用户名: 密码: 验证码:
钛合金表面激光熔覆TiCrAlSi系多主元合金涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有密度低、比强度高、疲劳蠕变性能好、耐蚀性能优异等特点,在航空、航天、船舶、兵器等领域得到较广泛的应用。但是在高温和剧烈摩擦的情况下,钛合金的应用受限于较差的摩擦性能、抗氧化性能和有燃烧的危险(即“钛火”)。表面改性技术在解决这些问题的同时,能够保留块体材料的机械性能,因而受到了广泛的关注。其中,激光表面技术具有极高的加热冷却速率,能精确改进表面性能。多主元合金是一种新的合金设计理念,它包含接近等原子比的多种主要合金元素,而传统合金一般只有一个主要元素。通过选择适当的合金元素,这类合金能得到所需的性能,例如高硬度、良好的热稳定性、优异的耐磨、抗氧化和耐腐蚀性能。因此,多主元合金被看作具有吸引力的表面涂层材料。
     本研究的目的是开发能同时提高钛合金耐磨性、抗高温氧化性和阻燃性的多主元合金涂层。采用激光熔覆的方法,在钛合金基体上制得了TiCrAlSi-V和TiCrAlSi-Ni两种多主元合金涂层,研究了激光熔覆工艺参数、微观组织、耐热性、摩擦磨损性能、抗高温氧化性和阻燃性等方面的内容。并用CALPHAD(相图计算)技术分析了涂层的相形成规律和阻燃性能。完成的主要工作和结论如下:
     (1)采用优化的激光熔覆工艺在Ti-6A1-4V钛合金基体上激光熔覆制得裂纹和孔洞很少的TiCrAlSi-V和TiCrAlSi-Ni两种多主元合金涂层。
     (2)XRD、SEM和EDS分析表明,激光熔覆TiCrAlSi-V多主元合金涂层由(Ti,V)5Si3和BCC相组成;800℃真空退火24小时后,析出了新相Al8(V,Cr)5。激光熔覆TiCrAlSi-Ni多主元合金涂层由(Ti,Cr)5Si3和NiAl相组成;800℃真空退火24小时后,相组成没有发现明显的变化。结果表明,不是所有的多主元合金都会如许多学者所强调的那样,生成简单固溶体。
     (3)建立了用于TiCrAlSi-V和TiCrAlSi-Ni多主元合金的热力学数据库。基于这个数据库,采用CALPHAD方法计算出了涂层材料随温度变化平衡相组成的演化规律,并用实验进行了验证。对TiCrAlSi-V合金,实验与计算结果一致;而对TiCrAlSi-Ni合金,实验与计算结果略有出入。
     (4)真空退火后,TiCrAlSi-V多主元合金涂层的硬度略有上升,这是由于退火过程中析出了金属间化合物Al8(V,Cr)5。而TiCrAlSi-Ni涂层在热处理前后,硬度没有明显变化。两种涂层的硬度都远大于Ti-6Al-4V钛合金基体。
     (5)干滑动磨损实验表明,Ti-6Al-4V钛合金激光熔覆多主元合金涂层后,耐磨性明显提高。在不同的频率下,涂层的比磨损率都远小于钛合金基体,尤其是TiCrAlSi-Ni涂层,比磨损率减小了两个数量级。TiCrAlSi-V涂层的摩擦系数明显小于Ti-6A1-4V钛合金基体。在本研究所采用的实验条件下,钛合金基体的磨损机制为粘着磨损和严重的磨粒磨损,而两种涂层均为轻微磨损,其磨耗过程为氧化、粘着和粘着材料(包括氧化物)的开裂与剥落。
     (6)氧化实验表明,两种涂层都能有效提高钛合金在800℃的抗氧化性。TiCrAlSi-V涂层表面形成的氧化层由SiO2、Cr2O3、TiO2、Al2O3和少量的V2O5构成,TiCrAlSi-Ni涂层表面的氧化层由Cr2O3、TiO2、Al2O3和少量的SiO2与NiO构成。两种氧化层都连续致密,没有裂纹和孔洞。
     (7)通过计算绝热燃烧温度研究了阻燃性。TiCrAlSi-V和TiCrAlSi-Ni多主元合金的绝热燃烧温度都比Ti-6A1-4V钛合金低,因此两种涂层在理论上都有较好的阻燃性。用激光烧蚀法初步评价了涂层及钛合金基体的阻燃性,实验结果和理论分析一致。
Titanium alloys play an important role in the field of aerospace, aviation, ships and weapons etc. because of their characteristics of low density, high specific strength, good fatigue and creep resistance, and excellent corrosion resistance. Nevertheless, their applications at high service temperature and in wear-intensive situations, have been limited by the poor tribological properties, insufficient oxidation resistance and risk of combustion. Surface modification is an attractive method to solve the aforementioned problems, while combining with the required bulk mechanical properties. Laser surface technology, characterized by an extremely high heating/cooling rate, allows the precise adaptation of surface properties. Multi-principal element alloy, containing several main elements at near equiatomic concentrations, instead of a single major element for the traditional alloy, is a new concept in alloy design. By appropriate selection of the alloying elements, these alloys can have their properties tailored to the desired performance, such as high hardness, good thermal stability, excellent wear, oxidation and corrosion resistance. Due to these properties, multi-principal element alloys are also considered attractive coating materials for enhancing surface behaviour.
