体光栅在Tm:YLF激光器上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2μm激光器的输出波长为大气窗口,可应用于激光雷达、激光医疗、激光测距、光电对抗等领域。同时,2μm激光可以作为光学参量振荡器和光学参量放大器的泵浦源,从而实现3~5μm和8~12μm激光输出。单掺Ho激光器是常温条件下高性能的2μm相干光源,而发射波长在1.91μm的Tm:YLF激光器是单掺Ho激光器的理想泵浦源。本论文的主要工作是理论结合实验对采用体光栅作为腔镜的Tm:YLF激光器进行研究,从而获得窄线宽的1.91μm激光。
     理论方面,首先分析了Tm激光器运转机制并建立了速率方程,分析了Tm系统的上转换、再吸收以及基态损耗等效应对激光晶体特性的影响。其次,介绍了体光栅的基本原理及材料特性。对体光栅的衍射理论进行分析,并给出了体光栅衍射效率及反射带宽度的表达式,通过数值模拟分析了反射式体光栅厚度及折射率调制对衍射效率的影响,并采用分光光度计测量了反射式体光栅的透射光谱。此外,从泵浦源、工作物质、谐振腔三个方面对Tm:YLF激光器进行设计,并讨论了热透镜效应对谐振腔稳定性及模式匹配的影响。
     实验方面,首先利用体光栅作为Tm:YLF激光器的腔镜,获得了输出功率6.02W、峰值半高宽0.3nm的1.91μm激光输出,并比较分析了分别使用体光栅和传统腔镜时激光器的输出特性。其次,通过实验分析了泵浦波长、激光晶体温度、输出镜透过率、腔长等因素对激光器输出特性的影响。再次,通过实验的改进,采用镀膜的体光栅,实现了10.0W的稳定波长的1.91μm激光输出,相应的光光转换效率为32.1%,斜率效率为39.8%,输出线宽为0.1nm,激光光束质量M2因子为1.54。用获得的1.91μm激光泵浦Ho:YAP晶体,实现了2118nm连续激光输出。此外,测量并分析了热效应对体光栅波长选择性的影响,体光栅吸收热量温度升高后,激光器的输出波长红移。最后,根据理论及实验分析,提出了窄线宽、高功率、稳定输出的Tm:YLF激光器的设计方案。
Atmosphere-window 2-μm laser has potential applications in many fields, such as laser radar, medical diagnoses and therapy, laser target detecting and photoelectric countermeasure. Furthermore, 2-μm lasers are effective pump sources for optical parametric oscillators and optical parametric amplifications, which can realize 3~5μm and 8~12μm laser output. Ho-doped laser is a good kind of coherent light source at room temperature, and 1.91-μm Tm:YLF laser is an effect pump source for Ho-doped laser. In this paper, we investigate both theoretically and experimentally in the field of Tm:YLF laser with a volume Bragg grating (VBG) as a resonator, so that narrow linewidth 1.91-μm laser can be obtained.
     Theoretically, the energy processes and rate equations of Tm lasers are analyzed at first, and the up-conversion effect, resorption and ground-state depletion effects of laser cystal are analyzed. Secondly, the fundamental and material properties of VBG are introduced. The expression of diffraction efficiency and linewidth of reflection zone are given according to the diffraction theory of VBG, and by numerical simulation, the impact of thickness and refractive index modulation on diffraction efficiency are discussed. In addition, the transmission spectrum of reflecting VBG is measured by spectrophotometer. Thirdly, Tm:YLF laser is designed in the field of pump source, gain medium and resonator. The resonator stability and the mode coupling are investigated, which are influenced by thermal focal effect.
     Experimentally, first we realize output power 6.02W, linewidth full-width half-maximum (FWHM) 0.3nm 1.91-μm Tm:YLF laser with a VBG as a resonator, and we compare the output laser performance with the VBG and the conventional mirror. Secondly, the effects of pump wavelength, temperature of laser crystal, output coupler transmission and cavity length on laser performance are discussed by experiment. In addition, by improvement of the experiment, wavelength stable 1.91-μm laser with output power 10.0W is obtained using coated VBG, with the optical-optical conversion efficiency of 32.1% and slope efficiency of 39.8% respectively, and the linewidth FWHM is 0.1nm, beam quality factor M2 is 1.54. Furthermore, the experiment of Tm:YLF laser pumped Ho:YAP laser is investigated, and we realize 2118nm continuous wave output. Moreover, the thermal effect of wavelength selectivity of VBG is studied by experiment. Red shift of the output wavelength occurs with the increase of temperature of VBG. Finally, according to theoretical and experimental analysis, a narrow-linewidth, high-output power and stable output Tm:YLF laser is designed.
