半导体泵浦铷蒸汽激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体泵浦碱金属蒸汽激光器(DPAL)兼具固体和气体激光的优势,具有量子效率高、气体介质可循环流动散热、近红外原子谱线大气透过性好、全电操作、结构紧凑等特点,有望发展成为新一代高能激光光源。目前,人们对DPAL的功率定标放大能力开展了系统深入的研究,并于近期成功实现了高效的千瓦级连续输出,正处于功率提升的关键发展时期。鉴于此,本文从理论和实验两个方面对铷DPAL开展了研究,主要包括以下几个方面的内容:
     1、分析了铷原子的光学特性及其与缓冲气体的相互作用情况,在此基础上建立了基于纵向泵浦结构的速率方程模型,并提出具有快速收敛特性和高计算精度的数值算法,对激光器的动力学特性进行了全面的理论分析。结果表明,DPAL的激射过程会显著促进泵浦吸收效率的提高,激光器不是工作于小信号增益状态,而是依靠碱金属原子引擎式的快速循环工作完成泵浦能量的吸收、转移和激光输出的;饱和效应的本质来源于精细结构弛豫速率的不足,可以通过调节缓冲气体种类及分压或者增加碱金属原子密度的方案解决,使激光器工作于接近准二能级状态的线性输出区;作为三能级系统,泵浦强度应远大于阈值强度以有效抑制自发辐射的影响;激光器的操作存在最优温度,该温度下泵浦吸收和荧光损耗之间达到最佳平衡而获得最大的光光转换效率;泵浦强度一定时,采用线宽较窄的泵浦光源和较低缓冲气压的增益介质易于实现高光光转换效率,反之则需要提高泵浦强度才能达到相同的效率,但后者对光谱漂移等因素造成的影响具有更好的容忍度;最后指出纵向泵浦结构中增益长度和温度之间具有等价性,并分析了腔内损耗以及耦合输出率的影响。上述结论对激光器的优化设计具有指导意义。
     2、对大功率窄线宽半导体泵浦源开展了实验研究。采用Littman外腔结构对单宽面元半导体激光器进行线宽压窄,实现了线宽小于0.06nm功率10W的激光输出,调谐范围5nm,外腔效率60%;对线阵半导体激光器采用复合外腔方案,有效抑制了笑脸效应的不利影响,实现了线宽小于0.1nm功率41W的激光输出,外腔效率53%;最后对线阵半导体激光器采用体光栅方案,获得了线宽0.1nm,功率74W的激光输出,外腔效率达到95%。鉴于体光栅方案具有高外腔效率和结构紧凑等优势,采用该方案作为DPAL的泵浦源。
     3、对铷DPAL开展了实验研究。首先研究了铷-乙烷-氦气混合增益介质的吸收光谱特性、泵浦吸收特性以及荧光特性,在此基础上采用端面泵浦结构在准连续泵浦模式下进行了出光实验,获得了峰值功率1.4W的795nm铷激光输出,光光转换效率4.8%,斜率效率7.5%,分析认为泵浦吸收不足、低模式匹配因子以及高谐振腔损耗是造成光光效率较低的主要原因,并提出了进一步的解决方案;通过观察升温过程中出射光斑形貌变化研究了激光器的阈值行为;在56W连续泵浦模式下激光器工作了4.4s后窗口损坏,通过拉曼谱分析并结合文献报道,认为铷原子与乙烷发生了化学反应,且窗口材料也可能参与了反应,进一步的分析认为这一现象与局部温升过高有关,良好的热管理可以避免化学反应的发生。
     4、建立了横向泵浦流动介质DPAL理论模型,通过与文献中实验结果的对比验证了模型的有效性;在此基础上对泵浦、激光和气流方向三者垂直这一结构的高功率定标放大方案进行了研究,结果表明:在保持一定的合理泵浦强度条件下,通过增加介质长度及相应的泵浦功率能够在与热管理解耦的前提下实现按比例功率放大,是未来激光器功率提升的主要方案,宽度和高度方向的设计需要根据热管理、操作温度、输出光斑形状以及泵浦聚焦准直等实际工程因素综合考虑;对单侧、单侧双程以及对称双侧泵浦三种结构进行了对比分析;对兆瓦级DPAL进行了概念设计,在参数基本合理或是短期未来有望实现的条件下预测了输出功率1.7MW光光效率大于85%的结果,进一步理论证实了DPAL未来的发展潜力。
     5、建立了MOPA结构DPAL理论模型,提出新的用于计算体块状增益介质ASE效应的方法,综合考虑了纵向和横向ASE效应,将其耦合进速率方程进行计算,能够求解出ASE损耗的范围;在此基础上研究了种子光强、泵浦光强及操作温度等重要参量的影响,结果表明采用强注入种子光(~kW/cm2)进行饱和放大能够有效抑制ASE效应,确保其不会成为功率提升的瓶颈性因素;对高功率定标放大方案进行了研究,指出在固定泵浦强度下延展介质长度及相应泵浦功率将是最优选择方案。
As a hybrid gas phase/solid state laser, diode pumped alkali vapor lasers (DPALs)have great potential in the future high power laser field due to its many advantages, forexample the high quantum efficiency, convenient thermal management by flowing thegaseous medium, high transmittance for near infrared laser spectrum, and electricallydriven compact system. In the past decade, the concept and power scaling ability ofDPALs have been demonstrated, and a high efficient CW kilowatt-class DPAL has beensuccessfully realized. Due to the potential and importance of DPALs, we have madestudies on the diode pumped rubidium vapor lasers. The main contents are presented asfollows:
     1. For rubidium atom, the optical properties and its interaction with buffer gasesare analyzed, the rate equation based model for longitudinally pumped DPALs isproposed as well as the fast convergent and high accurate numerical algorithm, based onthe model the kinetics of DPALs are studied. The results show that, for alkali lasers, thelasing process will dramatically enhance the pump absorption, these lasers are workingin an “atomic engine” mode rather than extracting energy from the small signal gain.The saturation effect is due to the insufficient fine-structure mixing rate, which can besolved by adjusting the component and pressure of buffer gases or by increasing thealkali concentration, and the ideal functional mode for lasers should be in a quasi-twoenergy state. As a three-level laser, the pump intensity should exceed far beyond thethreshold for effective fluorescence suppression. To balance the pump absorption andfluorescence loss, an optimal operation temperature exists for a highest opticalconversion efficiency. At constant pump intensity, the match of narrowed pumplinewidth and low pressure buffer gases will benefit high optical conversion efficiency,as a contrast, the situation that by using pump sources with broader linewidth and buffergases with higher pressure need more intense pump to obtain the same efficiency, butthe latter case shows better tolerance to the shift of wavelength. In longitudinallypumped configuration, the length of gain medium and operation temperature areequivalent. At last, the influence of inner cavity loss and output coupler are analyzed.The conclusions above will be important for a practical alkali laser system design.