     The purpose of the present study is to develop multi-principal element alloy coatings that improve simultaneously the oxidation resistance, tribological properties and burn-resistance of titanium alloys. The TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloys are deposited by laser cladding on Ti-6Al-4V substrate. The processing parameters, microstructure, thermal stability, tribological properties, oxidation behavior and burn-resistance are investigated. The CALPHAD method is employed to assist the analysis of phase constitution and burn-resistance. The major work completed and the results obtained are as follows:
     (1) TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloy coatings with few cracks and pores are obtained on Ti-6A1-4V substrates by using the optimized processing parameters.
     (2) SEM, XRD and EDS analysis show that, the as-clad TiCrAlSi-V coating is composed of (Ti,V)5Si3and a BCC solid solution. After annealing at800℃for24hours under vacuum, a new phase Al8(V,Cr)5precipites. The as-clad TiCrAlSi-Ni coating is composed of (Ti,Cr)5Si3and NiAl. After annealing at800℃for24hours under vacuum, there is no apparent change in phase composition. The results demonstrate that not all multi-principal element alloys form simple FCC or BCC solid solution phases, which are emphasized by many researchers.
     (3) A thermodynamic database for TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloys is established. Based on the database, the temperature-dependent equilibrium phase diagram for the coating materials are calculated by using the CALPHAD method. And the results are validated by experiment. The experimental phase composition for TiCrAlSi-V alloy agrees well with the thermodynamic calculations, while there is a small inconsistency for TiCrAlSi-Ni alloy.
     (4) After vacuum annealing, there is a small increase of hardness for the laser clad TiCrAlSi-V coating, which is due to the formation of Al8(V,Cr)5. There is no apparent difference of hardness for the TiCrAlSi-Ni coating before and after the heat treatment. Both coatings are much harder than the Ti-6A1-4V substrates.
     (5) The dry sliding wear tests showed the wear resistance of Ti-6Al-4V is significantly improved after laser clad TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloy coatings. At different frequencies, the specific wear rates of the coatings are much lower than that of the substrates. Especially for the TiCrAlSi-Ni coatings, they reduce the specific wear rates by two orders of magnitude. The friction coefficients of the TiCrAlSi-V coatings are much lower than that of the Ti-6A1-4V substrates. The Ti-6Al-4V substrates suffer adhesive wear and severe abrasive wear. The worn surface morphologies of the TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloy coatings indicate that, the test occurred in the mild wear regime, the main material loss mechanism includes oxidation, slight adhesive material transfer and fragmentation and spalling of the adhered material, as well as oxides.
     (6) The oxidation tests of Ti-6A1-4V alloys and the multi-principal element alloy coatings show that the laser clad TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloy coatings can effectively improve the oxidation resistance of Ti-6A1-4V alloys at800℃in air. The oxide scale formed on TiCrAlSi-V consists of SiO2, Cr2O3, TiO2, Al2O3and a small amount of V2O5, while the oxide scale on TiCrAlSi-Ni consists of Cr2O3, Al2O3, a small amount of NiO and SiO2. Both scales are continuous and dense, without any cracks and pores.
     (7) The burn resistance is investigated by calculating adiabatic temperature. The adiabatic temperatures of the TiCrAlSi-V and TiCrAlSi-Ni multi-principal element alloys are lower than Ti-6Al-4V alloy, indicating good burn resistance of the coatings. A primitive experimental evaluation on the burn resistance is conducted by laser ablation. The result agrees with the theoretical analysis.
引文
[1]项苹.开孔泡沫铝物理及力学性能的研究[D].安徽:合肥工业大学,2008.
    [2]张魁宝CoCrFeNiTiAl系多主元高熵合金的制备及其组织性能和形成机理研究[D].武汉:2011.
    [3]高家诚,李锐.高熵合金研究的新进展[J].功能材料.2008(07):1059-1061.
    [4]梁秀兵,魏敏,程江波,等.高熵合金新材料的研究进展[J].材料工程.2009(12):75-79.
    [5]郭娜娜,孙宏飞,牛占蕊,等.优异特性的集合体——多主元高熵合金[J].新材料产业.2011(01):58-61.
    [6]颜飞.喷射成形高合金Vanadis4冷作模具钢的组织与性能研究[D].上海:上海交通大学,2007.
    [7]何西扣,万发荣,朱衍勇,等.硅对9Cr-1.5WVTa低活化马氏体钢力学性能的影响[J].原子能科学技术.2010,44(12):1482-1486.
    [8]孔纲,卢锦堂,陈锦虹,等.钢中元素对钢结构件热镀锌的影响[J].腐蚀科学与防护技术.2004(03):162-165.