引文
1 C. Kieleck and A. Hrith. Investigations of a Q-switched Ho:YAG Laser Intracavity-Pumped by a Diode-Pumped Tm:YLF Laser. SPIE. 2004, 5460:56~63
    2 Kei Ota, Yasuharu Mine, Minoru Doshida. A Novel Multi-Function 22Micron Imaging Laser Radar System. Proc. of SPIE. 1999, 3865:128~133
    3 Jirong Yu, Upendra N. Singh, Norman P. Barnes. An All Solid-State 22μm Laser System for Space Coherent Wind Lidar. IEEE Aerospace Conference Proceedings. 2000, 3:27~33
    4 B. T. McGuckin, R. T. Menzies, H. Hemmati. Efficient Energy Extraction from a Diode-Pumped Q-Switched Tm,Ho:YliF4 Laser. Appl. Phys. Lett., 1991, 59(23):2926~2928
    5 P. A. Budni, M. G. Knights, E. P. Chicklis, H. P. Jenssen. Performance of a Diode-Pumped High PRF Tm,Ho:YLF Laser. IEEE J. Quantum Electron. 1992, 28(4):1029~1032
    6 B. Q. Yao, Y. F. Li, W. J. He, Y. Z. Wang. 10W Cryogenic Cooling Tm,Ho:YLF Laser Double-End-Pumped by Fiber-Coupled Laser Diodes. Proc. of SPIE. 2005, 5627:142~146
    7 L. F. Johnson, G. D. Boyd, K. Nassaue and R. R. Soden. Continuous Operation of a Solid-State Optical Maser. Phys. Rev., 1962, 126:1406~1409
    8 I. Razumova, A. Tkachuk, A. Nikitichev and D. Mironov. Spectral-Luminescent Properties of Tm:YLF Crystal. J. Alloys and Compounds. 1995, 225:129~132
    9 L. A. Pomeranz, P. A. Budni, M. L. Lemons, C. A. Miller, J. R. Mosto, T. M. Pollak, E. P. Chicklis. Power Scaling Performance of Tm:YLF and Tm:YALO Lasers. Advanced Solid State Lasers. 1999, 26:458~462
    10 P. A. Budni, M. L. Lemons, J. R. Mosto, E. P. Chicklis. High-Power/ High-Brightness Diode-Pumped 1.9μm Thulium and Resonantly Pumped 2.1μm Holmium. IEEE J. Quantum Electronics. 2000, 6(4):629~634
    11 M. Petros, J Yu, U. N. Singh, B. M. Walsh, N. P. Barnes, J. C. Barnes. A 300-mJ Diode Pumped 1.9μm Tm:YLF Laser. Proc. of SPIE. 4484:17~24
    12 D. Alex, W. Kevin, F. M. Peter. A CW Side-Pumped Tm:YLF Laser. OSA TOPS, Advanced Solid-State Lasers. 2002, 68:343~346
    13 D. Alex, F. M. Peter. High Power CW Tm:YLF Laser with a Holographic Output Coupler. Conference on Lasers and Electro-Optics (CLEO). 2004, 2:2
    14 C. Kieleck, A.Hirth, M. Schellhorn. Performances of Ho:YAG Laser Intracavity Pumped by a Diode-Pumped Tm:YLF Laser. SPIE. 2004, 5478:8~14
    15 C. Kieleck, A. Hirth. Investigations of a Q-Switched Ho:YAG Laser IntracavityPumped by a Diode-Pumped Tm:YLF Laser. SPIE. 2004, 5460:56~63
    16 J. I. Mackenzie, S. So, D. P. Shepherd, W. A. Clarkson. Comparison of Laser Performance for Diode-Pumped Tm:YLF of Various Doping Concentrations. OSA Trends in Optics and Photonics Series - Advanced Solid-State Photonics, ASSP Proceedings. 2005, 98:202~207
    17 S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton. A Power-Scaling Strategy for Longitudinally Diode-Pumped Tm:YLF Lasers. Appl. Phys. B. 2006, 84(3):389~393
    18 M. Schellhorn. High-Power Diode-Pumped Tm:YLF Laser. Appl. Phys. B. 2008, 91:71~74
    19 I. F. Elder, M. J. Payne. Comparison of Diode-Pumped Tm:YAP with Tm:YAG. OSA Trends in Optics and Photonics Series. 1998, 19: 212~217
    20 A. C. Sullivan, G. J. Wagner, D. G.. Robert. High Power Q-Switched Tm:YAlO3 Laser. Opt. Soc. Am. WA7