     2. The linewidth narrowing on high power diode lasers are experimentally studied.By use of Littman configuration external cavity on a broad area single emitter laserdiode (BAL), we realize10W output with linewidth below0.06nm, the tuning range is5nm and efficiency is60%. By use of a compound external cavity on a laser diode array(LDA), we successfully suppress the smile effect and obtain41W output power withlinewidth below0.1nm and efficiency of53%. By coupling the LDA into the volumeBragg grating (VBG) based external cavity, we obtained74W output power with0.1nm linewidth and95%efficiency. Due to the high efficiency and compactness, we decide touse the VBG scheme as pumping source for rubidium laser study.
     3. The characteristics of a rubidium DPAL are experimentally studied. First, westudy the absorption spectrum, pump absorption and fluorescence characteristics of arubidium gain medium with buffer gases of helium and methane, based on this, we usethe VBG coupled LDA to do the pumping experiment with longitudinal configuration atQCW operation mode. As a result, we obtain1.4W peak power with795nm output, theoptical conversion and slope efficiencies are4.8%and7.5%. The analyses show themain reason for low efficiency are the low pump absorption, low mode overlap factorand high inner cavity losses. The threshold behavior is studied by observing the changeof beam pattern when raising the operation temperature. At a total CW pump power of56W, the lasing process last4.4s and terminate due to the damage of cell windows. Theanalyses show that the reason is the reaction between alkali atoms and ethane gas,maybe also the Pyrex window material, that induced by high local temperature rise, andan efficient thermal management could solve the problem.
     4. The model for transversely pumped DPALs with flowing medium is set up andvalidated by comparing with other researchers’ published experimental results. Basedon this, the power scaling schemes for DPAL with configuration of mutually orthogonalpump, laser and flow directions are studied. The results show that, at a constant andreasonable pump intensity, the increase of the gain length as well as the pump powercan realize linear power scaling and decouple with thermal management, which will bethe main scheme to realize high power DPALs. The design of width and height shouldcomprehensively consider many factors, such as thermal management, operationtemperature, output beam shape, and pump focusing etc. The comparison of single-side,single-side double-pass, and double-side configurations are made and analyzed. Amega-watt class DPAL is conceptually designed, the result shows that the laser couldrealize optical conversion efficiency over85%with all the other parameters reasonableor could be realized in the near future, which demonstrate the great potential of DPALs.
     5. The model for DPALs in MOPA configuration is set up, a new method tocalculate the ASE effect in a bulk gain material is proposed, which considers both thelongitudinal and transverse ASE effects and couple them into rate equations, and therange of ASE can be calculated. Based on this, the important influencing factors arestudied, such as operation temperature, seed and pump intensities. The results show thatby use of high seed laser intensity to realize saturated amplification, the ASE effect canbe effectively suppressed and will not become a bottleneck in power scaling of DPALs.The study of power scaled scheme show that the increase of gain length and thecorresponding pump power will be the first choice.
引文
[1] Airborne laser shoots down missile in mid-flight.2010,http://www.csmonitor.com/Innovation/Horizons/2010/0212/Airborne-laser-shoots-down-missile-in-mid-flight.
    [2] Northrop Grumman Space Technology, EI Segundo, CA,http://www.irconnect.com/noc/press/pages/news_releases.html?d=161575.
    [3] Konefal Z. Observation of collision induced processes in rubidium–ethanevapour [J]. Opt. Commun.,1999,164:95~105.
    [4] Krupke W F. Diode Pumped Alkali Laser [P]. U.S. Patent, No.6,643,311,2003-11-4.
    [5] Hecht J. Back to the drawing board with missile-beating laser.http://www.newscientist.com/article/dn18556-back-to-the-drawing-board-with-missilebeating-laser.html.
    [6] Krupke W F. Diode pumped alkali lasers (DPALs)—A review (rev1)[J]. Prog.Quant. Electron.,2011, Article in Press.
    [7] Rotondaro M D, Perram G P. Collision broadening and shift of the rubidium D1and D2lines (52S1/2→52P1/2,52P3/2)by rare gases,H2,D2,N2,CH4and CF4[J]. J. Quant.Spectrosc. Radiat. Transfer,1997,57(4):497-507.