    [9]李有佳.铝合金铸造工艺及缺陷研究[D].武汉:华中科技大学,2009.
    [10]杨瑞成,聂福荣,郑丽平,等.镍基耐蚀合金特性、进展及其应用[J].甘肃工业大学学报.2002(04):29-33.
    [11]Chou T. W., Kelly A., Okura A. Fibre-reinforced metal-matrix composites[J]. Composites.1985,16(3):187-206.
    [12]Stoloff N. S., Liu C. T., Deevi S. C. Emerging applications of intermetallics[J]. Intermetallics.2000,8(9-11):1313-1320.
    [13]Inoue A., Yano N., Chen H. S., et al. Structural relaxation behavior and mechanical properties of warm-drawn Fe75Si10B15 and Pd75Ni8.5Si16.5 amorphous wires[J]. Materials Science and Engineering.1986,77(0):45-57.
    [14]李灿.计算机模拟金属化合物电子结构,晶体结构及其性能[D].长春:吉林大学,2011.
    [15]Yeh J. W., Chen S. K., Lin S. J., et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements:Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials.2004,6(5):299-303.
    [16]Hsu C., Yeh J., Chen S., et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAlo.5Fe alloy with boron addition[J]. Metallurgical and Materials Transactions A.2004,35(5):1465-1469.
    [17]Chang H., Huang P., Yeh J., et al. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surface and Coatings Technology.2008,202(14):3360-3366.
    [18]Chen T., Wong M., Shun T., et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J]. Surface and Coatings Technology.2005, 200(5-6):1361-1365.
    [19]Chen Y. Y., Duval T., Hung U. D., et al. Microstructure and electrochemical properties of high entropy alloys--a comparison with type-304 stainless steel[J]. Corrosion Science.2005,47(9):2257-2279.
    [20]Chen Y. Y., Hong U. T., Shih H. C., et al. Electrochemical kinetics of the high entropy alloys in aqueous environments--a comparison with type 304 stainless steel[J]. Corrosion Science.2005,47(11):2679-2699.
    [21]Chen Y., Hu Y., Hsieh C., et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system[J]. Journal of Alloys and Compounds.2009,481(1-2):768-775.
    [22]Chen Y., Hu Y., Tsai C., et al. Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying[J]. Journal of Alloys and Compounds.2009,477(1-2):696-705.
    [23]Chen Y., Hu Y., Tsai C., et al. Structural evolution during mechanical milling and subsequent annealing of Cu-Ni-Al-Co-Cr-Fe-Ti alloys[J]. Materials Chemistry and Physics. 2009,118(2-3):354-361.
    [24]刘源,李言祥,陈祥,等.多主元高熵合金研究进展[J].材料导报.2006(04):4-6.
    [25]杜艳艳.多主元合金的微结构及性能研究[D].大连:大连理工大学,2011.
    [26]Tsai M., Yeh J., Gan J. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon[J]. Thin Solid Films.2008,516(16): 5527-5530.
    [27]Sommer F., Singh R. N., Witusiewicz V. On the entropy of mixing[J]. Journal of Alloys and Compounds.2001,325(1-2):118-128.
    [28]Lin M., Tsai M., Shen W., et al. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films[J]. Thin Solid Films.2010,518(10):2732-2737.
    [29]Yeh J., Chang S., Hong Y., et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Materials Chemistry and Physics.2007,103(1):41-46.
    [30]Wu J., Lin S., Yeh J., et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear.2006,261(5-6):513-519.
    [31]Tung C., Yeh J., Shun T., et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters.2007,61(1):1-5.
    [32]Tsai C., Chen Y., Tsai M., et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi[J]. Journal of Alloys and Compounds.2009,486(1-2):427-435.
    [33]Tang W., Chuang M., Chen H., et al. Microstructure and mechanical performance of new Alo.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding[J]. Surface and Coatings Technology.2010,204(20):3118-3124.
    [34]Lee C. P., Chen Y. Y., Hsu C. Y., et al. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid[J]. Thin Solid Films.2008,517(3):1301-1305.
    [35]Lee C. P., Chang C. C., Chen Y. Y., et al. Effect of the aluminium content of AlxCrFe1.5MnNio.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corrosion Science.2008,50(7):2053-2060.
    [36]Lai C., Tsai M., Lin S., et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings[J]. Surface and Coatings Technology.2007,201(16-17):6993-6998.
    [37]Lai C., Lin S., Yeh J., et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J]. Surface and Coatings Technology.2006,201(6): 3275-3280.
    [38]Lai C., Cheng K., Lin S., et al. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings[J]. Surface and Coatings Technology.2008, 202(15):3732-3738.
    [39]Kao Y., Chen T., Chen S., et al. Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Journal of Alloys and Compounds.2009,488(1):57-64.
    [40]Huang Y., Chen L., Lui H., et al. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy[J]. Materials Science and Engineering:A.2007,457(1-2):77-83.
