基于ANSYS的杂质诱导光学薄膜激光损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学薄膜几乎是所有光学系统中不可缺少的基本元件,并且也是激光系统中最薄弱的环节之一。前人研究发现,在长脉冲激光作用下,激光薄膜中的杂质吸收是导致薄膜的激光损伤阈值下降的主要因素之一。
     在杂质诱导激光损伤机制和过程的分析中,薄膜中温度分布的计算非常重要,温度分布计算的合理性影响到后续力学过程分析的可信度。因此,研究激光辐照下,薄膜的杂质吸收问题具有重要的理论价值和实际意义。现有理论在计算杂质以及其附近薄膜基体的温度分布时,忽略了杂质吸收的非线性效应,本文在这方面做了改进。
     本文根据经典热传导基本方程,建立了激光辐照下,杂质吸收导致周围薄膜和基底中瞬态温度场变化的物理模型,模型假设介质薄膜和基底为各向同性且热力参数不随温度变化,而杂质的热力学参数随温度变化。研究了网格大小和时间步长参数与有限元求解的稳定性关系,建立了优化的有限元模型。在理论分析基础上,模拟了各种形状、取向、尺寸、深度的体内杂质和体表杂质吸收激光能量导致的周围介质薄膜的瞬态温度场。
     数值模拟结果表明,薄膜在激光单脉冲作用时间内,最高温升不会出现在激光功率密度达到峰值的时刻,而是稍微滞后;对于体内杂质,任何取向的球状、柱状和楔形杂质吸收都会造成薄膜激光损伤阈值的降低,且大而浅的杂质吸收造成的周围薄膜温升较大,从而导致薄膜的激光损伤阈值更低;体内球状和轴向平行于膜厚方向的柱状杂质所导致的周围薄膜的最高温升同其尺寸分别存在一个近似的二次函数关系;对于体表杂质,存在一个尺寸,当杂质处于此尺寸范围之内时会造成薄膜的激光损伤,且此范围可以通过精确的计算机仿真模拟来确定;本文的仿真模拟结果表明,在波长1064nm,脉宽12ns,功率密度2.22×10~6W/cm~2的YAG激光器辐照下,体表球状杂质造成薄膜损伤的半径范围约为50~120nm之间。
     本文研究的结果可为杂质吸收导致激光薄膜热学损伤的理论研究和数值模拟提供参考,为后续力学过程分析的可信性提供保证,同时也对实际光学薄膜的生产中采取有效措施控制光学薄膜中杂质位置和尺寸有一定的指导意义。
Optical coatings are almost the indispensable components of all the optical systems and are also one of the weakest links in the laser system.Previous studies have found that for long pulse laser inclusions absorption in the optical coatings is the main reason for the decline of laser induced damage threshold.
     In the analysis of the mechanism and process of damage induced by inclusions,it is very important to evaluate the temperature distribution.The rationality of temperature distribution will affect the following mechanics analysis.So the study of inclusions absorption has an important theoretical value and practical significance.The existing models have ignored the nonlinear absorption effect of inclusions.In this paper, we have made some improvements in this aspect.
     In accordance with classic thermal conduction equation,transient temperature field in coatings under laser radiation are analyzed in this paper.It is provided that dielectric film and substrate are isotropic,and the thermal physical properties of inclusion are variable,while the coating's are not.An optimized finite element is developed to simulate transient temperature filed in coating/substrate systems based on a well understanding of the influences of element size and integration time step on the solution stability.Based on this theoretical model,transient distributions of temperature field around kinds of inclusions with different shapes,sizes and depths are simulated by using the finite element method(FEM).
