Ni-Al系金属粉末材料与钢燃烧合成焊接的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用Ni-Al粉末压坯合成材料的同时,完成Ni-Al金属间化合物与钢异种材料的燃烧合成CS(Combustion Synthesis)焊接。应用不同成分配比的金属混合粉末在钢套内挤压成型的预加工方法,利用CS反应的产热及压坯的尺寸变形进行异种材料焊接。实验引进了两种反应模式:激光自蔓延和在高温炉中热爆。
     以傅里叶热传导方程为控制方程,在绝热边界条件下确立反应点火时间数学模型,模拟结果和实验结果有较好的可比性。利用扫描电镜和X射线衍射对Ni-Al粉末压坯合成物以及钢的组织结构进行了分析,揭示了焊接过程对CS反应压坯以及钢基体材料的影响。根据Fick第二定律,建立Ni-Al金属间化合物与钢异种材料焊接界面元素浓度场的数值分析模型,对焊接界面的微观组织结构和界面附近元素的扩散机制进行了分析,给出焊接界面元素浓度场以及过渡区宽度与焊接工艺的关系。分析了焊接界面的结合状况以及界面剪切断口的微观形貌。研究了工艺参数对界面结合特征和剪切强度的影响。
     研究了Ni-Al金属间化合物与钢异种材料焊接界面的微观组织结构及界面附近元素的扩散机制。实验结果及理论分析对于开展Ni-Al金属间化合物与其它材料的焊接研究提供了基础。
This article studies the combustion synthesis welding between Nickel aluminides and steels (45steel and stainless steel). Combustion synthesis welding is a technology in which CS (Combustion Synthesis) exothermic reaction heat serves as welding heat source and CS reaction product serves as welding agent. According to the different reaction mode, the CS reaction can be divided into two kinds of mode: the self propagating by heating ignition (SHS, Self-propagating High-temperature Synthesis) and whole explosion (TE, Thermal Explosion).
     In this experiment, the Ni-Al powder compact is synthesized completely to nickel aluminides. At the same time, Nickel aluminides is welded with steel dissimilar material. The metal powder which is blended in five different composition ratio of Ni and Al is pressed beforehand with the steel ring in the model in order to make full use of the quality of heat released in the reaction of the powder compact. For gaining the joint of nickel aluminides/steel in uniform ability and integrated structure, two modes (SHS by laser and TE in high temperature furnace) are exercised in the experiment. The materials of the steel ring are 45steel and 1Cr18Ni9Ti stainless steel which are used abroad in industrial engineering. To begin with, the character of the heat source is studied in this article through thermodynamics analysis, the analysis results disclose that the heat is high temperature and instantaneous, the calefactive speed is rapid. The mathematics mode for ignition time is established based on the assumed condition that the experiment processes in the adiabatic circumstance in order to the analysis the relation between the ignition delay time and the technology parameter, as well as material character. The results indicate that the adiabatic temperature Tad increases and the ignition time shortens when increasing the composition of Ni in the blended powder, those is benefit to weld the material. When the blended powder compact in Ni: Al=1:1,the reaction temperature reaches the peak value about 1500℃, and when the blended powder compact in Ni: Al=3:1,the reaction temperature reaches the peak value about 1200℃.The reaction temperature is recorded in the test of SHS reaction welding by laser ignition and TE reaction welding. The comparison between the value of test and calculated results shows that the established mode is rational. Because the heat losing in the test, the ignition time in calculation is smaller than test value. As the conductivity coefficient of 45steel is big, the ignition delay time for 45steel is longer than stainless steel in the two modes welding. SHS reaction induced by laser progresses more rapidly and completely than TE reaction, so the SHS reaction welding is ignited soon in 20 seconds but the TE reaction welding is ignited slowly in 270 seconds. Furthermore, the reaction temperature in SHS welding is higher than in TE welding 100 to 200℃.
     Next, the phase and microstructure in the product of nickel aluminides synthesized by powder compact and in the steel are investigated by the means of SEM (Scanning Electron microscope) and XRD (X-ray Diffraction). Eutectic and dentrite morphology are observed in the product of SHS reaction and TE reaction, the main reason for the phenomena is the different of composition in the powder compact, the different temperature in reaction and the different cooling speed for compact inside. The results of XRD analysis indicate that the main phases formed in the SHS and TE reaction are NiAl and Ni3Al. The peak value of the SHS reaction product diffraction is stronger than the value of TE reaction product because the SHS mode reacts more rapidly and completely than TE mode. The micro-hardness distribution in CS reaction welding joint indicated that the micro-hardness of joint is obviously higher than the base metal in the two sides. The micro-hardness of the specimen welded in TE reaction increases along with the heating temperature rises. The value of micro-hardness is 160~200HV0.2 near the 45steel of nickel aluminides /45steel joint, and the value of joint is between 320HV0.2 and 400HV0.2. The micro-hardness is about 290~320HV0.2 near the stainless steel in nickel aluminides /stainless steel joint, and the micro-hardness value of the joint is between 370HV0.2 and 400HV0.2.
