空间辐射环境对半导体激光器性能影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间光通信因其具有发射光束窄,方向性好,功率密度显著增加,天线尺寸小,系统质量相对小,抗电磁干扰,保密性强等很多优点,使通信容量可以显著增大,广泛应用于卫星与卫星、卫星与航天飞机等空间站之间高数码率信息的传输,有良好的应用前景,目前已成为各国研究工作的热点。
     光源是卫星光通信中的关键器件之一,通信系统对光源的性能有很高的要求,其性能指标对整个光通信系统有着举足轻重的影响。卫星光通信中的光源通常采用半导体激光器(LD),主要是由于LD具有体积小、输出功率高等优点。空间辐射环境对LD所产生的辐射效应,将造成其性能劣化,进而影响整个系统的通信性能。因此半导体激光器的空间辐射环境适应性研究成为空间光通信研究的关键技术之一。
     论文首先阐述了半导体激光器空间辐射环境适应性研究的重要性及其国内外发展现状。随后介绍了半导体激光器的基本工作原理和工作特性,讨论了空间辐射环境,及半导体器件的辐照效应,在此基础上进一步分析了半导体激光器的辐照效应,理论上给出电离辐射对半导体激光器光功率-电流特性、阈值特性、效率特性及光谱特性的影响,最后以γ辐射源模拟空间辐射环境进行了半导体激光器的电离辐射实验,通过分析实验数据,验证理论分析结果,并对不同辐射剂量对半导体激光器各性能参数的影响给出具体数据,为系统的防护提供可靠依据。
Compared with microwave communication, space optical communication has much superiority: much greater communication capability, narrow beam, good direction, much greater power density functions, lesser antenna size and whole mass and high capability of anti-electromagnetism and secrecy. Because of its high function-price ratio, under the condition of transmitting same information and same data rate, it is very fit for high data transmission ratio between satellite and satellite, satellite and space shuttle, and so on. So each country attaches important attention to space optical communication.
     Nowadays, it is quite often to use LD as the light source of the space optical communication system for its small size and high power out, but the space radiation effects will change or degraded the laser diodes parameters. And these degradations will influence the whole communication system. So it is one of the key techniques of the space optical communication to research the durability of LD applying to the radiation in the space optical.
     The importance and meaning of the durability of LD applying to the radiation in the space optical communication is presented in the paper, and also the application foreground as well as development trend are introduced. Then the basic theories of LD and space radiation environment are narrated, especially, the radiation effects on LD are discussed. The last, through theγradial radiation experiment on LD, we prove the theoretical analysis and advance how to design and choose LD applying to the radiation in the space optical communication.
引文
1 Nilsson. Fundamental Limits and Possibilities for the Future Telecommunication. IEEE Communications Magazine. 2001, 39(5): 164~167
    2 V. W. S. Chan. Optical Space Communications. IEEE J. Quantum Electron. 2002, 6(6): 959~975
    3 Robert G. Marshalek, G. Stephen Mecherle, Paul R. Jordan. System-Level Comparison of Optical and RF Technologies for Space-to-Space and Space-to-Ground Communication Links. SPIE. 1996, 2699: 134~145
    4 Morio Toyoshima, Walter R. Leeb, Hiroo Kunimori, et al. Comparison of Microwave and Lightwave Communication Systems in Space Application. SPIE. 2005, 5296: 1~12
    5 Komukai, Toshibacho S, Arimoto Y. Performance evaluation of laser communication equipment on board the ETS–VI satellite. SPIE. 1996, 2699: 52~60
    6 Masahiro Toyoda, Morio Toyoshima, Tetsuo Takahashi, et al. Ground to ETS–VI narrow beam transmission. SPIE. 1996, 2699: 71~80
    7 Masahiro Toyoda, Morio Toyoshima, Tetsuo Takahashi. Measurement of laser link scintillation between ETS–VI and a ground optical station. SPIE. 1996, 2990: 287~289
    8 Kenichi Araki, Morio Toyoshima, Tesuo Takahashi. Experimental operations of laser communication equipment onboard ETS-VI satellite. SPIE. 1996, 2990: 264~274
    9 Eruc Korevaar, John Schuster, Harel Hakakha, et al. Design of ground terminal for STRV-2 satellite-to-ground laser experiment. SPIE. 1998, 3266: 153~164
    10 Isaac I. Kim, Eric J. Korevaar, Harel Hakakha, et al. Horizontal-link performance of the STRV-2 lasercom experiment ground terminals. SPIE. 1999, 3615: 11~21
    11 Eric Korevaar, John Schuster, Prasanna Adhikari, et al. Description of STRV-
    2 lasercom flight hardware. SPIE. 1997, 2990: 38~49
    12 Eric Korevaar, John Schuster, Prasanna Adhikari, et al. Description of STRV-2 lasercom experimental operations. SPIE. 1997, 2990: 60~69
    13 Eric Korevaar, John Schuster, Prasanna Adhikari, et al. The lasercom test and evaluation station station for flight terminal evaluation. SPIE. 1997, 2990: 152~158
    14 Issac I. Kim, Bran Riey, Nicholas M. Wong, et al. Lessons learned from the STRV-2 Satellite–to–Ground Lasercom Experiment. SPIE. 2001, 4272: 1~15
    15 K. Nakagawa, A. Yamamoto. Preliminary design of Laser Utilizing Communication Experiment (LUCE) installed on Optical Inter-Orbit Communications Engineering Test Satellite (OICETS). SPIE. 1995, 2381: 14~25
    16 Morio Toyoshima, Shiro Yamakawa, Toshihiko Yamawaki. Ground–to–satellite optical link between Japanese laser communications terminal and European geostationary satellite ARTEMIS. SPIE. 2004, 5338: 1~15
    17黄德修,刘雪峰.半导体激光器及其应用.国防工业出版社. 1999: 67~74
    18朱东海,梁基本,徐波,朱战萍. 808nmGaAs/AlGaAs大功率半导体激光器波长的影响因素控制.半导体学报. 1997, 18(2): 1~4
    19闻传花,李玉权.空间激光通信中的光学系统.无线光通信. 2003, 7(2): 1~2
    20 Gennaddi K. Vlasov, et al. High-sensitive Excitonic Receiver of IR Coherent Radiation with Laser Read-out of Information. SPIE Proc. 1995, 2381:
    330~341
    21 H.Lischka, P.Clemens, O.Kahn, W.Lennartz, H.U.Schmidt. Radiation effects in optoeletronic devices. SPIE. 2003, 2425: 43~52.