    [41]Hsu U. S., Hung U. D., Yeh J. W., et al. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys[J]. Materials Science and Engineering: A.2007,460-461:403-408.
    [42]Hsu C., Sheu T., Yeh J., et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys[J]. Wear.2010,268(5-6):653-659.
    [43]Chou Y. L., Yeh J. W., Shih H. C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corrosion Science.2010,52(8):2571-2581.
    [44]Chou H., Chang Y., Chen S., et al. Micro structure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Materials Science and Engineering:B.2009,163(3):184-189.
    [45]Hsu Y., Chiang W., Wu J. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics.2005,92(1):112-117.
    [46]Kim K. B. Devitrification of nano-scale icosahedral phase in (Ti0.33Zr0.33Hf0.33)5o(Nio.5Cuo.5)40Al10 alloy with enlarging supercooled liquid region[J]. Materials Letters.2005,59(14-15):1771-1774.
    [47]Kim K. B. Formation of in-situ nanoscale Ag particles in (Ti0.33Zr0.33Hf0.33)40(Ni0.33Cu0.33Ag0.33)5oAl10 alloy with wide supercooled liquid region[J]. Materials Letters.2005,59(10):1117-1120.
    [48]Kim K. B., Warren P. J., Cantor B. Glass-forming ability of novel multicomponent (Ti33Zr33Hf33)-(Ni50Cu50)-Al alloys developed by equiatomic substitution[J]. Materials Science and Engineering A.2004,375-377:317-321.
    [49]Kim K. B., Warren P. J., Cantor B. Structural relaxation and glass transition behavior of novel (Ti33Zr33Hf33)50(Ni50Cu50)4oAl10 alloy developed by equiatomic substitution[J]. Journal of Non-Crystalline Solids.2007,353(32-40):3338-3341.
    [50]Kim K. B., Warren P. J., Cantor B. Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)-(Ni, Cu, Ag)-Al alloys[J]. Journal of Non-Crystalline Solids.2003,317(1-2): 17-22.
    [51]Kim K. B., Yi S., Hwang I. S., et al. Effect of cooling rate on microstructure and glass-forming ability of a (Ti33Zr33Hf33)70(Ni50Cu50)20Al10 alloy[J]. Intermetallics.2006, 14(8-9):972-977.
    [52]Varalakshmi S., Kamaraj M., Murty B. S. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying[J]. Materials Science and Engineering:A.2010,527(4-5):1027-1030.
    [53]Varalakshmi S., Kamaraj M., Murty B. S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. Journal of Alloys and Compounds.2008,460(1-2):253-257.
    [54]Wang F. J., Zhang Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy[J]. Materials Science and Engineering:A. 2008,496(1-2):214-216.
    [55]Wang F. J., Zhang Y., Chen G. L. Atomic packing efficiency and phase transition in a high entropy alloy[J]. Journal of Alloys and Compounds.2009,478(1-2):321-324.
    [56]Wang Y. P., Li B. S., Ren M. X., et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy[J]. Materials Science and Engineering:A.2008,491(1-2): 154-158.
    [57]Zhou Y. J., Zhang Y., Wang F. J., et al. Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTio.5 solid-solution alloy[J]. Journal of Alloys and Compounds.2008,466(1-2):201-204.
    [58]Zhou Y. J., Zhang Y., Wang Y. L., et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys[J]. Materials Science and Engineering:A.2007,454-455:260-265.
    [59]Zhou Y., Zhang Y., Wang X., et al. Effect of component substitution on the microstructure and mechanical properties of MCoCrFeNiTix (M= Cu, Al) solid-solution alloys[J]. Rare Metals.2008,27(6):627-631.
    [60]Wang Y. P., Li B. S., Fu H. Z. Solid Solution or Intermetallics in a High-Entropy Alloy[J]. Advanced Engineering Materials.2009,11(8):641-644.
    [61]Zhang Y., Zhou Y. J., Lin J. P., et al. Solid-Solution Phase Formation Rules for Multi-component Alloys[J]. Advanced Engineering Materials.2008,10(6):534-538.
    [62]Li A., Zhang X. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements[J]. Acta Metallurgica Sinica (English Letters).2009,22(3):219-224.
    [63]Li B. S., Wang Y. P., Ren M. X., et al. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy[J]. Materials Science and Engineering: A.2008,498(1-2):482-486.
    [64]Zhang L. C, Kim K. B., Yu P., et al. Amorphization in mechanically alloyed (Ti, Zr, Nb)-(Cu, Ni)-Al equiatomic alloys[J]. Journal of Alloys and Compounds.2007,428(1-2): 157-163.
    [65]Kuznetsov A. V., Shaysultanov D. G., Stepanov N. D., et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions[J].Materials Science and Engineering:A.2012,533(0):107-118.
    [66]Senkov O.N.,Wilks G.B.,Scott J.M.,et al.Mechanical properties of Nb25M025Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics.2011,19(5):698-706.
    [67]叶均蔚.高熵合金的发展[J].华冈工程学报.2011,27:1-18.