     Afterwards, according to the Fick’s second law and practical reaction welding condition, the concentration equation near the interface of nickel aluminides/45steel and nickel aluminides/stainless steel is established by adding initial and boundary conditions. The results of SHS reaction welding show that the calculated concentration of Ni near the interface is closed to the concentration of Ni that is measured by EDS (Energy Dispersive Spectrum), the calculated results Fe of and Al concentration has distinction with the measured values for Fe and Al concentration have strong change in the welded material. The results of Ni: Al=3:1 welding specimen concentration near the joint indicate that the element diffusion distance of Fe, Ni and Al rise along with the temperature increasing in the high temperature furnace. When the temperature reaches 1000℃, the diffusion distance of Fe in nickel aluminides and stainless steel welding is about 180μm,and the diffusion distance of Fe in nickel aluminides and 45steel welding is nearly 100μm. There are element evident diffusion in the interface and the element transform to FeNiAl solid solution between nickel aluminides/ 45steel and nickel aluminides/ stainless steel. The calculated diffusion activation energies of element Fe, Ni and Al near the interface of nickel aluminides/45steel and nickel aluminides/stainless steel are smaller than the activation energies of each element itself in the nickel aluminides, 45steel and stainless steel. At the same temperature, the each element diffusion coefficient near the interface is bigger than the diffusion coefficient in the original materials that are welded in the experiment.
     At the end, the combination characteristics and the shear fracture micro- morphology in the interface of nickel aluminides/45steel and nickel aluminides /stainless steel is analyzed by the means of SEM. The effect of the welding technological parameters on the combination and shear strength is researched. The experimental results of shear strength show that the joint of compact of Ni: Al=3:1 and 45seel in 1000℃high temperature furnace welding obtained the biggest shear strength whose value was 37.05MPa in all of the joint welded by the TE reaction welding. At the same technological parameters, the biggest shear strength of Ni: Al=3:1 and the stainless steel specimen is 24.85MPa. The curve of load-time during shear test measured for the specimen of Ni: Al=3:1 indicated that the fracture included plastics character. The fracture morphological observation of the joint of nickel aluminides/45 steel and nickel aluminides /stainless steel indicates that it is mainly composed of intergranular fracture. Affected by the fragile product, the fracture site centralizes in the side of nickel aluminides. The fracture causes from the cavity congregation in the cutting stress and micro-cracks produce. The micro-cracks enlarge along the inter-granular, inter-phase and impurity, so the joint ruptures.
     In a whole, the paper adopts CS reaction to realize the welding between the nickel aluminides and steel. The joint obtained shear strength in a certain degreed, which proved that the technology was feasible. Microstructure and diffusion mechanism in the interface of nickel aluminides and steel are first reported in the paper. The studies provide the foundation to improve the welding between the nickel aluminides and the other dissimilar material.
引文
[1]任家烈,吴爱萍.先进材料的连接[M].北京:机械工业出版社, 2000.
    [2]郭建亭.有序金属间化合物镍铝合金[M].北京:科学出版社, 2003.
    [3]李晓红,毛唯.新型高温合金的液相连接[J].材料工程, 1999, 6: 36-39.
    [4] FARAOUN H, AOURAG H, ESLING C, et al. Elastic properties of binary NiAl, NiCr and AlCr and ternary Ni2AlCr alloys from molecular dynamic and Abinitio simulation [J]. Computational Materials Science, 2005, 33: 184-191.
    [5] GOLBERG D, DEMUR M, HIRANO T. Structure and yield strength of directionally solidified Ni3Al intermetallic premelted with MoSi2 phase [J]. Intermetallics, 1999, 7: 109-114.
    [6] ALMAN D E, DOGAN C P, HAWK J A, et al. Processing, structure and properties of metal-intermetallic layered composites [J]. Materials Science and Engineering A, 1995, 192-193: 624-632.
    [7] HUNT E M, PLANTIER K B, PANTOYA M L. Nano-scale reactants in the self- propagating high-temperature synthesis of nickel aluminide [J]. Acta Materialia, 2004, 52: 3183-3191.
    [8] YEH C L, SUNG W Y. Combustion synthesis of Ni3Al intermetallic compoundin self- propagating mode [J]. Journal of Alloys and Compounds, 2004, 384: 181-191.