    21 P. Cerny, Member, D. Burns. Modeling and Experimental Investigation of a Diode-Pumped Tm:YAlO3 Laser with a- and b-Cut Crystal Orientations. IEEE Journal of Seleted Topics in Quantum Electronics. 11(3):674~681
    22姚宝权,李玉峰,王月珠,赵广军,宗艳花,徐军.激光二极管抽运Tm:YAP激光器获得5W连续波输出.中国激光. 2006, 34:190
    23 S. S. Cai, J. Kong, B. Wu, Y. H. Shen, G. J. Zhao, Y. H. Zong and J. Xu. Room-Temperature CW and Pulsed Operation of a Diode-End-Pumped Tm:YAP Laser. Appl. Phys. B. 2008, 90:133~136
    24 L. F. Johnson, J. E. Geusic and L .G. Van Uitert. Coherent Oscillations Form Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet. Appl. Phys. Lett., 1965, 7(5):127~129
    25 J. F. Pinto and L. Esterowitz. Continuous-Wave Mode-Locked 2-μm Tm:YAG Laser. Opt. Lett., 1992, 17(10):731~732
    26 T. S. Kubo and T. J. Kane. Diode-Pumped Lasers at Five Eye-Safe Wavelengths. IEEE J. Quantum Electronics. 1992, 28(4):1033~1034
    27 E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne. 115-W Tm:YAG Diode-Pumped Solid-State Laser. IEEE J. Quantum Electronics. 1997, 33(9):1592~1600
    28 S. Goldring, E. Lebiush and R. Lavi. RTP Q-Switched 2-Micron Tm:YAG Laser. Proc. of SPIE. 2002, 4630:13~16
    29 T. S. Kubo and T. J. Kane. Diode-Pumped Lasers at Five Eye-Safe Wavelengths. IEEE J. Quantum Electron. 1992, 28(4):1033~1040
    30黄修德,刘雪峰.半导体激光器及其应用.国防工业出版社. 1999:197~210
    31 S. R. Bowman, B. J. Feldman. Demonstration and Analysis of a Holmium Quasi-Two Level Laser. SPIE. 1992, 1627:46~54
    32 C. D. Nabors, T. Y. Fan, A. Sanchez, H. K. Choi and G. W. Tumer. Ho:YAG Laser Pumped by 1.9-μm Diode Lasers. IEEE Journal of Quantum Electronics. 1995, 31(9):1603~1605
    33 P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, E. P. Chicklis. 50-mJ Q-Switched 2.09-μm Holmium Laser Resonantly Pumped by a Diode-Pumped 1.9-μm Thulium Laser. Opt. Lett., 2003, 28(12):1016~1018
    34 C. Kieleck, A. Hirth, M. Schellhorn. Evaluation of Different Configurations of Resonant Pumped 2μm-Ho:YAG Lasers. Proc. of SPIE. 2005, 5989:598905-1~598905-7
    35 S. So, J. I. Mackenzie, D. P. Shepherd and W. A. Clarkson. High-Power Slab-Based Tm:YLF for in-Band Pumping of Ho:YAG. SPIE. 2008, 6871:68710R-1~68710R-10
    36 X. M. Duan, B. Q. Yao, X. T. Yang, L. J. Li. Room Temperature Efficient Actively Q-Switched Ho:YAP Laser. Opt. Express. 2009, 17(6):4427-4432
    37 P. J. Morris, H. P. Weber. Laser Operationand Spectroscopy of Tm,Ho:GdVO4. Opt . Commun., 1994, 111(526):493~496
    38 A. Sato, K. Asai. Lasing Characteristics and Optimizations of a Diode-Side-Pumped Tm,Ho: GdVO4 Laser. Opt. Lett., 2004, 29(8):836~838
    39 A. Sato, K. Asai, S. Ishii, K. Mizutani and T. Itabe. Characteristics of Pulsed/CW Vanadate Lasers Operating at 2μm. Proc. of SPIE. 2006, 6409:640916-1~ 640916-8
    40 B. T. McGuchkin, R. T. Menzies, H .Hemmati. Tunable 2μm Output from Diode Pumped Q-Switched Tm,Ho:YLF Laser at Subambient Temperatures. Proc. of CLEO. 1991. 390~391
    41 P. A. Budni, M. G. Knights, P. E. Chicklis. Performance of a Diode Pumped High PRF Tm,Ho:YLF Laser. IEEE Quantum Electronics. 1992, 28(4):1029~1032.
