氢化处理及Li掺杂ZnO薄膜光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种宽禁带的新型II-VI化合物半导体材料,具有六角钎锌矿结构,同时它是一种独特的材料,具备光电、压电等性能。特别地,由于其禁带宽度大(3.37 eV),激子结合能高(60 meV),室温下具有高效的激子受激发光,所以,ZnO在短波长光电器件领域有着极大的应用潜力,如发光二极管(LEDs)和激光器(LDs)等。要实现ZnO在光电领域的广泛应用,首先必须获得性能良好的n型和p型ZnO材料。但是由于缺陷的影响,ZnO的发光效率较低。尽管控制缺陷对于提高ZnO发光效率具有重要意义,但是缺陷相关的电子-空穴复合机制尚未明确。
     本文利用雾化气相沉积法制备了ZnO晶体薄膜,分析不同衬底温度及退火气氛对ZnO表面形貌及发光性能的影响,发现2.39 eV处绿光发光峰的起源与氧空位有着密切的关系。利用脉冲调制等离子体炉氢化处理ZnO薄膜,改变氢化时样品与等离子之间的距离,分析氢化处理对发光性能的影响。室温CL光谱表明,氢化处理能够提高紫外发光效率(3.27 eV),并且发光效率提高的幅度与氢化条件关系密切。当距离从90 mm减小至75 mm时,紫外发光及绿光发光强度均先增加后降低。低温下的CL测试发现,对ZnO样品氢化处理后,3.315 eV发光峰成为优势的发光带。研究表明,氢与本征缺陷能够形成浅施主络合物,提高了浅施主的浓度,对于提高紫外光发光效率有重要意义。
     论文第五章利用溶胶-凝胶法制备了Li掺杂ZnO多晶薄膜。样品保持了钎锌矿结构。室温CL测试表明,随Li掺杂浓度的增加,无辐射复合中心浓度增加,样品的发光效率降低。通过分析样品低温下的CL光谱,3.28及3.31 eV两处的发光峰归因于LiZn及LiZn-Lii受主束缚激子跃迁。Zn1-xLixO薄膜(0.08≤x≤0.12)具有室温铁电电滞回线,锂锌替代及锂相关络合物是导致Li掺杂ZnO薄膜具有铁电性的原因。
Zinc oxide (ZnO) is a novel II-VI compound semiconductor with a hexagonal wurtzite structure. ZnO is a unique material that exhibits optoelectronic, piezoelectric, and ferromagnetic multiple properties. In particular, it is a potential candidate for applications in short-wavelength optoelectronic devices, including light emitting diodes (LEDs) and laser diodes (LDs), due to its direct wide-bandgap (3.37 eV) and high exciton binding energy (60 meV), which will favor efficient excitonic emission processes at room temperature. To prepare applied optoelectronic devices, high quality n-type and p-type ZnO must be synthesized. However, because of the charge compensation of native defects such as vacancies and interstitials, the UV emission efficiency of ZnO is low. Moreover, the mechanism behind the defect related electron–hole recombination process in ZnO is still unclear, although the control of defect states is the most important issue for the improvement of emission efficiency. In this paper, pure ZnO thin films have been prepared by a spray chemical vapor deposition method. The effect of substrate temperature and anneal conditions on surface morphology and luminescent properties of ZnO thin films was studied. The origin of 2.39 eV transition is related to oxyqen vacancy.
     A pulse-modulated plasma high-power inductively coupled plasma (PM-ICP) was applied to the hydrogenation of ZnO thin films. Distances between ZnO and H-plasma were changed to investigate the effect of hydrogenation on luminescent properties. Room temperature cathodoluminescence (CL) spectrum showed that hydrogenation can increase the efficiency of UV emission at 3.27 eV, and the improvement is strongly dependent on hydrogenation distances. As the distance was decreased from 90 to 75 mm, the peak intensity of both UV and green emission starts to increase then decrease. For low temperature CL spectrum, the intensity of donor–acceptor pairs (DAP) transition at 3.315 eV has been increased more rapidly after hydrogenation, leading DAP to be the dominant transition. The complex of H with native defects acts as shallow donors, which is an appropriate reason for the improvement of the UV emission efficiency.
     In the 5th chapter of this dissertation, polycrystalline Zn1-xLixO thin films (0.005≤x≤0.12) were deposited by a sol-gel technique. All the films are in wurtzite structures. CL studies showed that the luminescent efficiency of specimens is degraded sharply with the increment of Li concentration, which indicates that non-radiative centers are introduced during the doping process. The luminescent peaks centered at 3.28 and 3.31 eV are assigned to the LiZn and LiZn-Lii acceptor bound exciton transitions. Ferroelectric properties of Zn1-xLixO thin films (0.08≤x≤0.12) were found from room temperature P-V hysteresis loop measurements, it can be confirmed that the LiZn and LiZn-Lii complex play important roles in the ferroelectric appearance of Li-doped ZnO thin films (0.08≤x≤0.12).