    [9] BHAUMIK S K, DIVAKAR C, RANGARAJ L, et al. Reaction sintering of NiAl and TiB2-NiAl composites under pressure [J]. Materials Science and Engineering A, 1998, 257: 341-348.
    [10] BISWAS A, ROY S K. Comparison between the microstructural evolutions of two modes of SHS of NiAl: key to a common reaction mechanism [J]. Materialia, 2004, 52: 257-270.
    [11] ZHU P, LI J C M, LIU C T. Combustion reaction synthesis of multilayered nickel and Aluminum foils [J]. Material Science and Engineering A, 1997, 239-240: 532-539.
    [12]胡建华. Ni-Al、Ti-Al系金属间化合物合成与成型的电脉冲效应研究[D].武汉:武汉理工大学能源与动力工程学院, 2003.
    [13]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社, 1996.
    [14] YOON E H, HONG J K, HWANG S K. Mechanical alloying of dispersion-hardened Ni3Al-B from elemental powder mixture [J]. Journal of Material Engineering Performance, 1997, 6: 106-112.
    [15] CHEN T, HAMPIKIAN J M, THADHANA N N. Synthesis and characterization of mechanically alloyed and shock-consolidated nanocrystalline NiAl intermetallic [J]. Acta Materialia, 1999, 47: 2567-2579.
    [16]程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社, 1990.
    [17] SHIDA K, KAINUMA R, UENO N, et al. Ductility enhancement in NiAl (B2)-base alloys by microstructure control [J]. Metallurgical Transactions A, 1991, 22: 441-446.
    [18] DEEVI S C, SIKKA V K, LIU C. T. Processing, Properties and applications of nickel and iron aluminides [J]. Progress Material Science, 1997, 42: 177-197.
    [19] YEH C L, SUNG W Y. Combustion synthesis of Ni3Al by SHS with boron additions [J]. Journal of Alloys and Compounds, 2005, 390: 74-81.
    [20]仲增墉,叶恒强.金属间化合物-全国首届高温结构金属间化合物学术讨论会论文集[C].北京:机械工业出版社, 1992.
    [21]严新炎,孙国雄,张树格.材料合成新技术-自蔓延高温合成[J].材料科学与工程,1994, 12: 11-17.
    [22] HIBINO A, MATSUOKA S, KIUCHI M. Synthesis and Sintering of Ni3Al Intermetallic Compound by Combustion Synthesis Process [J]. Journal of Materials Processing Technology, 2001, 112: 127-135.
    [23] MAKINO A, LAW C K. Transient radiative initiation of the heterogeneous flam in self-propagating high-temperature synthesis: theory and experimental comparisons [J]. Proceedings of the Combustion Institute, 2000, 28: 1439-1446.
    [24] HWANG S, MUKASYAN A S, VARMA A. Mechanisms of Combustion Wave Propagation in Heterogeneous Reaction System [J]. Combustion and Flam, 1998, 115: 354-363.
    [25] MERZHANOV A G. Review Paper: History and Recent Development in SHS [J]. Ceramics International, 1995, 21: 371-379.
    [26] JHA S C, RAY R. Dispersion strengthened NiAl alloys produced by rapid solidification processing [J]. Journal Material Science Letter, 1998, 7: 285-288.
    [27] CHENG T Y. Effects of composition on microstructures of rapidly solidified Ni-Al alloys [J]. Journal Material Science, 1998, 33: 4365-4374.
    [28] LARWRYNOWICA D E, LAVERNIA E J. Spray atomization and deposition of fiber reinforced intermetallic matrix composites [J]. Scripta Metallurgica Meterialia, 1994, 31: 1277-1281.
    [29] JAMES W B. Considerations in the development of ferrous PM alloys for sinter hardening applications [J]. Industrial Heating, 1999, 66: 63-72.
    [30] VELTL G, OPPERT A, PETZOLDT F. Warm flow compaction fosters more complex PM parts [J]. Metal Powder Report, 2001, 56: 26-28.
    [31] DONG S S, HOU P , YANG H B, et al. Synthesis of intermetallic NiAl by SHS reaction using coarse-grained nickel and ultrafine-grained aluminum produced by wire electrical explosion [J]. Intermetallics, 2002, 10: 217-223.
    [32]朱心昆,林秋实,程抱昌,等.自蔓延高温合成技术及发展[J].云南冶金, 2000, 29: 41-45.
    [33]鲁玉祥,陶春虎,杨德庄.燃烧合成金属间化合物基复合材料的研究进展[J].机械工程材料, 1996, 20: 1-6.
    [34] MIURA S, OHASHI T, MISHIMA Y. Amount of liquid during reaction synthesis of nickel aluminides [J]. Intermetallics, 1997, 5: 45-59.