     Numerical results indicate:In the time of single impulse irradiation,the highest temperature rise doesn't synchronized with the peak of laser power density,but delayed more or less.For the body inclusion,every orientation of globosity,cylindrical and sphenoid inclusions will cause a decline of damage threshold.But the absorptions of inclusions with larger sizes and lighter positions will cause a higher temperature rise and result in a lower damage threshold.There is a relationship similar to a quadratic function between the highest temperature rise and the sizes of globosity inclusions and cylindrical inclusions whose axis is parallel to the direction of the coatings' thickness.For the surface inclusions,there is a size range,in which the inclusions will cause a laser damage and the range can be calculated by sophisticated simulation.The result in this paper shows that under the irradiation of YAG laser generator with the the wavelength of 1064nm,pulse-width of 12ns,power density of 2.22×10~6 W/cm~2,the globosity inclusions in the radius of about 50~120nm will cuase a damage of coatings.
     These conclusions may provide reference for the theory research and numerical simulation of optical coatings' thermal damage induced by the inclusions absorption under laser radiation.And they can guarantee the credibility of the following mechanical analysis.At the same time,they can also be a guide to take effective measures to control the inclusions in a certain position and size.
引文
[1]陈家璧.激光原理及应用[M].北京:电子工业出版社,2004
    [2]夏志林.光学薄膜的激光损伤机制与过程[D].上海:中国科学院上海光电机密机械研究所学位论文,2006
    [3]M.R.Kozlowski,I.M.Thomas,J.H.Campbell,and F.Rainer,High-Power optical coatings for a megajooule-class ICF laser[J].Thin Film for Optical Systems,SPIE Proc,1993,1782:105-121
    [4]邓洪祥.高功率激光作用下光学薄膜场损伤的微观机制研究[D].西安:电子科技大学学位论文,2007.3.
    [5]贺洪波.高功率激光薄膜的损伤研究[D].上海:中国科学院上海光学精密机械研究所,2004
    [6]潘英俊,封君.强激光对光学薄膜的损伤机理[J].半导体光电,1997,18(1):62-65.
    [7]周益春,段祝平等.激光破坏机理研究的一个新进展[J].力学学报,1995,27(3):278-280
    [8]M.F.Koldunov,A.A.Manenkov,I.L.Pokotilo.Theory of laser induced damage to optical coating;Dependence of damage threshold on physical parameters of coating and substrate materials.Laser Induced Damage in Optical Materails.SPIE Proceedings,1996,2714:731-745
    [9]赵元安.脉冲激光对光学薄膜的损伤机理及测试技术研究[D].上海:中国科学院上海光电机密机械研究所学位论文,2005
    [10]高卫东.不同输出特性激光作用下光学薄膜的损伤机理[D].上海:中国科学院上海光学精密机械研究所学位论文,2005
    [11]Swift-Hook.Penetration welding with laser[J].Welding Journal,1973,52(11):492-498
    [12]Chande T,Mazumder J.Estimating effects of processing conditions andvariable properties upon pool shape,cooling rates and absorptioncoefficient in laser welding[J].Appl.Phys,1984,56(7):1981-1986
    [13]Goldak A.A new finite element model for welding heat source[J].ASME,Metallurgical Transaction,1984,15B(6):229-236
    [14]余淑荣,熊进辉等.ANSYS在激光焊接温度场数值模拟中的应用[J].焊接技术,2006.35(5):6-9
    [15]Stem W,Dowen J.A point and little source model of laser keyholewelding[J].Applied physics,1988,21(9):1255-1260