    42 M. G. Jani, N. P. Barnes and K. E. Murray. Long-Pulse-Length 2-μm Diode-Pumped YliF4 Laser. Opt. Lett., 1993, 18(19):1636~1638
    43 W. Byrd, A. Julie, Singh, N. Upendra, Barnes and P. Norman. Room-Temperature, Diode-Pumped Ho:Tm:YLF Laser Amplifiers Generating 700mJ at 22μm. OSA Trends in Optics and Photonics Series. 1997, 10:199
    44 Pomeranz, P. A. Budni and M. L. Lemons. Power Scaling Performance of Tm:YLF and Tm:YALO Lasers. Advanced Solid-State Lasers. 1999, 26:458~462
    45 C. Nagasawa, T. Suzuki, H. Nakajima. Characteristics of Single Longitudinal Mode Oscillation of the 2μm Tm,Ho:YLF Microchip Laser. Opt. Commun., 2001, 200:315~319
    46姚宝权,贺万骏,李玉峰等. 2μm Tm,Ho:YLF激光抽运ZnGeP2光学参量振荡技哈尔滨工业大学工学硕士学位论文术研究.中国激光. 2005, 32(1):39~42
    47张兴宝,姚宝权,王月珠等.二极管泵浦的2μm高重复频率脉冲固体激光器.强激光与粒子束. 2005, 17(10):1449~1452
    48姚宝权,王月珠,贺万骏等.低温下运行的光纤耦合激光二极管抽运Tm,Ho:YLF激光器.中国激光. 2005, 32(7):881~884
    49姚宝权,鞠有伦,王月珠等.高脉冲重复频率调Q Tm,Ho:GdVO4激光器.强激光与粒子束. 2005, 17(S0):30~32
    50王月珠,贺万骏,姚宝权等.激光二极管双端面抽运Tm,Ho:GdVO4 2μm激光器.中国激光. 2006, 33(6):730~733
    51 W. J He, B. Q Yao, Y. L. Ju, and Y. Z. Wang. Diode-Pumped Efficient Tm,Ho:GdVO4 Laser with Near-Diffraction Limited Beam Quality. Opt. Express. 2006, 14(24):11653~11659
    52 D. C. Hanna, I. M. Januncey. Continuous-Wave Oscillation of a Monomode Thulium-Doped Fiber Laser. Electron. Lett., 1988, 24(19):1222~1223
    53 L. E. Nelson, E. P. Ippen and H. A. Haus. Broadly Tunable Sub-500fs Pulses from an Additive-Pulse Mode-Locked Thulium-Doped Fiber Ring Laser. Appl. Phys. Lett., 1995, 67(1):19~21
    54 S. D. Jackson, T. A. King. High-Power Diode-Cladding-Pumped Tm-Doped Silica Fiber Laser. Opt. Lett., 1998, 23(18):1462~1464
    55 R. A. Hayward, W. A. Clarkson, P. W. Turner. Efficient Cladding-Pumped Tm-Doped Silica Fiber Laser with High Power Singlemode Output at 2μm. Electron. Lett., 2000, 36(8):711~712
    56 D. Y. Shen, J. Sahu, W. A. Clarkson. Efficient Holmium-Doped Solid-State Lasers Pumped by a Tm-Doped Silica Fiber Laser. SPIE. 2004, 5620:46~55
    57 G. Frith, D. G. Lancaster and S. D. Jackson. 85W Tm3+-Doped Silica Fiber Laser. Electron. Lett., 2005, 41:687~688
    58 L. Espen, N. Stephane, A. Gunnar, S. Knut, S, R. Gunnar. High-Power Fiber-Laser-Pumped Mid-Infrared Laser Sources. SPIE. 2006, 6397:639704
    59 I. Elder, D. Thorne, I. Jones, D. Bell. Thulium Fiber Laser Pumped Mid-IR Source. Proc. of SPIE. 2006, 6397:639703-1~639703-9
    60 S. D. Jackson, A. Sabella and D. G. Lancaster. Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm. IEEE J. Sel Topics in Quantum Electronics. 2007, 13(3):576~572
    61 A. Dergachev, P. F. Moulton, V. Smirnov, L. Glebov. High Power CW Tm:YLF Laser with a Holographic Output Coupler. Optical Society of America. 2003
    62 M. Henriksson, M. Tiihonen, V. Pasiskevicius, F. Laurell. ZnGeP2 Parametric Oscillator Pumped by a Linewidth-Narrowed Parametric 2μm Source. Opt. Lett.,2006, 31(12):1878~1880
    63 B. Jacobsson, V. Pasiskevicius, and Fredrik Laurell. Tunable Single-Longitudinal Mode Er, Yb:Glass Laser Locked by a Bulk Glass Bragg Grating. Opt. Lett., 2006, 31(11):1663~1665