    [35] LEBRAT J P, UARMA A, MILLLER A E. Combustion synthesis of Ni3Al and Ni3Al-matrix composites [J]. Metallurgical Transactions A, 1992, 23: 69-76.
    [36] DYER T S. MUNIR Z A. The synthesis of nickel aluminides by multilayer self-propagating combustion [J]. Metallurgical and Materials Transactions. B, 1995, 26: 603-610.
    [37] PHILPOT K A, MUNIR Z A, HOLT J B. An investigation of the synthesis nickel aluminides through gasless combustion [J]. Journal of Materials Science, 1987, 22: 159-169.
    [38] HOLT J B, KINGMAN D D, BIANCHINI G M. Kinetics of the combustion synthesisof TiBB2 [J]. Materials Science and Engineering A, 1985, 71, 321-327.
    [39] WANG L L, MUNIR Z A, HOLT J B. The combustion synthesis of copper aluminides [J]. Metallurgical and Materials Transactions B, 1990, 21, 567-577.
    [40] ITIN V I, BRATCHIKOV A D, LEPINSKIKH A V. Phase transition accompanying combustion of mixtures of copper and aluminum powders [J]. Combustion, Explosion and Shock Waves, 1981, 17: 506-509.
    [41] WANG G, DAHMS M. Synthesizing gamma-TiAl alloys by reactive powder processing [J]. JOM-Journal of the Minerals Metals and Materials Society, 1993, 45: 52-56.
    [42] RABIN B H, WRIGHT R N. Microstructure and tensile properties of Fe3Al produced by combustion synthesis/hot isostatic pressing [J]. Metallurgical Transactions A, 1992, 23: 35-40.
    [43] YI H C, MOORE J J. Combustion synthesis of TiNi intermetallic compounds: part1 determination of heat of fusion of TiNi and heat capacity of liquid TiNi [J]. Journal of Materials Science, 1989, 24: 3449-3455.
    [44] BHADURI S B, RADHAKRISHANA R, QIAN Z B. Combustion synthesis of single phase Ti5Si3 [J]. Scripta Metallurgica Meterialia, 1993, 29: 1089-1094.
    [45]杨君友,张同俊,李星国.机械合金化研究的新进展[J].功能材料, 1995, 26: 477-480.
    [46] ZHOU J, GUO J T. Effect of Ag on Microstructure, Mechanical and Electrical Properties of NiAl Intermetallic Compound [J]. Materials Science and Engineering A, 2003, 339: 166-174.
    [47] AKIRA K. Observation of sample sintering temperature by the plasma activated sintering (PAS) furnace [J]. Journal of Materials Science Letters, 1998, 17: 49-51.
    [48] GERMAN R M, FAROOQ S, KIPPHUT C M. Kinetics of Liquid Phase Sintering [J]. Materials Science and Engineering A, 1988, 105: 215-220.
    [49] FORDN L, BENGTSSON S, BERGSTRM M. Comparison of high performance PM gears manufactured by conventional and warm compaction and surface densification [J]. Powder Metallurgy, 2005, 4: 10-12.
    [50] BABAKHANI A, HAERIAN A, GHAMBARI M. On the combined effect oflubrication and compaction temperature on properties of iron-based PM parts. Materials Science and Engineering A, 2006, 437, 360-365.
    [51] LI Y Y, LEO N T, XIAO Z Y. Study on mechanical properties of warm compacted iron- base materials [J]. Journal of Central South Univer of Technology, 2002, 9: 154-158.
    [52] RICHARD F. HVC punches PM to new mass production limits [J]. Metal Powder Report, 2002, 57: 26-31.
    [53] TAKATA J, KAWAI N. Dimensional changes during sintering of iron based powders [J]. Powder Metallurgy, 1995, 38: 209-213.
    [54] GENNARI S, MAGLIA F, TAMBURINI U A, et al. Dynamic behavior in self-propagating high-temperature synthesis of intermetallic compounds [J]. Journal of Alloys and Compounds, 2006, 413: 232-238.
    [55] MOORE J J, FENG H J. Combustion synthesis of advanced materials: Part II. Classification, application and modeling [J]. Progress in Materials Science, 1995, 39: 275-316.
    [56]严有为,伯康,汉同,等. SHS基础研究的现状及展望[J].车工业与材料, 1996, 12: 5-9.
    [57] LEE W C, CHUNG S L. Ignition phenomena and reaction mechanism of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system [J]. Journal of the American Ceramic Society, 1997, 80: 53-61.
    [58] MERZHANOV A G. Combustion processes that synthesize materials [J]. Journal of Materials Processing Technology, 1996, 56: 222-241.
    [59]严新炎,孙国雄. SHS技术的发展及其应用[J].机械工程材料, 1995, 19: 1-5.
    [60]殷声.自蔓延高温合成技术和材料[M].北京:冶金工业出版社, 1995.