引文
[1] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, T. Steiner. ZnO: growth, doping and processing[J]. Materials taday, 2004, 7(6): 34-40.
    [2]刘诩纶.基础元素化学[M].北京:高等教育出版社, 1992.
    [3] Z. L. Wang. Zinc oxide nanostructures: growth, properties and applications[J]. J. Phys.: Condens. Matter, 2004,16: R829-R858.
    [4] P. M. Verghese, and D. R. Clarke. Piezoelectric contributions to the electrical behavior of ZnO varistors[J]. J. Appl. Phys., 2000, 87: 4330-4335.
    [5] J. O. Song, K. K. Kim, S. J. Park, T. Y. Seong. Highly low resistance and transparent Ni/ZnO ohmic contacts to p-type GaN[J]. Appl. Phys. Lett., 2003, 83: 479-481.
    [6] Onodera, N. Tamaki, K. Jin, and H. Yamashita. Ferroelectric properties in piezoelectric semiconductor Zn1-xMxO (M=Li, Mg) [J]. Jpn. J. Appl. Phys., Part 1,1997, 36: 6008-6011.
    [7] Onodera, K. Yoshio, H. Satoh, H. Yamashita, and N. Sakagami. Li-Substitution Effect and Ferroelectric Properties in Piezoelectric Semiconductor ZnO[J]. Jpn. J. Appl. Phys., Part 1, 1998, 37: 5315-5317.
    [8] R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, Phys. Rev. Lett. 62, 27441989.
    [9] Q. T. Islam and B. A. Bunker, Phys. Rev. Lett. 59, 27011987.
    [10]叶志镇,陈汉鸿,刘榕,张昊翔,直流磁控溅射ZnO薄膜的结构和室温PL谱,半导体学报, 2001, 08: 1015-1018.
    [11] W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chui Yi. Excitonic emissions observed in ZnO single crystal nanorods[J]. Appl. Phys. Lett., 2003, 82: 964-966.
    [12] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch. Electrical properties of bulk ZnO[J]. Solid State Commun., 1998, 105(6): 399-401.
    [13] J. S. Choi and C. H. Yo. Study of the nonstoichiometric composition op zinc oxide[J]. J. Phys. Chem. Solids, 1976, 37 (12): 1149-1151.
    [14] G. D. Mahan. Intrinsic defects in ZnO varistors[J]. J. Appl. Phys., 1983, 54: 3825-3832.
    [15] F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka. Energetics of native defects in ZnO[J]. J. Appl. Phys., 2001, 90: 824-828.
    [16] D. C. Look, J. W. Hemsky, and J. R. Sizelove. Residual Native Shallow Donor in ZnO[J]. Phys. Rev. Lett., 1999, 82: 2552-2555.
    [17] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle. First-principles study of native point defects in ZnO[J]. Phys. Rew. B, 2000, 61: 15019-15027.
    [18] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer, and R. T. Williams. Effect of hydrostatic pressure on the characteristic parameters of Au/n-GaAs Schottky-barrier diodes[J]. Physica B, 2001, 308-310: 1197-1200.
    [19] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams. Control ofp- and n-type conductivity in sputter deposition of undoped ZnO[J]. Appl. Phys. Lett., 2002, 80: 1195-1198.
    [20]林碧霞,傅竹西,贾云波,缪桂红.非掺杂ZnO薄膜中紫外与绿色发光中心[J].物理学报, 2001, 50: 2208-2211.
    [21] C. G. Van de Walle, and J. Neugebauer. Hydrogen in Semiconductors[J]. Annu. Rev. Mater. Res., 2006, 36:179–198.
    [22] C. G. Van de Walle. Hydrogen as a Cause of Doping in Zinc Oxide[J]. Phys. Rev. Lett., 2000, 85: 1012-1015.
    [23] C. G. Van de Walle. Defect analysis and engineering in ZnO[J]. Physics B, 2001, 308-310: 899-903.
    [24] E. V. Lavrov, J. Weber, F. Borrnert, C. G. Van de Walle, and R. Helbig. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy[J]. Phys. Rev. B, 2002, 66: 1-7.
    [25] X. Li, B. Keyes, S. Asher, S. B. Zhang, S. H. Wei, T. J. Coutts, and S. Limpijumnong. Hydrogen passivation effect in nitrogen-doped ZnO thin films[J]. Appl. Phys. Lett., 2005, 86: 122107-122100.
    [26] E. V. Lavrov. Infrared absorption spectroscopy of hydrogen-related defects in ZnO[J]. Physica B, 2003, 340-342: 195-200.