    [8] Pitz G A, Wertepny D E, and Perram G P. Pressure broadening and shift of thecesium D1transition by the noble gases and N2, H2,HD, D2, CH4, C2H6, CF4, and3He [J]. Phys. Rev. A,2009,80:062718.
    [9] Chann B, Nelson I, and Walker T G. Frequency-narrowed external-cavitydiode-laser-array bar [J]. Opt. Lett.,2000,25(18):1352~1354.
    [10] Babcock E, Chann B, Nelson I, and Walker T G. Frequency-narrowed diodearray bar [J]. Appl. Opt.,2005,44(15):3098~3104.
    [11] Zhdanov B V, Ehrenreich T, and Knize R J. Narrowband external cavity laserdiode array [J]. Electron. Lett.,2007,43(4):221~222.
    [12] Zining Y, Yuandong L, Hongyan W, Qisheng L, and Xiaojun X.Frequency-narrowed external-cavity broad-area-diode for rubidium laser pumping [J].Chin. Opt. Lett.,2011,9(6):061401.
    [13] Volodin B L, Dolgy S V, Melnik E D, Downs E, Shaw J, and Ban V S.Wavelength stabilization and spectrum narrowing of high-power multimode laserdiodes and arrays by use of volume Bragg gratings [J]. Opt. Lett.,2004,29(16):1891~1893.
    [14] Zining Y, Hongyan W, Qisheng L, Weihong H and Xiaojun X. An80-W laserdiode array with0.1nm linewidth for rubidium vapor laser pumping [J]. Chin. Phys.Lett.,2011,28(10):104202.
    [15] Gourevitch A, Venus G, Smirnov V, Hostutler D A, and Glebov L.Continuous wave,30W laser-diode bar with10GHz linewidth for Rb laser pumping [J].Opt. Lett.,2008,33(7):702~704.
    [16] Podvyaznyy A, Venus G, Smirnov V, Mokhun O, Koulechov V, Hostutler D,and Glebov L.250W diode laser for low pressure Rb vapor pumping [C]. SPIE,2010,7583:758313.
    [17] Kravtsov N V, Basic trends in the development of diode-pumped solid-statelasers [J]. Quantum Electron.,2011,31(8):661~677.
    [18]http://www.lasertel.com/Products/WaterCooledLaserDiodes/WaterCooledLaserDiodeDetails.aspx?package=T20&mode=CW.
    [19] IPG Photonics successfully tests world’s first10kilowatt single-modeproduction laser. http://www.ipgphotonics.com.
    [20] YLR-HP Series:1-50kW ytterbium fiber lasers.http://www.ipgphotonics.com/apps_mat_multi_YLR.htm.
    [21] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A,Sridharan A K, Pax P H, Heebner J E, Siders C W, and Barty C P J. Analysis of thescalability of diffraction-limited fiber lasers and amplifiers to high average power [J].Opt. Express,2008,16(17):13240~13266.
    [22] Jiajian Z, Pu Z, Yanxing M, Xiaojun X, and Zejin L. Power scaling analysisof tandem-pumped Yb-doped fiber lasers and amplifiers [J]. Opt. Express,2011,19(19):18645~18654.
    [23] Yanxing M, Xiaolin W, Jinyong L, Hu X, Xiaolin D, Jiajian Z, Wenbo D, PuZ, Xiaojun X, Lei S, Zejin L, and Yijun Z. Coherent beam combination of1.08kWfiber amplifier array using single frequency dithering technique [J]. Opt. Lett.,2011,36(6):951~953.
    [24]刘泽金,周朴,王小林,马阎星,许晓军,侯静.激光相干合成的历史、现状与发展趋势(邀请论文)[J].中国激光,2010,37(9):2221~2234.
    [25] Richardson D J, Nilsson J, and Clarkson W A. High power fiber lasers:current status and future perspectives [Invited][J]. J. Opt. Soc. Am. B,2010,27(11):B63~B92.
    [26]何兵,楼祺洪,周军,王之江.光纤激光器相干组束技术[J].激光与光电子学进展,2006,43(9):47~54.
    [27] Navy Laser Success Key in Unmanned Aerial Vehicle Research Development.http://www.deps.org/DEPSpages/DEsymp08ShortCourse.html.
    [28] Krupke W. Diode-pumped alkali lasers aim for single-aperture power scaling[C]. SPIE Newsroom,2008.
    [29] Zhdanov B, Ehrenreich T, and Knize R J. Cs laser for homeland and nationalsecurity [C]. OSA/CLEO,2006: CFJ6.
    [30] Hecht J. Photonic Frontier: Military Lasers: A New Generation of LaserWeapons is Born [J]. Laser Focus World,2010,46(4):36~42.
    [31] Hecht J. Diode pumping enables a new approach to alkali-vapor lasers [J].Laser Focus World,2011,47(4):49.
    [32] High-energy lasers in line for budget increase,2011,http://optics.org/news/2/2/19.
    [33] Schawlow A L, Townes C H. Infrared and optical masers [J]. Phys. Rev.,1958,112(6):1940~1949.
    [34] Jacobs S, Gould G, and Rabinowitz P. Coherent light amplification inoptically pumped Cs vapor [J]. Phys. Rev. Lett.,1961,7(11):415~417.
    [35] Rabinowitz P, Jacobs S, and Gould G. Continuous optically pumped Cs laser[J]. Appl. Opt.,1962,1(4):513~516.
    [36] Davidovits P, Novick R. The optically pumped rubidium maser [C]. Proc.IEEE,1966,54(2):155~170.
