m MMT and8.4-m LBT telescopes[C]//Optical Telescopes of Today andTomorrow. International Society for Optics and Photonics,1997:374-384.
    [50]http://www.ads.com
    [51]赵勇志,张景旭,吴小霞.大型望远镜四通变形对俯仰轴精度的影响[J].光学精密工程,2009,17(10):2401-2405.
    [52]van de Stadt H, Verkerk J. Large chopping secondary mirror for the15-msubmillimeter James Clerk Maxwell telescope[J]. Applied optics,1987,26(16):3446-3454.
    [53]霍立兴.焊接手册:第3卷,焊接结构[J].1993.
    [54]胡传.实用焊接手册[J].2002.
    [55]郭劲,张景旭.大型光电跟踪架采用焊接结构的[J].光学精密工程,1996,4(4).
    [56]Finley D T, Squiresa C, McCreighta B A, et al. Design of the discovery channeltelescope mount[C]//Proc. of SPIE Vol.2008,7012:70124I-1.
    [57]Diebel J C, Hines D M, Samhammer C A, et al. Telescope mount: U.S. PatentD412,920[P].1999-8-17.
    [58]The design and construction of large optical telescopes[M]. Springer,2003.
    [59]王国民.天文光学望远镜轴系驱动方式发展概述[J].天文学进展,2007,25(4):364-375.
    [60]张雅静.无线传感网络在光学综合孔径望远镜中的应用与研究[D].南京航空航天大学,2011.
    [61]毛耀,包启亮,马文礼,等.1.2m地平式望远镜驱动系统设计与多电机同步控制策略[J].天文研究与技术:国家天文台台刊,2006,3(3):289-294.
    [62]汤辉,吴影生.双电机驱动精密二维测试转台伺服系统设计与实现[J].电子工程,2009(05):38-40.
    [63]汪达兴,杜福嘉.大型天文望远镜摩擦传动系统低速特性的研究[J].光学精密工程,2006,14(2):274.
    [64]Carretero J A, Gosselin C M, Podhorodeski R P, et al. Kinematic analysis andoptimization of a new three degree-of-freedom spatial parallel manipulator[J]. Journalof Mechanical Design,2000,122(1):17-24.
    [65]Gexue R, Qiuhai L, Ning H, et al. On vibration control with Stewart parallelmechanism[J]. Mechatronics,2004,14(1):1-13.
    [66]Santilli R M. Foundations of theoretical mechanics[M]. New York: Springer-Verlag,1978.
    [67]Saletan E J, Cromer A H. Theoretical mechanics[M]. New York: Wiley,1971.
    [68]Coleman T, Branch M A, Grace A. Optimization Toolbox for Use with MATLAB:User's Guide, Version2[M]. Math Works, Incorporated,1999.
    [69]Shye K, Richardson M. Mass, stiffness, and damping matrix estimates fromstructural measurements[C]//Proceedings of the Fifth International Modal AnalysisConference.1987,1:756-761.
    [70]成大先:机械设计分册[M].北京工业出版社,2008.
    [71]材料成形工艺基础:金属工艺学热加工部分[M].清华大学出版社有限公司,2001.
    [72]王槐,代霜,张景旭.大型地平式望远镜的方位轴系支撑结构[J].光学精密工程,2012,20(7):1509-1516.
    [73]王槐,代霜,张景旭,等.4m光学望远镜方位轴系集成化支承结构[J].仪器仪表学报,2013,34(12).
    [74]王富国,杨飞,赵宏超等. TMT望远镜三镜系统的研究进展[J].中国光学,2013,10(6):643-651.
    [75]杜俊峰,李正周. GD-220光电经纬仪轴系的精度分析[J].光学精密工程,2002,4.
    [76]范李立,张景旭,杨飞,等.极轴式望远镜主镜支撑结构对镜面变形的影响[J].红外与激光工程,2012,41(1):173-177.
    [77]周超.大口径望远镜系统建模及仿真分析研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2011.
    [78]Porter D S, Sebring T A, Smith B, et al. The concept design of the DiscoveryChannel Telescope mount[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2004:950-961.
    [79]Giro E, Bonoli C, Leone F, et al. Polarization properties at the Nasmyth: focus ofthe alt-azimuth TNG telescope[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2003:456-464.
    [80]Pirnay O, Gloesener P, Gabriel E, et al. Design of the Unit Telescopes of theMROI[C]//SPIE Astronomical Telescopes+Instrumentation. International Society forOptics and Photonics,2008:70130N-70130N-12.
    [81]Bely P Y. Telescope Structure and Mechanisms[J]. The Design and Construction ofLarge Optical Telescopes,2003:202-251.
    [82]杨德华,徐灵哲.系统仿真在天文望远镜设计中的应用综述[J].系统仿真学报,2009(10):2801-2805.
    [83]陈夫林.620mm弯月形薄镜主动支撑研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2012.
    [84]邓四二,李兴林,汪久根等.角接触球轴承摩擦力矩特性研究[J].机械工程学报,2011,47(5):114-120.