    [68]Yeh J., Lin S., Chin T., et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J].Metallurgical and Materials Transactions A.2004,35:2533-2536.
    [69]张勇,周云军,惠希东,等.大块金属玻璃及高熵合金的合金化作用[J].中国科学(G辑:物理学力学天文学).2008(04):439-448.
    [70]Yeh J.Recent progress in high-entropy alloys[J].Annales De Chimie-Science Des Materiaux.2006,31(6):633-648.
    [71]苏勇,付广艳,刘群,等.晶粒细化对Cu-Si合金高温氧化行为的影响[J].稀有金属材料与工程.2009(S1):139-143.
    [72]Tong C.,Chen M.,Yeh J.,et al.Mechanical performance of the A1xCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J].Metallurgical and Materials Transactions A.2005,36(5):1263.
    [73]Kai W.,Jang W.L.,Huang R.T.,et al.Air Oxidation of FeCoNi-Base Equi-Molar Alloys at 800-1000℃[J].Oxidation ofMetals.2005,63(3):169.
    [74]Ren B.,Liu Z.X.,Shi L.,et al.Structure and properties of(AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering[J].Applied Surface Science.2011,257(16): 7172-7178.
    [75]Ye X.,Ma M.,Cao Y.,et al.The Property Research on High-entropy Alloy AlxFeCoNiCuCr Coating by Laser Cladding[J].Physics Procedia.2011,12(Part 1): 303-312.
    [76]Yao C.,Zhang P.,Liu M.,et al.Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy[J].Electrochimica Acta.2008,53(28):8359-8365.
    [77]叶均蔚,陈瑞凯,林树均.高熵合金的发展概况[J].工业材料杂志.2005,224:71-79.
    [78]杜经邦,杨智超,叶均蔚.块状多元高功能合金之特性[J].工业材料杂志.2005,224:80-86.
    [79]Tong C.,Chen Y.,Yeh J.,et al.Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements AlCoCrCu0.5NiFe[J]. Metallurgical and Materials Transactions A.2005,36(4):881.
    [80]王华明,张凌云,李安,等.高性能航空金属结构材料及特种涂层激光熔化沉积制备与成形研究进展[J].金属热处理.2008(01):82-85.
    [81]王华明,张述泉,汤海波,等.大型钛合金结构激光快速成形技术研究进展[J].航空精密制造技术.2008(06):28-30.
    [82]周琪.钛合金管材成形加工工艺的数值模拟研究[D].镇江:江苏科技大学,2011.
    [83]李红梅,雷霆,方树铭,等.生物医用钛合金的研究进展[J].金属功能材料.2011(02):70-73.
    [84]魏超,罗勇,强颖怀,等.钛合金的表面渗碳工艺及其耐磨性能[J].机械工程材料.2008(01):34-36.
    [85]Kaestner P., Olfe J., Rie K. T. Plasma-assisted boriding of pure titanium and TiA16V4[J]. Surface and Coatings Technology.2001,142-144(0):248-252.
    [86]陈飞,周海,罗维.钛合金表面等离子喷涂热障涂层性能的研究[J].热加工工艺.2008(13):96-98.
    [87]Onate J. I., Alonso F., Garcia A. Improvement of tribological properties by ion implantation[J]. Thin Solid Films.1998,317(1-2):471-476.
    [88]Hohl F., Berndt H., Mayr P., et al. Implantation of N2+,O+ and CO+ ions into titanium and Ti-6A1-4V[J]. Surface and Coatings Technology.1995,74-75, Part 2(0):765-769.
    [89]Nolan D., Huang S. W., Leskovsek V., et al. Sliding wear of titanium nitride thin films deposited on Ti-6A1-4V alloy by PVD and plasma nitriding processes[J]. Surface and Coatings Technology.2006,200(20-21):5698-5705.
    [90]Martini C., Ceschini L., Casadei B., et al. Dry sliding behaviour of hydrogenated amorphous carbon (a-C:H) coatings on Ti-6A1-4V[J]. Wear.2011,271(9-10): 2025-2036.
    [91]Peng J., Han B., Li W., et al. Study on the micro structural evolution of BaTiO3 on titanium substrate during MAO[J]. Materials Letters.2008,62(12-13):1801-1804.
    [92]Nolan D., Huang S. W., Leskovsek V., et al. Sliding wear of titanium nitride thin films deposited on Ti-6A1-4V alloy by PVD and plasma nitriding processes[J]. Surface and Coatings Technology.2006,200:5698-5705.
    [93]张高会,张平则,崔彩娥,等.钛合金及其表面处理的现状与展望[J].世界科技研究与发展.2003(04):62-67.
    [94]鲍瑞良.激光熔覆钴基合金及其复合涂层[D].济南:山东大学,2007.
    [95]肖泽辉,张仁.镁合金激光表面处理技术[J].电镀与涂饰.2008(11):28-31.
    [96]华晋伟.激光处理技术在机械工程中的应用[J].科技资讯.2011(24):117.
    [97]戴景杰.纯钛TA2合金表面改性试验与机理研究[D].兰州:兰州理工大学,2006.