    [37] Glushko B A, Movsesyan M E, and Ovakimyan T O. Processes of stimulatedelectronic Raman scattering and stimulated resonance emission in potassium vapor inthe presence of buffer gas [J]. Opt. Spectrosc.(USSR),1982,52(4):458~459.
    [38] Konefal Z, Ignaciuk M. Stimulated collision induced processes in sodiumvapor in the presence of helium [J]. Appl. Phys. B,1990,51:285~291.
    [39] Konefal Z, Ignaciuk M. Observation of collision induced amplified emissionin Na-noble gas system [J]. Z. Phys. D,1993,27:49~54.
    [40] Konefal Z, Ignaciuk M. Investigation of collisionally induced stimulatedscattering in sodium vapor with temporal and spectral resolution [J]. Appl. Phys. B,1995,61:101~110.
    [41] Konefal Z, Ignaciuk M. Stimulated processes in sodium vapour in thepresence of molecular buffer gas systems [J]. Opt. Quant. Electron.,1996,28:169~180.
    [42] Konefal Z, Trumpakaj Z. Temporal and spatial evolution of collision inducedstimulated effects in alkali atoms [J]. J. Phys. B: At. Mol. Opt. Phys.,1998,31:3281~3295.
    [43] Czub J, Fiutak J, and Miklaszewski W. On collision-induced amplifiedemission of alkali atoms [J]. Z. Phys. D,1986,3:23-30.
    [44] Czub J, Miklaszewski W. The influence of atomic relaxation on the adiabaticinversion in the S1/2-P1/2, S1/2-P3/2and S1/2-P1/2,3/2systems [J]. J. Phys. B: At. Mol. Opt.Phys.,1993,26:3253~3268.
    [45] Czub J, Fiutak J, and Miklaszewski W. Influence of resonant pulsepropagation on collision-induced stimulated effect in the S1/2-P1/2,3/2system [J]. Phys.Rev. A,1996,54(1):746~754.
    [46] Krupke W F, Beach R J, Kanz V K, and Payne S A. Resonance transition795-nm rubidium laser [J]. Opt. Lett.,2003,28(23):2336~2338.
    [47] Beach R J, Krupke W F, Kanz V K, Payne S A, Dubinskii M A, and Merkle LD. End-pumped continuous-wave alkali vapor lasers: experiment, model, and powerscaling [J]. J. Opt. Soc. Am. B,2004,21(12):2151~2163.
    [48] Zhdanov B V, Ehrenreich T, and Knize R J. Highly efficient optically pumpedcesium vapor laser [J]. Opt. Commun.,2006,260:696~698.
    [49] Zhdanov B, Maes C, Ehrenreich T, Havko A, Koval N, Meeker T, Worker B,Flusche B, and Knize R J. Optically pumped potassium laser [J]. Opt. Commun.,2007,270:353~355.
    [50] Zhdanov B V, Stooke A, Boyadjian G, Voci A, and Knize R J. Opticallypumped caesium-Freon laser [J]. Electron. Lett.,2008,44(11):735~736.
    [51] Perschbacher T A, Hostutler D A, and Shay T M. High-efficiencydiode-pumped rubidium laser: experimental results [C]. SPIE,2007,6346:634607.
    [52] Ehrenreich T, Zhdanov B, Takekoshi T, Phipps S P, and Knize R J. Diodepumped caesium laser [J]. Electron. Lett.,2005,41(7):47~48.
    [53] Krupke W F, Beach R J, Kanz V K, and Payne S A. DPAL: A new class ofCW, near-infrared, high-power diode-pumped alkali (vapor) lasers [C]. SPIE,2004,5334:156~167.
    [54] Krupke W F, Beach R J, Kanz V K, Payne S A, and Early J T. New class ofcw high-power diode-pumped alkali lasers (DPALs)[C]. SPIE,2004,5448:7~17.
    [55] Page R H, Beach R J, Kanz V K, and Krupke W F. Multimode diode pumpedgas (alkali-vapor) laser [J]. Opt. Lett.,2006,31(3):353~355.
    [56] Wang Y, Kasamatsu T, Zheng Y, Miyajima H, Fukuoka H, Matsuoka S,Niigaki M, Kubomura H, Hiruma T, and Kan H. Cesium vapor laser pumped by avolume-Bragg-grating coupled quasi-continuous-wave laser-diode array [J]. Appl. Phys.Lett.,2006,88:141112.
    [57] Wang Y, Niigaki M, Fukuoka H, Zheng Y, Miyajima H, Matsuoka S,Kubomura H, Hiruma T, and Kan H. Approaches of output improvement for a cesiumvapor laser pumped by a volume-Bragg-grating coupled laser-diode-array [J]. Phys. Lett.A,2007,360:659~663.
    [58] Zheng Y, Niigaki M, and Kan H. Efficient operation of a cesium-vapor laserlongitudinally pumped by a fine-tunable bandwidth-narrowed laser-diode bar [J]. Jpn. J.Appl. Phys.,2007,46(12):7768~7770.
    [59] Zheng Y, Niigaki M, Miyajima H, Hiruma T, and Kan H. High-efficiency894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser [J]. Appl. Phys.Expr.2,2009:032501.
    [60] Zhdanov B V, Knize R J. Diode-pumped10W continuous wave cesium laser[J]. Opt. Lett.,2007,32(15):2167~2169.
    [61] Zhdanov B V, Stooke A, Boyadjian G, Voci A, and Knize R J. Laser diodearray pumped continuous wave rubidium vapor laser [J]. Opt. Express,2007,16(2):748~751.