    64 M. Henriksson, M. Tiihonen, V. Pasiskevicius, F. Laurell. ZGP Mid-Infrared Laser Source Pumped by Nearly-Degenerate PPKTP Parametric Oscillator. OSA/ASSP. 2007
    65 P. Jelger, F. Laurell. Efficient Narrow-Linewidth Volume-Bragg Grating Locked Nd:Fiber Laser. Opt. Express. 2007, 15(18):11336~11340
    66 J. Saikawa, M. Fujii, H. Ishizuki, T. Taira. High-Energy, Narrow-Bandwidth Periodically Poled MgO:LiNbO3 Optical Parametric Oscillator with a Volume Bragg Grating. OSA/NLO. 2007
    67 A. Gourevitch, G. Venus, V. Smirnov, and L. Glebov. Efficient Pumping of Rb Vapor by High-Power Volume Bragg Diode Laser. Opt. Lett., 2007, 32(17):2611~2613
    68 J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson. High-Power and Wavelength-Tunable Operation of an Er,Yb Fiber Laser Using a Volume Bragg Grating. Opt. Lett., 2008, 33(11):1204~1206
    69 B. Jacobsson, J. E. Hellstrom, V. Pasiskevicius, F. Laurell. Tunable Yb:KYW Laser Using Volume Bragg Grating in s-Polarization. Appl. Phys. B. 2008, 91:85~88
    70 B. Jacobsson. Experimental and Theoretical Investigation of a Volume Bragg Grating Locked Yb:KYW Laser at Selected Wavelengths. Opt. Express. 2008, 16(9):6443~6454
    71 T. McComb, V. Sudesh, M. Richardson. Volume Bragg Grating Stabilized Spectrally Narrow Tm Fiber Laser. Opt. Lett., 2008, 33(8):881~883
    72 N. Vorobiev, V. Smirnov, L. Glebov. Single-Frequency-Mode Q-Switched Nd:YAG Laser Controlled by Volume Bragg Gratings. SPIE. 2008:69520G-1~69520G-5
    73杨德兴,向红丽,赵建林等.基于宽光谱应用的波长解复用多重体光栅的光写入特性.光子学报. 2006, 35(1):24~28
    74薄报学,高欣,乔忠良等.大功率体光栅外腔半导体激光器的输出特性.中国激光. 2008, 35(4):501~504
    75 B. M. Walsh. Spectroscopy and Excitation Dynamics of the Trivalent Lanthanides Tm3+ and Ho3+ in LiYF4. N96-11917
    76杨昆,任秋实,魏石刚等. 2μm铥激光器在生物医学中的应用.激光与光电子学进展. 2005, 42(9):52~55
    77 R. Beach, G. Albrecht, R. Solarz, W. Krupke, B. Comaskey, S. Mitchell, C. Brandle, G. Berkstresser. Ground State Depleted Laser in Neodymium Doped YttriumOrthosilicate. Proc. of SPIE. 1990, 1223:160~180
    78 L. B. Glebov. High Brightness Laser Design Based on Volume Bragg Gratings. Proc. of SPIE. 2006, 6216:621601-1~621601-10
    79 I. V. Ciapurin, L. B. Glebov, V. I. Smirnov. Modeling of Gaussian Beam Diffraction on Volume Bragg in PTR Glass. Proc. of SPIE. 2005, 5742:183~194
    80 R. C. Stoneman and L. Esterowitz. Efficient, Broadly Tunable, Laser-Pumped Tm:YAG and Tm:YSGG CW Lasers. Opt. Lett., 1990, 15(9):486~488
    81 R. C. Stoneman and L. Esterowitz. Efficient 1.94-μm Tm:YALO Laser. IEEE J. Selected Topics in Quantum Electronics. 1995, 1(1):78~81
    82 Y. Urata, K. Akagawa, S. Wada, H. Tashiro, S. J. Shu, D. H. Yoon and T. Fukuda. Growth an Optical Properties of Tm:GdVO4 Single Crystal. Crystals Res. Technology. 1999, 34(1):41~45
    83 B. Q. Yao, L. L. Zheng, X. T. Yang. Judd–Ofelt Analysis of Spectrum and Laser Performance of Ho:YAP Crystal End-Pumped by 1.91-μm Tm:YLF Laser. Chin. Phys. B. 2009, 18(3):1009~1013
    84 V. Magni. Resonators for Solid-State Lasers with Large-Volume Fundamental Mode and High Alignment Stability. Appl. Opt., 1986, 25(1):107~117
    85 W.克希耐尔.固体激光工程.科学出版社. 1999:90~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700