    [98]Langlade C., Vannes A. B., Krafft J. M., et al. Surface modification and tribological behaviour of titanium and titanium alloys after YAG-laser treatments[J]. Surface and Coatings Technology.1998,100-101(0):383-387.
    [99]Ignatiev M., Kovalev E., Melekhin I., et al. Investigation of the hardening of a titanium alloy by laser nitriding[J]. Wear.1993,166(2):233-236.
    [100]刘录录.H13钢表面激光熔覆改性研究[D].天津:天津工业大学,2008.
    [101]王燕华.第九讲激光表面技术及在设备制造与维修中的应用[J].中国设备管理.1999(02):51-52.
    [102]Li J., Chen C., Squartini T., et al. A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti-6A1-4V alloy[J]. Applied Surface Science.2010,257(5):1550-1555.
    [103]Yang Y., Zhang D., Yan W., et al. Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding[J]. Optics and Lasers in Engineering.2010, 48(1):119-124.
    [104]Tian Y. S., Chen C. Z., Li S. T., et al. Research progress on laser surface modification of titanium alloys[J]. Applied Surface Science.2005,242(1-2):177-184.
    [105]Iwamoto H., Sumikawa T., Nishida K., et al. High temperature oxidation behavior of laser clad NiCrAlY layer[J]. Materials Science and Engineering A.1998,241(1-2): 251-258.
    [106]Sun R. L., Lei Y. W., Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6A1-4V alloy using a CW CO2 laser[J]. Surface and Coatings Technology.2009, 203(10-11):1395-1399.
    [107]Meng Q. W., Geng L., Zhang B. Y. Laser cladding of Ni-base composite coatings onto Ti-6Al-4V substrates with pre-placed B4C+NiCrBSi powders[J]. Surface and Coatings Technology.2006,200(16-17):4923-4928.
    [108]Fallah V., Corbin S. F., Khajepour A. Process optimization of Ti-Nb alloy coatings on a Ti-6Al-4V plate using a fiber laser and blended elemental powders[J]. Journal of Materials Processing Technology.2010,210(14):2081-2087.
    [109]Molian P. A., Hualun L. Laser cladding of ti-6al-4v with bn for improved wear performance[J]. Wear.1989,130(2):337-352.
    [110]Dutta Majumdar J., Manna I., Kumar A., et al. Direct laser cladding of Co on Ti-6A1-4V with a compositionally graded interface[J]. Journal of Materials Processing Technology.2009,209(5):2237-2243.
    [111]Sun R. L., Yang D. Z., Guo L. X., et al. Laser cladding of Ti-6A1-4V alloy with TiC and TiC+NiCrBSi powders[J]. Surface and Coatings Technology.2001,135(2-3): 307-312.
    [112]Cai L., Zhang Y., Shi L. Microstructure and formation mechanism of titanium matrix composites coating on Ti-6A1-4V by laser cladding[J]. Rare Metals.2007,26(4):342-346.
    [113]Alhammad M., Esmaeili S., Toyserkani E. Surface modification of Ti-6Al-4V alloy using laser-assisted deposition of a Ti-Si compound[J]. Surface and Coatings Technology. 2008,203(1-2):1-8.
    [114]Ahsan M. N., Pinkerton A. J., Moat R. J., et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4 V powders[J]. Materials Science and Engineering:A.2011,528(25-26):7648-7657.
    [115]Man H. C., Zhang S., Cheng F. T., et al. Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding[J]. Scripta Materialia.2001,44(12):2801-2807.
    [116]Vreeling J. A., Ocelik V., De Hosson J. T. M. Ti-6A1-4V strengthened by laser melt injection of WCp particles[J]. Acta Materialia.2002,50(19):4913-4924.
    [117]Sun R. L., Mao J. F., Yang D. Z. Micro structural characterization of NiCrBSiC laser clad layer on titanium alloy substrate[J]. Surface and Coatings Technology.2002,150(2-3): 199-204.
    [118]Genc A., Banerjee R., Hill D., et al. Structure of TiB precipitates in laser deposited in situ, Ti-6Al-4V-TiB composites[J]. Materials Letters.2006,60(7):859-863.
    [119]Kooi B. J., Pei Y. T., De Hosson J. T. M. The evolution of microstructure in a laser clad TiB-Ti composite coating[J]. Acta Materialia.2003,51(3):831-845.
    [120]Sun R. L., Mao J. F., Yang D. Z. Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate[J]. Surface and Coatings Technology.2002,155(2-3):203-207.
    [121]Sun R. L., Yang D. Z., Guo L. X., et al. Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate[J]. Surface and Coatings Technology. 2000,132(2-3):251-255.
    [122]Zhang K., Zou J., Li J., et al. Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J]. Transactions of Nonferrous Metals Society of China.2010, 20(11):2192-2197.
    [123]Lei Y., Sun R., Lei J., et al. A new theoretical model for high power laser clad TiC/NiCrBSiC composite coatings on Ti6A14V alloys[J]. Optics and Lasers in Engineering. 2010,48(9):899-905.