    [62] Zhdanov B V, Stooke A, Boyadjian G, Voci A, and Knize R J. Rubidiumvapor laser pumped by two laser diode arrays [J]. Opt. Lett.,2007,33(5):414~415.
    [63] Zhdanov B V, Sell J, and Knize R J. Multiple laser diode array pumped Cslaser with48W output power [J]. Electron. Lett.,2008,44(9):582~583.
    [64] Fox C, and Perram G. Temperature gradients in diode-pumped alkali lasers[C]. SPIE Newsroom,2012.
    [65] Petersen A, Lane R. Second harmonic operation of diode-pumped Rb vaporlasers [C]. SPIE,2008,7005:700529.
    [66] Zweiback J, Komashko A, and Krupke W F. Alkali vapor lasers [C]. SPIE,2010,7581:75810G.
    [67] Lewis C D. A theoretical model analysis of absorption of a three level diodepumped alkali laser [D]. Air Force Institute of Technology,2009.
    [68] Hager G, McIver J, Hostutler D, Pitz G, and Perram G. A quasi-two levelanalytic model for end pumped alkali metal vapor laser [C]. SPIE,2008,7005:700528.
    [69] Hager G D, Perram G P. A three-level analytic model for alkali metal vaporlasers: part I. Narrowband optical pumping [J]. Appl. Phys. B,2010,101:45~56.
    [70] Analytic model for alkali metal vapor lasers: broadband optical pumping [C].Annual Directed Energy Symposium,2011.
    [71] Wu S S Q. Hydrocarbon-free resonance transition795nm rubidium laser [D].University of California, San Diego,2009.
    [72] Zweiback J, Krupke B. High power diode pumped alkali vapor lasers [C].SPIE,2008,7005:700525.
    [73] Krause L. Collisional excitation transfer between the2P1/2and2P3/2levels inalkali atoms [J]. Appl. Opt.,1966,5(9):1375~1382.
    [74] Hrycyshyn E S, Krause L. Inelastic collisions between excited alkali atomsand molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidiumwith H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6[J]. Can. J. Phys.,1970,48(22):2761~2768.
    [75] Wu S S Q, Soules T F, Page R H, Mitchell S C, Kanz V K, and Beach R J.Hydrocarbon-free resonance transition795-nm rubidium laser [J]. Opt. Lett.,2007,32(16):2423~2425.
    [76] Wu S S Q, Soules T F, Page R H, Mitchell S C, Kanz V K, and Beach R J.Resonance transition795-nm rubidium laser using3He buffer gas [J]. Opt. Commun.,2008,281:1222~1225.
    [77] Zhdanov B V, Knize R J. Hydrocarbon-free potassium laser [J]. Electron.Lett.,2007,43(19):212.
    [78] Zhdanov B V, Shaffer M K, and Knize R J. Demonstration of a diode pumpedcontinuous wave potassium laser [C]. SPIE,2011,7915:791506.
    [79] Zweiback J, Krupke W F.28W average power hydrocarbon-free rubidiumdiode pumped alkali laser [J]. Opt. Express,2010,18(2):1444~1449.
    [80] Krupke W F. Diode Pumped Alkali Lasers (DPALs)–an Overview [C]. SPIE,2008,7005:700521.
    [81] Zhdanov B V, Shaffer M K, Sell J, and Knize R J. Cesium vapor laser withtransverse pumping by multiple laser diode arrays [J]. Opt. Commun.,2008,281:5862~5863.
    [82] Zhdanov B V, Shaffer M K, and Knize R J. Cs laser with unstable cavitytransversely pumped by multiple diode lasers [J]. Opt. Express,2009,17(17):14767~14770.
    [83] Komashko A M, Zweiback J. Modeling laser performance of scalable sidepumped alkali laser [C]. SPIE,2010,7581,75810H.
    [84] Zweiback J, Komashko A. High-energy transversely pumped alkali vaporlaser [C]. SPIE,2011,7915:791509.
    [85] Mani S, Rigdon D, Hewett K B, and Hostutler D. Weight scaling model for ahigh power DPAL system [C]. SPIE,2010,7686:76860Y.
    [86] Go with the flow: Novel diode-pumped alkali laser achieves first light.http://www.wpafb.af.mil/news/story.asp?id=123212683.
    [87] Additional physics for energy scaling, AFRL-Directed Energy Directorate.http://www.fbo.gov/index?s=opportunity&mode=form&id=f75a5506db81edfblcd982bb88beaaad&tab=core&_cview=1.
    [88] Bogachev A V, Garanin S G, Dudov A M, Yeroshenko V A, Kulikov S M,Mikaelian G T, Panarin V A, Pautov V O, Rus A V, and Sukharev S A. Diode-pumpedcaesium vapour laser with closed-cycle laser-active medium circulation [J]. QuantumElectron.,2012,42(2):95-98.
    [89] Shalagin A M. High power diode pumped alkali lasers [J]. Usp. Fiz. Nauk,2011,181(9):1011~1016.
    [90] Hostutler D A, Klennert W L. Power enhancement of a rubidium vapor laserwith a master oscillator power amplifier [J]. Opt. Express,2008,16(11):8050~8053.
    [91] Zhdanov B V, Knize R J. Efficient diode pumped cesium vapor amplifier [J].Opt. Commun.,2008,281:4068~4070.
    [92] Zhdanov B V, Shaffer M K, and Knize R J. Scaling of diode pumped Cs laser:transverse pump, unstable cavity, MOPA [C]. SPIE,2010,7581:75810F.