    [27] L. Y. Chen, W. H. Chen, J. J. Wang, and F. C. N. Hong. Enhancement of optical properties of CdSe pillars fabricated by the combination of electron-beam lithography and electrochemical deposition[J]. Appl. Phys. Lett., 2004, 85: 1259-1261.
    [28] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science, 2005, 50(3): 293-340.
    [29] H. Kato, M. Sano, K. Miyamoto, and T. Yao. Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy[J]. J. Cryst. Growth, 2002, 237: 538-543.
    [30] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim. Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) Using AlCl3(6H2O) as new doping material[J]. Jpn. J. Appl. Phys. Part 2, 1997, 36: L1078-L1082.
    [31] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov. Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD[J]. Thin Solid Films, 1995, 260(1): 19-20.
    [32] X. Li, Y. Yan, T. A. Gessert, C. L. Perkins, D.Young, C. DeHart, M. Young, and T. J. Coutts. Chemical vapor deposition-formed p-type ZnO thin films[J]. J. Vac. Sci. Technol. A, 2003, 21: 1342-1346.
    [33] X. Li, Y. Yan, T. A. Gessert, C. DeHart, C. L. Perkins, D. Young, and T. J. Coutts. p-Type ZnO thin films formed by CVD reaction of diethylzinc and NO gas[J]. Electrochem. Solid State Lett., 2003, 6(4): C56-C58.
    [34] O. F. Schirmer. The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide[J]. J. Phys. Chem. Solids,1968, 29: 1407-1429.
    [35] K. Iwata, P. Fons, A.Yamada, K. Matsubara, and S. Niki, Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE[J]. J. Cryst. Growth, 2000, 209: 526-531.
    [36]吴雄,氧化锌材料在SAW元件中的应用[J].电子元件, 1995, 6(2): 37-40.
    [37] M. B. Assouar, F. Benedic, O. Elmazria, M. Belmahi. MPACVD diamond films for surface acoustic wave filters[J]. Diamond & Rel Mater, 2001, 10: 681-685.
    [38]陈运祥,周勇,汪渝.多层结构氧化锌薄膜制备[J].压电与声光, 1997, 19(3): 187-191.
    [39] M. Chen, X. Wang, Y. H. Yu, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of A1-doped ZnO films[J]. Appl. Surf. Sci., 2000, 158: 134-140.
    [40] S. A. Studenikin, N. Golego, M. Cocivera. Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films[J]. J. Appl. Phys., 2000, 87(5): 2413-2421.
    [41] S. Liang, H. Sheng, A. Zuck, et al. ZnO Schottky ultraviolet photodetectors[J]. J. Cryst. Growth, 2001, 225:110-113.
    [42] G. Blandenet, P. S. Patil. Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique[J]. Physics B, 2001,302/303: 59-63.
    [43] T. Sekiguchi, K. Sumino. Quantitative electron-beam tester for defects in semiconductors (CL/EBIC/SDLTS system)[J]. Rev. Sci. Instum. 1995,66(8): 4277-4282.
    [44]王华馥,吴自勤.固体物理实验方法[M].北京:高等教育出版社,1990.
    [45] E. M. Wong, J. E. Bonevich, P. C. Searson. The growth kinetics of nanocryatalline ZnO particles from colloidal suspensions[J]. Phys. Chem., 1998, B102: 7770-7775
    [46] K. Vanhensden, C. H. Seager, W. L.Warren, et al. Correlation between photoluminescence and oxygen vancanies in ZnO phosphors[J]. Appl. Phys. Lett., 1996, 68(3): 403-405.
    [47] E. A. Meulenkamp. Size dependence of the dissolution of ZnO nanoparticles[J]. Phys. Chem.,1998, B102: 7764-7769.
    [48] L. Gao, S. Yang, C. Yang, et al. Highly monodasperse pollymer-capped ZnO nanoparticles : Preparation and optical properties[J]. Appl. Phys. Lett., 2000, 76(21): 2901-2903.
    [49] T. Sekiguchi, N. Ohashi, Y. Terada, Passivation of defects in ZnO by hydrogen plasma irradiation[J]. Jpn. J. Appl. Phys. Part 2,1997, 36: L289-L294.
    [50] N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda. Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO[J]. Appl. Phys. Lett., 2002, 80: 2869-2871.
    [51] C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates[J]. Appl. Phys. Lett., 2005, 86(183103): 1-3.
    [52] M. A. Gluba, F. Friedrich, K. Lips, and N. H. Nickel. ESR investigations on hydrogen-induced hyperfine splitting features in ZnO[J]. Superlattices and Microstructures, 2008, 43: 24–27.
    [53] T. Ishigaki, N. Okada, N. Ohashi, H. Haneda, and T. Sakuta. Nonthermal and nonequilibrium effects in high-power pulsed ICP and application to surface modification of materials[J]. Pure Appl. Chem., 2002, 74(3): 435-439.