    [61] D.比姆贝格(西德)著.激光在工业与技术中的应用[M].北京:科学出版社, 1980.
    [62] CAPELLO E, CHIARELLO P, PREVITALI B. Laser welding and surface treatment of a 22Cr-5Ni-2Mo duplex stainless steel [J]. Materials Science and Engineering A, 2003, 351: 334-343.
    [63]关振中.激光加工工艺手册[M].北京:中国计量出版社, 1998.
    [64] TOLOCHKO N K, MICHAILOV V B, LAOUI T, et al. Laser sintering ofsingle-component metal and two-components metal/ceramic powders [J]. Science of sintering, 2000, 32(20): 53-59.
    [65]张小兵,袁亚雄,余斌,等.固体含能材料激光点火性能实验研究[J].火炸药学报, 2000, 2: 34-36.
    [66]张小兵,袁亚雄,杨均匀,等.激光点火技术的实验研究和数值仿真[J].兵工学报, 2006, 27: 533-536.
    [67]张会生,袁亚雄,张小兵.含能固体材料激光点火性能的初步分析[J].南京理工大学学报, 1998, 22: 268-271.
    [68]李金明,李文钊,丁玉奎.含能材料激光点火特征研究[J].军械工程学院学报, 2002, 14: 22-24.
    [69]沈平,连建设,胡建东.凝聚态自反应材料激光点火理论模型[J].应用激光, 2001, 21: 9-12.
    [70] SHEN P, GUO Z X, HU J D, et al. Study on laser ignition of Ni-33.3at% Al powder compacts [J]. Scripta Materialia, 2000, 43: 893-898.
    [71]聂大可,李言祥,宋晋生.激光控制反应合成金属间化合物与表面熔覆[J].应用激光, 2002, 22(2): 93-96.
    [72]徐向阳,刘文今,钟敏霖,等.激光合成和制备金属间化合物抗高温氧化涂层[J].航空材料学报, 2003, 23: 29-32.
    [73]徐向阳,钟敏霖,刘文今.激光合成NiAl金属间化合物的研究[J].应用激光, 2002, 22: 97-108.
    [74] GUREEV D M, PETROV A L. Formation of intermetallic phases under laser sintering of powdered SHS compositions [J]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3688: 237-242.
    [75] CHEN S C, SHI Y S. Ignition time of self propagating high temperature synthesis by laser [J]. Transactions of Nonferrous Metals Society of China, 2002, 12: 49-53.
    [76]彭金辉,张利波.微波协助自蔓延高温合成技术新进展[J].稀有金属, 2001, 25, 222-225.
    [77]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社, 1994.
    [78] EISAYED S A. Ignition characteristics of metal in thermal explosion theory particles [J].Journal of Loss Prevention Process Industries, 1996, 9, 393-400.
    [79] GUTMANAS E Y, GOTMAN I. Dense High-temperature Ceramics by Thermal Explosion Under Pressure [J]. Journal of the European Ceramic Society, 1999, 19: 2381-2393.
    [80] JIANG Q C, WANG H Y, WANG J G, et al. Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium [J]. Materials Letters, 2003, 57: 2580-2583.
    [81]张衍诚. Al(Cr)2O3-Cr(Mo)金属陶瓷的燃烧合成与性能[D].南京:东南大学材料加工工程学院, 2005.
    [82] BISWAS A. Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure [J]. Acta Materialia, 2005, 53, 1415-1425.
    [83] WANG T, LU Y X, ZHU M L, et al. Identification of the comprehensive kinetics of thermal explosion synthesis Ti+3Al=TiAl3 using non-isothermal differential scanning calorimetry [J]. Materials Letters, 2002, 54: 284-290.
    [84] PIECZONKA T, MOLINARI A, GIALANELLA S, et al. Dimensional changes occurring during reactive sintering of Ni-Al-Mo elemental powder mixtures [J]. Powder Metallurgy, 1997, 40: 289-293.
    [85]许兴利,韩杰才,杜善义.自蔓延高温合成理论研究与进展(一)[J].功能材料, 1996, 27: 493-497.
    [86] MOSSINO P. Review: Some aspects in self-propagating high-temperature synthesis [J]. Ceramics International, 2004, 30: 311-332.
    [87] ZHU P, LI J C M, LIU C T. Adiabatic temperature of combustion synthesis of Al-Ni systems [J]. Materials Science and Engineering A, 2003, 357: 248-257.
    [88] THIERS L, MUKASYAN A S, VARMA A. Thermal explosion in Ni-Al system: influence of reaction medium microstructure [J]. Combustion and Flame, 2002, 131: 198-209.