    [93] Zweiback J, Hager H, and Krupke W F. High efficiency hydrocarbon-freeresonance transition potassium laser [J]. Opt. Commun.,2009,282:1871~1873.
    [94] Zweiback J, Krupke W F. Diode pumped alkali vapor lasers for high powerapplications [C]. SPIE,2008,6874:68740G.
    [95] Sulham C V, Fox C D, Wright S W, and Perram G P. Temporal dynamics ofan optically pumped pulsed alkali laser at high pump intensity [C]. AIAA,2010,4879.
    [96] Sulham C V, Perram G P, Wilkinson M P, and Hostutler D A. A pulsed,optically-pumped rubidium laser at high pump intensity [J]. Opt. Commun.,2010,283:4328~4332.
    [97] Miller W S, Sulham C V, Holtgrave J C, and Perram G P. Limitations of anoptically pumped rubidium laser imposed by atom recycle rate [J]. Appl. Phys. B,2011,103:819~824.
    [98] Miller W S. Laser demonstration and performance characterization ofoptically pumped alkali laser systems [D]. Air Force Institute of Technology,2010.
    [99] Miller W S, Sulham C V, Holtgrave J C, and Perram G P. Recycle rate in apulsed, optically pumped rubidium laser [C]. International symposium on high powerlaser ablation,2010,1278:465-471.
    [100] Pitz G A, Sulham C V, Acosta E, and Perram G P. Two red photonabsorption in alkalis producing infrared and blue beams [C]. AIAA,2010,4876.
    [101] Perram G, Sulham C, and Pitz G. Blue and IR alkali lasers pumped bymultiphoton absorption [C]. SPIE Newsroom,2010.
    [102] Gallagher J E, and Perram G P. Determining the two-photon absorptioncross-section for the52S1/2→52D5/2transition in naturally occurring rubidium [C].AIAA,2011,4005.
    [103] Zameroski N D, Hager G D, Rudolph W, and Hostutler D A. Experimentaland numerical modeling studies of a pulsed rubidium optically pumped alkali metalvapor laser [J]. J. Opt. Soc. Am. B,2011,28(5):1088~1099.
    [104] Galbally-Kinney K L, Kessler W J, Rawlins W T, and Davis S J.Spectroscopic and kinetic measurements on alkali atom-rare gas excimers [C]. AIAA,2010:5044.
    [105] Galbally-Kinney K L, Maser D L, Kessler W J, Rawlins W T, and Davis S J.Measurements and imaging of optical gain in optically pumped alkali-rare gas systems[J]. Appl. Phys. Lett.,2012,100:041110.
    [106] Rawlins W T, Lee S, Galbally-Kinney K L, Kessler W J, Hicks A J, Konen IM, Plumb E P, and Davis S J. Optically-based diagnostics for gas-phase laserdevelopment [C]. XVIII International Symposium on Gas Flow and Chemical Lasersand High Power Lasers,2010.
    [107] Galbally-Kinney K L, Maser D L, Kessler W J, Rawlins W T, and Davis SJ. Small signal gain in DPAL systems [C]. SPIE,2011,7915:791508.
    [108] DILAS announces high-power, diode laser bars on micro-channel coolers forDPAL pump wavelengths. http://www.dilas.com/pages/news.php?mode=news.
    [109] Hammel S. DPAL Propagation [C].1st Annual Gas Laser Conference, DEPS,2011.
    [110] Pitz G. Rates for spin-orbit relaxation in the Cs diode pumped alkali lasersystem [C]. Annual Directed Energy Symposium,2010.
    [111] High pressure, non-Lorentzian lineshapes for DPAL: theory and experiment[C]. Annual Directed Energy Symposium.
    [112] Spatially resolved optical gain in optically pumped alkali atom-rare gasmixtures [C]. Annual Directed Energy Symposium.
    [113] Davis D S. Dynamics of alkali atom excitation and population inversion inoptically pumped rare-gas exciplex systems [C]. Annual Directed Energy Symposium,2010.
    [114] Hurd C E. Atom recycle rate for an optically pumped potassium laser at highpump intensity [C]. Annual Directed Energy Symposium,2010.
    [115] Hostutler D. Alkali laser basic research [C].1st Annual Gas LaserConference, DEPS,2011.
    [116] Perram G. Review of diode pumped alkali laser kinetics [C].1st Annual GasLaser Conference, DEPS,2011.
    [117] Happer W. Alkali Atoms [C].1st Annual Gas Laser Conference, DEPS,2011.
    [118] Perram G. Multi-photon processes in diode pumped alkali lasers [C].1stAnnual Gas Laser Conference, DEPS,2011.
    [119] Photoionization in a rubidium alkali lasers [C]. Annual Directed EnergySymposium,2011.
    [120] Heaven M. Collisional processes in optically pumped atomic gas lasers [C].1st Annual Gas Laser Conference, DEPS,2011.
    [121] Zweiback J. Diode pumped alkali lasers for power scaling [C]. AnnualDirected Energy Symposium,2007.
    [122] Zweiback J, Krupke W F. Rubidium and potassium alkali vapor lasers [C].Annual Directed Energy Symposium,2008.
    [123] Computational model for the diode pumped alkali laser [C]. Annual DirectedEnergy Symposium.
    [124] Zweiback J. Transversely pumped alkali vapor lasers [C]. Annual DirectedEnergy Symposium,2010.
    [125] Neel R. High fidelity modeling of static and flowing DPALs [C]. AnnualDirected Energy Symposium,2010.
    [126] Neel R. Physics-based modeling of a flowing DPAL system [C].1st AnnualGas Laser Conference, DEPS,2011.