    22谢建平,王沛,许立新,章江英.半导体激光器的波长调谐和波长稳定技术.量子电子学报. 2003, 19(2): 1~5
    23 Beutlet B E, Fleetwood D M, Beezhold W. Variations in semiconductor device response in a medium-energy X-ray dose enhancing environment. IEEE Trans Nucl Sci. 1987, 34(6): 15~44
    24祁章年.载人航天的辐射防护与监测.国防工业出版社. 2002: 1~36
    25张永明,钟景昌,路国光,秦莉,赵英杰,郝永芹,姜晓光. 808nm InGaAsP单量子阱激光器激射波长的温度依赖性.半导体学报. 2005, 26(9): 1~4
    26 Benedetto J M, Boesch H E, Oldmam T R, et al. Measurement of low-energy X-ray dose enhancement in MOS devices with metal silicide gates. IEEE Trans Nucl Sci. 1987, 34(6): 35~40
    27 Flament O, Auran J L, Roche P, et al. Enhanced damage in linear bipolar integrated circuits at low dose rate. IEEE Trans Nucl Sci. 1955, 42(6): 46~50
    28 Harold L F. Radiation effect research. First European Conference Symposium on Radiation and Its Effects on Components and Systems. London, Britain. 1992: 5~10
    29赖祖武,包宗明,宋钦岐等.辐射效应及加固原理.国防工业出版社. 1994: 56~78
    30李致远.半导体器件辐射效应及抗辐射加固.电子技术. 2006, 19: 1~3
    31 Robert A. Reed. Performance Characterization of Digital Optical Date Transfer Systems for Use in the Space Radiation Environment. SPIE. 1994, 2032: 1~98
    32 WangLi-qiong, XiangShi-biao, FengChang-gen. Numerical calculation of laser diode ignition. China Science and Technology Press. 2001, 48(9): 61~68.
    33胡刚毅.微电子器件的抗辐射加固和高可靠技术.微电子学. 2003, 33(3):1~3
    34 S. M. Khanna, D. Estan, H. C. Liu, M. Gao. 1~15 MeV Proton and Alpha Particle Radiation Effects on GaAs Quantum Well Light Emitting Diodes. IEEE Transactions on Nuclear Science. 2000, 47(6): 4~6
    35 H. Lischka, H. Henschel, W. Lennartz, H. U. Schmidt. Radiation sensitivity of light emitting diodes (LED), laser diodes (LD) and photodiodes (PD). IEEE Trans. Nucl. Sci. 1992, 33(7): 23~27
    36 D. G. Sporea, Ion Vata, Radu Sporea. Hetero-junction Laser Diodes under Neutron Irradiation. Proc. 13th International Conference on Nuclear Engineering. Beijing, China. 2005: 54~79
    37 A. H. Johnston, T. F. Miyahira. Radiation degradation mechanism in laser diodes. IEEE Trans. Nucl. Sci. 2004, 51(22): 4~7
    38 A. H. Johnston, T. F. Miyahira. Displacement damage characterization of laser diodes. Proc. RADECS 2003 Conference. Noordwijk, Netherlands. 2003: 3~939 E. W. Taylor, et al. In vacuo responses of an AlGaAs vertical cavity surface emitting laser irradiated by 4.5 MeV protons. IEEE Trans. Nucl. Sci. 1998, 45(9): 4~7
    40 F.-J. Vermersch, M. Calligaro, M. Lecomte, O. Parillaud, M. Krakowski, O. Gilard. Electron Irradiation Effects on Al-Free Laser Diodes Emitting at 852 nm. IEEE Trans. Nucl. Sci. 2007, 54(4): 1~8
    41 A. H. Johnston. Radiation effects in light-emitting and laser diodes. IEEE Trans. Nucl. Sci.. 2003, 50(3): 2~5
    42 J. Jabbour, M. Zazoui, G. C. Sun, J. C. Bourgoin, O. Gilard. Radiation resistance of GaAs-GaAlAs vertical cavity surface emitting lasers. J. Appl. Phys.. 2005, 97(5): 1~5
    43林理彬,廖志君,祖小涛,王浙辉. 1. 3μm InGaAsP半导体激光器的电子辐照效应.中国激光. 2001, 28(6): 1~4
    44姚飞,薛春来,成步文,王启明.重掺B对应变SiGe材料能带结构的影响.物理学报. 2007, 56(11): 2~5
    45 P. J. Bream, S. Bull, I. Harrison, S. Sujecki, E. C. Larkins. Fourier transform analysis method for modeling the positions and properties of cavity defects in Fabry-Perot laser diodes. Appl. Phys. Lett. 2005, 86(4): 1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700