    [124]Duttamajumdar J., Li L. Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding[J]. Materials Letters.2010,64(9): 1010-1012.
    [125]Guo B., Zhou J., Zhang S., et al. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding[J]. Applied Surface Science.2007, 253(24):9301-9310.
    [126]Ocelik V., Matthews D., De Hosson J. T. M. Sliding wear resistance of metal matrix composite layers prepared by high power laser[J]. Surface and Coatings Technology.2005, 197(2-3):303-315.
    [127]Tian Y. S., Chen C. Z., Wang D. Y., et al. Laser surface alloying of pure titanium with TiN-B-Si-Ni mixed powders[J]. Applied Surface Science.2005,250(1-4):223-227.
    [128]Wang Y., Wang H. M. Wear resistance of laser clad Ti2Ni3Si reinforced intermetallic composite coatings on titanium alloy[J]. Applied Surface Science.2004,229(1-4):81-86.
    [129]Jian L. N., Wang H. M. Micro structure and wear behaviours of laser-clad Cr13Ni5Si2-based metal-silicide coatings on a titanium alloy[J]. Surface and Coatings Technology.2005,192(2-3):305-310.
    [130]Langelier B. C., Esmaeili S. In-situ laser-fabrication and characterization of TiC-containing Ti-Co composite on pure Ti substrate[J]. Journal of Alloys and Compounds. 2009,482(1-2):246-252.
    [131]张文群,张振山.应用Gibbs自由能最小法研究Li/SF_6气液浸没燃烧反应[J].兵工学报.2005(06):94-97.
    [132]苏云鹏,王猛,林鑫,等Zn-2%Cu包晶合金快速定向凝固层片状组织[J].中国有色金属学报.2003(05):1092-1097.
    [133]岳强.高强高韧型钛合金Ti-63成分设计及组织、性能研究[D].北京:北京有色金属研究总院,2009.
    [134]尹付成.热浸镀锌合金体系的热力学分析及应用[D].湘潭:湘潭大学,2004.
    [135]Dinsdale A. T. SGTE data for pure elements[J]. CALPHAD.1991,15(4):317-425.
    [136]刘玉芹.阻燃钛合金阻燃机理研究和性能预测[D].北京:北京有色金属研究总 院,1999.
    [137]Schmid R. A Thermo dynamic Analysis of the Cu-0 System with an Associated Solution Model[J]. Metallurgical and Materials Transactions B.1983,14:473-481.
    [138]Hillert M., Staffans L. Regular Solution Model for Stoichiometric Phases and Ionic Metals[J]. Acta Chemica Scandinavia.1971,25(9):3199-3206.
    [139]吴岳.镧系卤化物与碱金属卤化物混合物体系的相图热力学研究[D].长沙:中南大学,2011.
    [140]曾志刚.基于Internet的热力学计算平台[D].长沙:中南大学,2002.
    [141]胡建虹,陈双林,蔡文娟,等.应用几何溶液模型法预测三元系的表面张力[J].北京科技大学学报.1990(06):558-562.
    [142]Muggianu Y. M., Gambino M., Bros J. P. Choices of an analytical representation of integral and partial excess quantities of mixing[J]. Journal of chemical physics.1975,72(1): 83-88.
    [143]Kattner U. The thermodynamic modeling of multicomponent phase equilibria[J]. JOM Journal of the Minerals, Metals and Materials Society.1997,49(12):14-19.
    [144]张毅AlCrFeNi多主元高熵合金基复合材料显微组织及性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [145]姜海涛,邵忠财,魏守强.钛合金表面处理技术的研究进展[J].电镀与精饰.2010(10):15-20.
    [146]蔡利芳.铝合金表面激光合金化Al-Si、Al-Fe涂层的研究[D].北京:北京有色金属研究总院,2007.
    [147]刘玉芹,白克武,张翥,等Ti-Cr-V-Al合金的阻燃机理实验研究[J].稀有金属.2000(06):463-465.
    [148]Vilar R. Laser cladding[J]. Journal of laser applications.1999,11:64.
    [149]杨森,钟敏霖,张庆茂,等.金属零件的激光直接快速制造[J].粉末冶金技术.2002(04):234-238.
    [150]余菊美.铁基合金激光熔覆层质量与性能改善的研究[D].郑州:郑州大学,2004.
    [151]蔡志祥,曾晓雁.激光微熔覆技术的发展及应用[J].中国光学与应用光学.2010(05):405-414.
    [152]Enomoto M. The Si-Ti-V system (silicon-titanium-vanadium)[J]. Journal of phase equilibria.1992,13(2):201-205.
    [153]Binnewies M., Milke E. Thermo chemical Data Elements and Compounds[M]. Weinheim:Wiley-VCH,2002.
    [154]周云军.高熵合金的相形成规律及性能[D].北京:北京科技大学,2008.