    [89] MAKINO A. Fundamental aspects of the heterogeneous flame in the self-propagating high- temperature synthesis (SHS) process [J].Progress in Energy and Combustion Science, 2001, 27: 1-74.
    [90] MERZHANOV A G. Combustion and plasma synthesis of high temperature materials. [M]. New York: Vch Publishers, 1990.
    [91] MUNIR Z A. Synthesis of high–temperature material by self-propagating combustion methods [J]. Ceramic Bulletin, 1988, 67: 277-358.
    [92] MAKINO A. Heterogeneous flame propagation in the self-propagating high- temperature synthesis (SHS) process in multi-layer foils for three components system: theory and experimental comparisons [J]. Proceedings of the Combustion Institute, 2007, 31: 1813-1820.
    [93] GOROSHIN S, CAMARGO L, LEE J H S. Liquid flame: combustion of metal suspensions in liquid sulfur [J]. Proceedings of the Combustion Institute 2005, 30: 2561-2568.
    [94] KHUSID B M, KULEBYAKIN V V, BASHTOVAYA E A, et al. Mathematical and experimental modelling of quenching a self-propagating high-temperature synthesis process [J]. International Journal of Heat and Mass Transfer, 1999, 42: 4235-4252.
    [95] MUNIR Z A. Self-propagation exothermic reaction: the synthesis of high temperature materials by combustion [J]. Materials Science Reports, 1989, 21(3): 277-365.
    [96] YAMAHA O, MIYAMOTO Y, KOIZUMI M. High pressure self-combustion sintering of sic from fine silicon and carbon mixed powders [J]. Journal of Materials Research, 1986, 1: 275-280.
    [97] WANG L L, MUNIR Z A. Velocity Analysis in Combustion Synthesis [J]. Metallurgical transactions A, 1995, 23: 7-13.
    [98] MARGOLIS S B. A new route of chaos in gasless combustion [J]. Combustion Science and Technology, 1996, 88: 235-238.
    [99] OUABDESSELAM M, MUNIR ZA. The sintering of combustion-synthesized titanium diboride [J]. Journal of Materials Science, 1987, 22: 1799-1807.
    [100] HARDT A P, HOLSINGER R W. Propagating of Gasless Reactions in Solids II: Experimental Study of Exothermic Intermetallic Reaction Rates [J]. Combustion and Flame, 1993, 21: 91-97.
    [101]江涛,鲁玉祥,祝美丽,等.燃烧合成动力学参数的研究进展[J].材料导报, 2000,14: 3-8.
    [102]殷声.燃烧合成[M].北京:冶金工业出版社, 1999.
    [103] YIN S, YE H Y, MIAO S X, et al. Preparation of coarse TiC powder by SHS [J]. International Journal of SHS, 1992, 1: 438-441.
    [104] MIAO S X, YIN S, LI J Y, et al. Synthesis of TiC by self-propagating High- temperature synthesis with reduction stage [J]. Rare metals, 1993, 12: 137-142.
    [105] PASCAL C, MARIN AYRAL R. M, TEDENAC J C. Simultaneous synthesis and joining of a nicraly layer to a superalloy substrate by self-propagating high-temperature synthesis [J]. Journal of Materials Synthesis and Processing, 2001, 9: 375-381.
    [106] FENG T, CHEN X Z, WU L H, et al. Diffusion welding of SiCp/2014A1 composites using Ni as interlayer [J]. Journal of University of Science and Technology Beijing, 2006, 13: 267-271.
    [107] SIERRA C, VAZQUEZ A J. NiAl coatings on carbon steel by self-propagating high-temperature synthesis assisted with concentrated solar energy: mass influence on adherence and porosity [J]. Solar Energy Materials and Solar Cells, 2005, 86: 33-42.
    [108] ORLING T T. Welding with Self-Propagating High-temperature Synthesis [J]. Welding Journal, 1995, 10: 37-41.
    [109] ORLING T T, MESSIER R W JR. Process Parameter Effects in Pressurized Combustion Synthesis Joining [J]. Journal of Materials Synthesis and Processing, 1994, 5: 315-325.
    [110] SHCHERBAKOV V A. SHS Welding of hard alloy and steel [J]. Key Engineering Materials, 2002, 217: 215-218.
    [111] MESSLER R W, MARK A JR, ORLING T T. Welding with self-propagating high temperature synthesis [J]. Welding Journal, 1995, 74: 37-41.
    [112]张远钦,余圣甫,吴伟.燃烧合成焊接技术[J].焊接技术, 2002, 31: 1-3.
    [113]邹正光. TiC/Fe目合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社, 2002.
    [114]王彦芳,王存山,潘学民,等.燃烧合成焊接,粉末冶金技术[J]. 2004, 22: 79-282.