    [127] Zhdanov B V. Development of a power scaling technique for alkali lasers[C]. Annual Directed Energy Symposium,2010.
    [128] Hostutler D A. Development of a diode pumped alkali laser with a flowinggain medium [C]. Annual Directed Energy Symposium,2010.
    [129] Hostutler D. Investigation of a diode pumped alkali laser with a flowing gainmedium [C].1st Annual Gas Laser Conference, DEPS,2011.
    [130] A comparison of megawatt-class COIL and DPAL for strategic airborneapplications [C]. Annual Directed Energy Symposium.
    [131]余建华,祝强,谢武,郑伟,唐淳.高功率半导体激光抽运碱金属蒸汽激光器[J].激光与光电子学进展,2006,43(7):46~51.
    [132]余建华,祝强,全鸿雁,吴国诚,郑伟.高功率碱金属蒸汽激光器在地球同步卫星发射中的应用[J].激光与光电子学进展,2007,44(11):18~23.
    [133] Qiang Z, Jianhua Y, Wei Z, Hongyan Q. Operating temperature ofdiode-pumped alkali vapor laser [C]. SPIE,2007,6823:68230O.
    [134]谢希盈,雷訇,张翔,孙哲,李强.碱金属激光器问题分析与研究展望[J].应用光学,2011,32(3):582~590.
    [135] Qi Z, Bailiang P, Li C, Yajuan W, and Xunyi Z. Analysis of temperaturedistributions in diode-pumped alkali vapor lasers [J]. Opt. Commun.,
    [136] Yunfeng L, Bailiang P, Jing Y, Yajuan W, and Meihua L. Thermal effects inhigh-power double diode-end-pumped Cs vapor lasers [J]. IEEE J. Quantum Electron.,2012,48(4):485~489.
    [137] Zining Y, Hongyan W, Qisheng L, Liang L, Yuandong L, Weihong H,Xiaojun X, and Jinbao C. Theoretical model and novel numerical approach of abroadband optically pumped three-level alkali vapour laser [J]. J. Phys. B: At. Mol. Opt.Phys.,2011,44:085401.
    [138] Zining Y, Hongyan W, Qisheng L, Yuandong L, Weihong H, Xiaojun X, andJinbao C. Modeling, numerical approach, and power scaling of alkali vapor lasers inside-pumped configuration with flowing medium [J]. J. Opt. Soc. Am. B,2011,28(6):1353-1364.
    [139] Zining Y, Hongyan W, Qisheng L, Weihong H, and Xiaojun X. Modeling ofan optically side-pumped alkali vapor amplifier with consideration of amplifiedspontaneous emission. Opt. Express,2011,19(23):23118-23131.
    [140] Zining Y, Hongyan W, Yuandong L, Qisheng L, Weihong H, Xiaojun X, andJinbao C. A smile insensitive method for spectral linewidth narrowing on high powerlaser diode arrays. Opt. Commun.,2011,284:5189-5191.
    [141]杨子宁,王红岩,华卫红,陆启生,肖楠,许晓军,陈金宝.半导体泵浦铷蒸汽激光器国内首次出光(研究快报)[J].强激光与粒子束,2012,23(9):2273~2274.
    [142] Alcock C B, Itkin V P, and Horrigan M K. Vapor pressure of the metallicelements [J]. Canadian Metallurgical Quarterly,1984,23:309–313.
    [143] Steck D A. Rubidium85D line data. http://steck.us/alkalidata.
    [144] Zameroski N D, Hager G D, Rudolph W, Erickson C J, and Hostutler D A.Pressure broadening and collisional shift of the Rb D2absorption line by CH4, C2H6,C3H8, n-C4H10, and He. J. Quant. Spectrosc. Radiat. Transfer,2011,112:59-67.
    [145] Pitz G A, and Perram G P. Pressure broadening of the D1and D2lines indiode pumped alkali lasers [C]. SPIE,2008,7005:700526.
    [146] Rotondaro M D, and Perram G P. Role of rotational-energy defect incollisional transfer between the52P1/2,3/2levels in rubidium [J]. Phys. Rev. A,1998,57(5):4045-4048.
    [147] Lawley K P. Collisional energy transfer to methane by octupole coupliing [J].Chem. Phys.,1978,31:39.
    [148] Yardley J T. Introduction to Molecular Energy Transfer. Academic Press,New York,1980.
    [149] Heaven M C. Potential energy surfaces for the interactions of Rb and Csatoms with methane [C]. SPIE,2012,8238:823808.
    [150] Siegman A E. Lasers [M]. University Science Books,1986:193-194.
    [151] Zameroski N D, Rudolph W, Hager G D, and Hostutler D A. A study ofcollisional quenching and radiation-trapping kinetics for Rb(5p) in the presence ofmethane and ethane using time-resolved fluorescence [J]. J. Phys. B: At. Mol. Opt.Phys.,2009,42:245401.
    [152] Speller E, Staudenmayer B, and Kempter V. Quenching cross sections foralkali-inert gas collisions [J]. Z. Physik A,1979,291:311-318.
    [153] Sell1J F, Gearba M A, Patterson B M, Byrne D, Jemo G, Lilly T C, MeeterR, and Knize R J. Collisional excitation transfer between Rb(5P) states in50–3000Torrof4He [J]. J. Phys. B: At. Mol. Opt. Phys.,2012,45:055202.
    [154] Knize R J, Zhdanov B V, and Shaffer M K. Photoionization in alkali lasers[J]. Opt. Express,2011,19(8):7894-7902.