    [16]Bonollo F,Tiziani A and Zambon A.Model for CO_2 laser welding ostainless steel,Ti and Ni:parametric study[J].Materials Science and Technology,1993,9(2):1137-1145
    [17]Wei,Shian.Three-di-mensional analytical temperature field and it' s application to solidification characteristics in high-of low-powerdensity-beam welding[J].Heat Mass Transfer,1997,40(10):2283-2292
    [18]梁红玉等.关于2D温度场计算的有限元法分析[J].华北工业学院学报,2000,21(1):74-77
    [19]管一弘等.激光淬火温度场及材料性能的数值模拟[J].中国激光,1999,26(3):263-268
    [20]朱祖昌等.相变硬化激光热处理的数值解及组织性能的预测[J].金属学报,1996,32(1):105-111
    [21]刘晓魁.激光相变硬化的数值模拟.西安:西北工业大学硕士论文[D],2003
    [22]凌秀兰.激光薄膜缺陷研究[J].光学仪器,2004,26(2):178-182
    [23]Zhilin Xia,zhengxiu fan,jianda shao.Development in Laser Induced Extrinsic Absorption Damage Mechanism of Dielectric films.Chinese Physics letters[J].(2006),Volume 23,Issue 8,2179-2182
    [24]胡海洋.光学薄膜强激光热力耦合损伤研究[D].中国科学院上海光学精密机械研究所学位论文,2001
    [25]张光勇.介质单层膜光学特性及多层膜表面缺陷的研究[D].武汉:武汉理工大学硕士学位论文,2007
    [26]T.W.Walker,A.H.Guenter and P.E.Nielsen,Pulsed laser-induced damage to thin - film optical coatings-Part Ⅰ:Experimental and Part Ⅱ:Theory,IEEE.J.Quantum Electron,(1981),QE-17(10):2041-2065
    [27]赵元安,张东平,王涛,贺洪波,邵建达,范正修.脉冲激光辐照光学薄膜的缺陷损伤模型[J].光子学报,(2005),34(9),:1372-1375
    [28]孙金英.长脉冲激光作用于光学介质薄膜的热力学损伤研究[D].南京:南京理工大学硕士学位论文,2007
    [29]赵强,范正修,王之江.激光对光学薄膜加热过程的数值分析[J].光学学报,1999,8(19):101-103
    [30]张智峰.有限元方法对大功率半导体激光器稳态温度场的数值模拟[D].河北工业大学硕士学位论文,2006.03
    [31]赵强,范正修.光学薄膜激光损伤机理及阈值改善[J].强激光技术进展,1995,5:44-48
    [32]Xia Zhi-Lin,Deng De-Gang,Fan Zheng-Xiu,Shao Jian-Da."Development in Laser Induced Extrinsic Damage Mechanism of Dielectric films",Chinese Physics Letters,2006,Volume 23,Issue 8,217-2182
    [33]Hopper R.W.and Uhlmann D.R..Machanism of inclusion damage in laser glass.Appl.Phys.,(1970),41(10):4023-4037
    [34]张东平.光学薄膜微缺陷的探测、抑制及其诱导激光损伤机理[D].上海:中国科学院上海光电机密机械研究所学位论文,2005
    [35]Goldenberg H.and tranter M.A..Heat flow in an infinite medium heated by a sphere,Brit.J.Appl.Phy.,(1952),2:296-301
    [36]Bloembergen N..Laser induced electric breakdown in solids,IEEE.J.Quantum Electron,(1976),QE-10:375-386
    [37]J.Dijon,M.Poulingue and J.Hue.Thermomechanical model of mirror laser damage at 1.06μm Part 1:nodule ejection,SPIE,(1998),3578:387
    [38]Zhilin Xia,Zhengxiu Fan and Jianda Shao.Mechanical Damage in Transparent Films Caused by Low Power Density Laser Pulse,Appl.Opt.(2006),Vol.45,Issue 32,825-8261
    [39]张国智,胡仁喜等.ANSYS10.0热力学有限元分析实例指导教程[M].机械工业出版社,2007
    [40]范雪燕.激光表面淬火瞬态温度场的有限元模拟及硬化层深预测[D].上海海事大学硕士学位论文,2004
    [41]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004
    [42]李俊昌,R.谢瓦利埃,J.M.兰热.激光热处理温度场及相变硬化带的快速计算[J].中国激光,1997,24(7):665-672
    [43]石娟、吴钢、戴忠森.激光热处理硬化带简易实用模型[J].金属热处理.2000.2:33-36
    [44]吴旭峰、张文珍等.激光热处理的工艺模型与实验研究[J].光电子.激光,1999,10(6):553-556
    [45]李俊昌、伏玉昌.含相变及表面吸收系数随温度变化的激光热作用温度场半解析计算[J].应用激光,2002,22(2):257-261
    [46]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994,Pg9-12,P52
    [47]谢松林.激光薄膜损伤特性研究[D].西安:西安工业大学硕士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700