    [115]韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法[J].材料科学与工程, 1997, 15: 20-25.
    [116] BAUTISTA S C, FERRIERE A, RODRIGUEZ G P, et al. NiAl intermetallic coatings elaborated by a solar assisted SHS process [J]. Intermetallics, 2006, 14: 1270-1275.
    [117]胡道雄,施雨湘,杜学铭. Ni3Al的SHS焊接-接头形成机理分析[J].焊接技术, 2001, 30: 13.
    [118] RILEY D.P. Synthesis and characterization of SHS bonded Ti5Si3 on Ti substrates [J]. Intermetallics, 2006, 14: 770-775.
    [119] MUNIR Z A. Reaction synthesis processes: Mechanisms and characteristics [J]. Metallurgical transactions A, 1992, 23: 7-13.
    [120] PASCAL C, MARIN AYRAL R M, TEDENAC J C. Joining of nickel monoaluminide to a superalloy substrate by high pressure self-propagating high-temperature synthesis [J]. Journal of Alloys and Compounds, 2002, 337: 221-225.
    [121] PASCAL C, MARIN AYRAL R M, TEDENAC J C, et al. Combustion synthesis: a new route for repair of gas turbine components-principles and metallurgical structure in the NiAl/RBD61/ superalloy junction [J]. Materials Science and Engineering A, 2003, 341: 144-151.
    [122] PASCAL C, MARIN AYRAL R M, TEDENAC J C, et al. Combustion synthesis: a new route for repair of gas turbine components-achievements and perspectives for development of SHS rebuilding [J]. Journal of Materials Processing Technology, 2003, 135: 91-100.
    [123] YASUHIRO N, AKIRA I, KAWAMOTO M. SHS joining of cast iron and Cu alloy [J]. Series A Engineering and Natural Sciences, 1996, 45: 105-109.
    [124]韦维,张建强,施雨湘.自蔓延高温合成(SHS)焊接试验[J].机械工程材料, 2000, 24: 8-10.
    [125] OHYANAGI M, TAKETANI Y, NAKAMURA Y. Instaneous bonding of diamond and metal by SHS reaction heat [J]. International Journal of Self-propagating High Temperature Synthesis, 1992, 2: 325-330.
    [126] RABIN B H. Joining of fiber-reinforced SiC composites by in situ reaction methods [J]. Journal of Material Science and Engineering A, 1990, 130: 1-5.
    [127]刘伟平,翟封祥,刘书华.燃烧合成焊接Al2O3陶瓷的研究[J].大连铁道学院学报, 1999, 20: 57-62.
    [128]李树杰,刘深,段辉平. SiC陶瓷/SiC陶瓷及SiC陶瓷/Ni基高温合金SHS焊接中界面反应及微观结构研究[J].硅酸盐学报, 1999, 27: 757-762.
    [129]孙德超,柯黎明,邢丽.陶瓷与金属梯度过渡层的自蔓延高温合成[J].焊接学报, 2000, 21: 44-46.
    [130] SANCHEZ J, QUINN D P, TRINGIDES M.C. The use of the Boltzmann-Matano analysis in two-dimensional concentration profiles [J]. Surface Science, 1997, 391: 101-108.
    [131] YUNKER M L, ORMAN J A V. Interdiffusion of solid iron and nickel at high pressure [J]. Earth and Planetary Science Letters, 2007, 254: 203-213.
    [132] GHOSH M, BHANUMURTHY K, KALE G B, et al. Diffusion bonding of titanium to 304 stainless steel [J]. Journal of Nuclear Materials, 2003, 322: 235-241.
    [133] RIISING J, HERZIG C. Concentration and temperature dependence of titanium self-diffusion and interdiffusion in the intermetallic phase Ti3Al [J]. Intermetallics, 1996, 4: 647-657.
    [134]崔国文.缺陷、扩散与烧结[M].北京:清华大学出版社, 1990.
    [135]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998.
    [136]何鹏,冯吉才,钱乙余.扩散连接界面物理接触行为的动态模型[J].焊接学报, 2001, 22: 60-64.
    [137]何鹏,冯吉才,钱乙余,等.扩散连接接头金属间化合物新相的形成机理[J].焊接学报,2001,22: 53-55.
    [138]李志远,钱乙余,张九海.先进连接方法[M].北京:机械工业出版社, 2000.
    [139]何康生,曹雄夫.异种金属焊接[M].北京:机械工业出版社, 1986.
    [140]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993.
    [141] SMITHELLS C J. Metals Reference Book [M]. Fifth Edition, Butterworths, London, 1976.
    [142] ORLING T.T., MESSLER R W, JR. Self-Propagating High-temperature Synthesis as A Processfor Joining Materials [J]. Welding Journal, 1996, 3: 93-100.