    [155] Barbier L, and Cheret M. Energy pooling process in rubidium vapour [J]. J.Phys. B: At. Mol. Phys.,1983,16:3213-3228.
    [156] Page R H, and Beach R J. Diode-pumped alkali atom lasers [R]. LawrenceLivermore National Laboratory,2005:03-LW-024Final Report.
    [157] von der Goltz D, Hansen W, and Richter J. Experimental and theoreticaloscillator strengths of RbI [J]. Phys. Scr.,1984,30:244-248.
    [158] Barbier L, and Cheret M. Experimental study of Penning andHornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level(5d≤nl≤11s)[J]. J. Phys. B: At. Mol. Phys.,1987,20:1229-1248.
    [159] Siegman A E. Lasers [M]. University Science Books,1986:150-153.
    [160] Sell J F, Miller W, Wright D, Zhdanov B V, and Knize R J. Frequencynarrowing of a25W broad area diode laser [J]. Appl. Phys. Lett.,2009,94:051115.
    [161] Sands B L, and Bayram S B. Characteristics of a high-power broad-area laseroperating in a passively stabilized external cavity [J]. Appl. Opt.,2007,46(18):3829-3835.
    [162] Loh H, Lin Y, Teper I, Cetina M, Simon J, Thompson J K, and Vuletic V.Influence of grating parameters on the linewidths of external-cavity diode lasers [J].Appl. Opt.,2006,45(36):9191-9197.
    [163] Zhu H, Ruset I C, and Hersman F W. Spectrally narrowed external-cavityhigh-power stack of laser diode arrays [J]. Opt. Lett.,2005,30(11):1342-1344.
    [164] Wenzel H, H usler K, Blume G, Fricke J, Spreemann M, Zorn M, and ErbertG. High-power808nm ridge-waveguide diode lasers with very small divergence,wavelength-stabilized by an external volume Bragg grating [J]. Opt. Lett.,2009,34(11):1627-1629.
    [165] Zheng Y, and Kan H. Effective bandwidth reduction for a high-powerlaser-diode array by an external-cavity technique [J]. Opt. Lett.,2005,30(18):2424-2426.
    [166] Meng L, Nizamov B, Madasamy P, Brasseur J K, Henshaw T, and NeumannD K. High power7-GHz bandwidth external-cavity diode laser array and its use inoptically pumping singlet delta oxygen [J]. Opt. Express,2006,14(22):10469-10474.
    [167] Gourevitch A, Venus G, Smirnov V, and Glebov L. Efficient pumping of Rbvapor by high-power volume Bragg diode laser [J]. Opt. Lett.,2007,32(17):2611-2613.
    [168] Talbot C L, Friese M E J, Wang D, Brereton I, Heckenberg N R, andRubinsztein-Dunlop H. Linewidth reduction in a large-smile laser diode array [J]. Appl.Opt.,2005,44(29):6264-6268.
    [169] Liu B, Liu Y, and Braiman Y. Coherent addition of high power laser diodearray with a V-shape external Talbot cavity [J]. Opt. Express,2008,16(25):20935-20942.
    [170] Liu B, Liu Y, and Braiman Y. Linewidth reduction of a broad-area laserdiode array in a compound external cavity [J]. Appl. Opt.,2009,48(2):365-370.
    [171] Glebov L, Volume bragg gratings in PTR glass–new optical elements forlaser design [C]. OSA/ASSP,2008: MD1.
    [172] Glebov L, Fabrication and applications of volume Bragg gratings [C].OSA/BGPP,2010: BMB1.
    [173] www.optigrate.com/.
    [174] www.ondax.com/.
    [175]殷兴良.气动光学原理[M].北京,中国宇航出版社,2003:56-57.
    [176]李贵春.气动光学[M].北京,国防工业出版社,2006:38-41.
    [177] http://en.wikipedia.org/wiki/Reynolds_number.
    [178]魏凯丰,宋少英,张作群.天然气混合气体粘度和雷诺数计算研究[J].计量学报,2008,29(3):248-250.
    [179] http://en.wikipedia.org/wiki/Heat_capacity.
    [180] Kawahara N, Tomita E, Ohnishi K, and Goto K. Unburned gas temperaturemeasurement in an SI engine using fiber-optic laser interferometry [R]. Yamaha MotorTechnical Review,2006,41:57-66.
    [181] http://www.laserfair.com/jcpt/qt/2011/0907/6616.html.
    [182] Development of optical quality thin-film coatings for DPAL windows.http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=41054.
    [183] Allen L, and Peters G I. Amplified spontaneous emission and external signalamplification in an inverted medium [J]. Phys. Rev. A,1973,8(4):2031–2047.
    [184] Schulz P A, Wall K F, and Aggarwal R L. Simple model for amplifiedspontaneous emission in a Ti:A12O3amplifier. Opt. Lett.,1988,13(12):1081–1083.
    [185] Giles C R, and Desurvire E. Modeling Erbium-doped fiber amplifiers [J]. J.Lightwave Technol.1991,9(2):271–283.
    [186] Albach D, Assémat F, Bahbah S, Bourdet G, Chanteloup J C, Piatti P,Pluvinage M, Vincent B, and Touzé G L. A key issue for next generation DiodePumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in largesize, high gain Yb:YAG slabs [C]. J. Phys.: Conf. Series,2008,112(3):032057.
    [187] Goren C, Tzuk Y, Marcus G, and Pearl S. Amplified spontaneous emission inslab amplifiers [J]. IEEE J. Quantum Electron.,2006,42(12):1239–1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700