    [54] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing. Evidence of compensating centers as origin of yellow luminescence in GaN[J]. Appl. Phys. Lett., 1997, 71: 3224-3227.
    [55] A. Kobayashi, O. F. Sankey, and J. D. Dow. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO[J]. Phys. Rev. B, 1983, 28: 946-956.
    [56] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami. Optical properties of ZnO rods formed by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett., 2003, 83: 1635-1638.
    [57] S. H. Eom, Y. M. Yu, Y. D. Choi, and C. S. Kim. Optical characterization of ZnO whiskers grown without catalyst by hot wall epitaxy method[J]. J. Cryst. Growth, 2005, 284: 166-171.
    [58] X. L. Yuan, B. Dierre, J. B. Wang, B. P. Zhang, and T. Sekiguchi. Spatial distribution of impurities in ZnO nanotubes characterized by cathodoluminescence[J]. J. Nanosci. Nanotechnol., 2007, 7: 1 -5.
    [59] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. J. Zhou, F. Henecker, and B. K. Meyer. Hydrogen: A Relevant Shallow Donor in Zinc Oxide[J]. Phys. Rev. Lett., 2002, 88: 045504-045508.
    [60] A. Onodera, N. Tamaki, K. Jin, and H. Yamashita. Ferroelectric properties in piezoelectric semiconductor Zn1-xMxO (M=Li, Mg) [J]. Jpn. J. Appl. Phys., Part 1,1997, 36: 6008-6011.
    [61] A. Onodera, K. Yoshio, H. Satoh, H. Yamashita, and N. Sakagami. Li-Substitution Effect and Ferroelectric Properties in Piezoelectric Semiconductor ZnO[J]. Jpn. J. Appl. Phys., Part 1, 1998, 37: 5315-5317.
    [62] M. Joseph, H. Tabata, and T. Kawai. Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition[J]. Appl. Phys. Lett., 1999, 74: 2534-2356.
    [63] Dhananjay, S. B. Krupanidhia. Dielectric properties of c-axis oriented Zn1–xMgxO thin films grown by multimagnetron sputtering [J]. Appl. Phys. Lett., 2006, 89: 082905-082907.
    [64] Dhananjay, J. Nagaraju, and S. B. Krupanidhi. Effect of Li substitution on dielectric and ferroelectric properties of ZnO thin films grown by pulsed-laser ablation[J]. J. Appl. Phys., 2006, 99: 034105-034108.
    [65] Dhananjay, J. Nagaraju, and S. B. Krupanidhi, Off-centered polarization and ferroelectric phase transition in Li-doped ZnO thin films grown by pulsed-laser ablation[J]. J. Appl. Phys., 2007, 101: 104104-104108.
    [66] G. Srinivasan, R.T. Rajendra Kumar, and J. Kumar. Influence of Al dopant on microstructure and optical properties of ZnO thin films prepared by sol–gel spin coating method[J]. Opt. Mater., 2007, 30:314-317.
    [67] JCPDS Card No. 36-1451 (unpublished).
    [68] A. Kobayashi, O. F. Sankey, and J. D. Dow. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO[J]. Phys. Rev. B, 1983, 28: 946-956.
    [69] Q. X. Zhao, M. Willander, R. E. Morjan, Q-H. Hu, and E. E. B. Campbell. Optical recombination of ZnO nanowires grown on sapphire and Si substrates[J]. Appl. Phys. Lett., 2003, 83(1): 165-167.
    [70] P. Bonasewicz, W. Hirschwald, and G. Neumann, Influence of Surface Processes onElectrical, Photochemical, and Thermodynamical Properties of Zinc Oxide Films. J. Electrochem. Soc., 1986, 133: 2270-2274.
    [71] C. H. Park, S. B. Zhang, and S. H. Wei. Origin of p-type doping difficulty in ZnO: perspective[J]. Phys. Rev. B, 2002, 66: 073202-073204.
    [72] Y. J. Zeng, Z. Z. Ye, J. G. Lu, et al. Identification of acceptor states in Li-doped p-type ZnO thin films[J]. Appl. Phys. Lett., 2006, 89: 042106-042108.
    [73] E. Tomzig, H. Helbig. Band-edge emission in ZnO[J]. J. Lumin., 1976, 14:403-415.
    [74] M. G. Wardle, J. P. Goss, and P. R. Briddon. Theory of Li in ZnO: a limitation for Li-based p-type doping[J]. Phys. Rev. B, 2005, 71: 155205-155215.
    [75] T. Sekiguchi, N. Ohashi, H. Taguchi, et at. Imoproved UV emission of zinc oxide throgh hyrogen doping in pulse-modulated high-power ICP[J]. Thin Solid Films, 2006, 506-507: 303-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700