    [143]刘伟平,周东民.自蔓延高温合成(SHS)焊接Ni3Al合金-工艺参数对接头形成和组织的影响.第八次全国焊接年会论文集[C].北京:机械工业出版社, 1997.
    [144] BOROVINSKAYA I P, MERZHANOV A G, NOVIKOV N P, et al. Combustion explosion [J]. Shock Wave, 1974, 10: 2-10.
    [145] TANOFF M A, SMOOK M. D, TEETS R E, et al. Computational and experimental studies of laser-induced thermal ignition in premixed ethylene-oxidizer mixtures [J]. Combustion Flame, 1995, 103: 253-280.
    [146] MORSY M H, KO Y S and CHUNG S. H. Laser-induced ignition using a conical cavity in CH4-air mixtures [J]. Combustion Flame, 1999, 119: 473-482.
    [147] PHUOC T X, MATHUR M P, EKMANN J M. High-energy Nd-Yag laser ignition of coals: experimental observations [J]. Combustion Flame, 1993, 93: 19-30.
    [148] CAMINAT P, SATDJIAN E. The oxidation of solid graphite using a 5KW CO2 laser [J]. Combustion Flame, 1991, 86: 249-257.
    [149] NISHIMURA C, LIU C T. Reactive sintering of Ni3Al under compression [J]. Acta Materialia, 1993, 41: 113-120.
    [150] MORSI K. Review: reaction synthesis processing of Ni-Al intermetallic materials [J]. Materials Science and Engineering A, 2001, 299: 1-15.
    [151]杨世铭.传热学基础[M].北京:高等教育出版社, 2004.
    [152]中国金属学会编.金属材料物理性能手册,第一册,金属物理性能及测试方法[M].北京:冶金工业出版社, 1987.
    [153] NIU H J, CHANG I. T. Selective laser sintering of gas and water atomized high speed steel powders [J]. Scripta Materialia, 1999, 41: 25-30.
    [154]曹红奋,梅国梁.传热学-理论基础及工程应用[M].北京:人民交通出版社, 2004.
    [155]王补宣.工程传热传质学(上册) [M].北京:科学出版社, 1982.
    [156] J. P.霍尔曼著.马重芳,马庆芳,王兴国编译.传热学题解[M].北京:人民教育出版社, 1981.
    [157] DEY G K, SEKHAR J A. Micropyretic synthesis of tough NiAl alloys [J]. Metallurgical Transactions B, 1997, 28: 905-918.
    [158] LI H P, SEKHAR J A. The influence of the reactants size on the micropyretic synthesisof NiAl intermetallic compounds [J]. Journal of Materials Research, 1995, 10: 2471-2480.
    [159] BARTLETT R W, PRISBREY K A. Solid-state diffusion-bases processing kinetics for uniaxial self-propagating high-temperature synthesis of MoSi2 [J]. Metallurgical and Materials Transactions A, 1996, 27: 2086-2093.
    [160] FARBER L, KLINGER L, GOTMAN I. Molding of reactive synthesis in consolidated blends of fine Ni and Al powders [J]. Materials Science and Engineering A, 1998, 254: 155-165.
    [161] ATZMON M. The effect of interfacial diffusion barriers on the ignitions of self-sustained reaction in metal-metal diffusion couples [J]. Metallurgical and Materials Transactions A, 1992, 23: 49-53.
    [162]王健安.金属学与热处理(下) [M].北京:机械工业出版社, 1980.
    [163] GARG S P, KALE G B, PATIL R V, et al. Thermodynamic interdiffusion coefficient in binary systems with intermediate phases [J]. Intermetallics, 1999, 7: 901-908.
    [164]夏立方.金属中的扩散[M].哈尔滨:哈尔滨工业大学出版社, 1989.
    [165] LI D Q, LIN D L. Activation energy of FeAl alloys during super plastic deformation [J]. Transactions of Nonferrous Metals Society of China, 1997, 7: 16-19.
    [166]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998.
    [167]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社, 1996.
    [168]邹家生.材料连接原理与工艺[M].哈尔滨:哈尔滨工业大学出版社, 2005.
    [169] WANG M and GE L L. Study on process and mechanism of super plastic diffusion bonding of dissimilar steels [J]. China Welding, 1999, 8: 154-159.
    [170]张文截.焊接物理冶金[M].天津:天津大学出版社, 1989.
    [171]李亚江.焊接组织性能与质量控制[M].北京:化学工业出版社, 2005.
    [172] CHAN K S. Relationships of fracture toughness and dislocation in intermetallics [J]. Metallurgical and Materials Transactions A, 2003, 34: 2315-2328.
    [173]宋余九.金属的晶界与强度[M].西安:西安交通大学出版社, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700