    [155]Smith J., Bailey D., Carlson O. The Cr-V (Chromium-Vanadium) system[J]. Journal of Phase Equilibria.1982,2(4):469-473.
    [156]Cupid D. M., Kriegel M. J., Fabrichnaya O., et al. Thermodynamic assessment of the Cr-Ti and first assessment of the Al-Cr-Ti systems[J]. Intermetallics.2011,19(8): 1222-1235.
    [157]易丹青,杜若昕,曹昱.M5Si3型硅化物的研究及相关的物理冶金学问题[J].金属学报.2001,37(11):1121-1130.
    [158]Richter E., Piekoszewski J., Wieser E., et al. Modification of titanium surface by its alloying with silicon using intense pulsed plasma beams[J]. Surface and Coatings Technology.2002,158-159:324-327.
    [159]Liu X., Wang H. Microstructure, wear and high-temperature oxidation resistance of laser clad Ti5Si3/γ/TiSi composite coatings on γ-TiAl intermetallic alloy[J]. Surface and Coatings Technology.2006,200(14-15):4462-4470.
    [160]孙耀宁,樊丁,戴景杰.激光熔覆在金属间化合物涂层材料制备中的应用[J].电焊机.2007(03):17-19.
    [161]Du Y., Schuster J. C. Experimental investigation and thermodynamic description of the Cr-Si-Ti system[J]. Scandinavian Journal of Metallurgy.2002,31(1):25-33.
    [162]Huang W., Chang Y. A. A thermodynamic analysis of the Ni-Al system[J]. Intermetallics.1998,6(6):487-498.
    [163]王艳苹.AlCrFeCoNiCu系多主元合金及其复合材料的组织与性能[D].哈尔滨:哈尔滨工业大学,2009.
    [164]刘源,陈敏,李言祥,等.AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能[J].稀有金属材料与工程.2009(09):1602-1607.
    [165]温丽华,寇宏超,王一川,等.AlxCoCrCuFeNi多主元高熵合金的组织与力学性能[J].特种铸造及有色合金.2009(06):579-581.
    [166]Takeuchi A., Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions.2005,46(12): 2817-2829.
    [167]Du Y., Clavaguera N. Thermodynamic assessment of the Al Ni system[J]. Journal of Alloys and Compounds.1996,237(1-2):20-32.
    [168]Lin Y. C., Cho Y. H. Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ[J]. Surface and Coatings Technology.2009,203(12):1694-1701.
    [169]张琦.低电极电位锌镍合金涂层的制备与性能研究[D].武汉:武汉理工大学,2010.
    [170]赵敬伟.热氢处理对钛合金组织演变及高温变形行为的影响[D].沈阳:东北大学,2009.
    [171]吴春峰,李慧改,郑少波,等.二元合金热力学模型—Miedema模型[J].上海金属.2011(04):1-5.
    [172]贺翠云Al-Cu-Mn、Al-Cu-Si、Al-Mg-Ni和Ni-Ti-Si体系的相图测定及热力学研究[D].长沙:中南大学,2008.
    [173]潘竹.多元铝合金相图拓扑关系的理论和实验研究[D].长沙:中南大学,2008.
    [174]Hillert M., Jar1 M. A model for alloying in ferromagnetic metals[J]. Calphad.1978, 2(3):227-238.
    [175]隋福楼,尹建,卢光熙.等温淬火球墨铸铁在销—环法试验条件下的滑动磨损[J].吉林工学院学报.1992(02):28-38.
    [176]Zhou F., Wang Y., Liu F., et al. Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil[J]. Wear.2009,267(9-10):1581-1588.
    [177]温诗铸,黄平.摩擦学原理(第二版)[M].北京:清华大学出版社,2002.
    [178]王玉海,宋健,李兴坤.离合器动态过程建模与仿真[J].公路交通科技.2004(10):121-125.
    [179]刘安阵,莫易敏,吕俊成,等.经济型汽车离合器动力学分析[J].机械工程师.2008(09):33-35.
    [180]王悔改,张占领.热处理工艺对超高碳钢显微组织及磨损性能的影响[J].铸造技术.2011(04):483-486.
    [181]丁红燕,戴振东.TC11钛合金在人造海水中的腐蚀磨损特性研究[J].摩擦学学报.2008(02):139-144.
    [182]Ludema K. C. Friction, wear, lubrication:a textbook in tribology[M]. New York: CRC Press,1996.
    [183]董光远.合金元素对Fe3Si合金高温氧化和腐蚀性能的影响[D].兰州:兰州理工大学,2010.
    [184]王明静.镍基高温合金表面铬铝涂层的制备与抗高温腐蚀性能研究[D].西安: 西安科技大学,2011.
    [185]吴彬.纳米SiO2/TiO2复合膜与Pt片耦合光催化及其应用[D].武汉:华中科技大学,2008.
    [186]李昊.往复式多孔介质燃烧器的试验研究[D].杭州:浙江大学,2004.
    [187]王天放,李疏芬.最小自由能法求解GAP在等压绝热条件下的燃烧产物[J].火炸药学报.2003(04):16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700