    [85]Daidie A, Chaib Z, Ghosn A.3D simplified finite elements analysis of load andcontact angle in a slewing ball bearing[J]. Journal of Mechanical Design,2008,130(8):082601.
    [86]王俊,卢锷,王家骐.径向滚珠轴承载工程分析中简化方法的研究[J].光学精密工程,1999,7(2):110-115.
    [87]冈本纯三.球轴承的设计计算[M].黄志强译.北京:机械工业出版社.2003
    [88]万长森.滚动轴承的分析方法[M].北京:机械工业出版社.1987.
    [89]郑志伟,张军平,石慧荣.热力耦合作用下的滚动轴承寿命分析[J].兰州交通大学学报,2013,32(1):164-166.
    [90]Schouten C H, Rosielle P, Schellekens P H J. Design of a kinematic coupling forprecision applications[J]. Precision Engineering,1997,20(1):46-52.
    [91]Hale L C, Slocum A H. Optimal design techniques for kinematic couplings[J].Precision Engineering,2001,25(2):114-127.
    [92]Hart A J, Slocum A, Willoughby P. Kinematic coupling interchangeability[J].Precision engineering,2004,28(1):1-15.
    [93]Handbook of Optomechanical Engineering[M]. CRC Press,1996.
    [94]TERTIARY MIRROR SURFACE FIGURE SPECIFICATION.TMT.OPT.SPE.12.001.DRF02.2012
    [95]Enterline D L, Smith H L. Kinematic truss: U.S. Patent4,927,257[P].1990-5-22.
    [96]杨佳文,黄巧林,韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J].航天返回与遥感,2010(005):49-55.
    [97]Bigelow B C. Finite element analysis of large lenses for the Keck telescope high-resolution echelle spectrograph[C]//San Diego,'91, San Diego, CA. InternationalSociety for Optics and Photonics,1991:15-26.
    [98]赵金宇.光电望远镜误差分析及补偿技术[D].中国科学院长春光学精密机械与物理研究所,2006.
    [99]韩雪冰.张景旭.赵金宇,等.水平式光电望远镜目标定位误差的预测[J].光学精密工程,2010,18(7):1595-1604.
    [100]王晓东.地基光测设备误差修正[D].2006.
    [101]赵彦.大射电望远镜指向误差建模分析与设计研究[D].西安电子科技大学,2008.
    [102]张晓祥.空间目标光学观测研究[D].南京:中国科学院研究生院博士学位论文,2007.
    [103]杜俊峰,李正周. GD-220光电经纬仪轴系的精度分析[J].光学精密工程,2002,4.
    [104]孙莹,万秋华,王树洁,等.航天级光电编码器的信号处理系统设计[J].光学精密工程,2010,18(5):1182.
    [105]孙建峰,余建星.基于蒙特卡罗的结构共振震害风险模糊概率计算方法[J].天津科技,2010(4):46-48.
    [106]毛英泰.误差理论与精度分析[M].北京:国防工业出版社,1982.
    [107]苏燕芹,张景旭,杨飞等.30m望远镜的三镜Rotator组件轴承概念设计[J].光学精密工程,2013,21(6):1510-1517.
    [108] Mancini D, Schipani P. Tracking performance of the TNGTelescope[C]//Astronomical Telescopes and Instrumentation. International Society forOptics and Photonics,2000:355-365.
    [109]高策,乔彦峰.光电经纬仪测量误差的实时修正[J].光学精密工程,2007,15(6):846.
    [110]薛向尧,高云国,乔健,等.水平式激光发射系统光轴平行度误差分析[J].红外与激光工程,2012,41(2):335-340.
    [111] Shaklan S B, Marchen L, Krist J, et al. Stability error budget for an aggressivecoronagraph on a3.8m telescope[C]//SPIE Optical Engineering+Applications.International Society for Optics and Photonics,2011:815109-815109-17.
    [112]张艳辉,赵勇志.1m望远镜俯仰轴系精度分析[J].机械设计与制造,2011(3):185-186.
    [113]尹增谦,管景峰.蒙特卡罗方法及应用[J].物理与工程,2002,12(3):45-49.
    [114]蒙特卡罗方法及其应用:1993-1997[M].海洋出版社,1998.
    [115]天柁.系统可靠性分析中的蒙特卡罗方法[M].科学出版社,2003.
    [116] Hale L C, Slocum A H. Optimal design techniques for kinematic couplings[J].Precision Engineering,2001,25(2):114-127.
    [117]金光,王家骐,倪伟.利用坐标变换推导经纬仪三轴误差[J].光学精密工程,1999,7(5):89-94.
    [118]王家骐,金光,等.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程.2005,14(3):105-116
    [119]马锦,顾伯忠.地平式望远镜轴系误差对指向精度和跟踪精度的影响[J].天文研究与技术:国家天文台台刊,2011,8(2):132-138.
    [120]薛向尧,高云国,韩光宇,等.水平式经纬仪指向误差的统一补偿技术[J].光学精密工程,2011,19(7):1524-1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700