基于能量传递的稀土掺杂微纳米发光材料的制备及其发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,关于纳米发光材料特别是掺杂稀土离子的纳米发光材料研究,已经成为热门课题之一。因为稀土离子独特的4f电子层结构,使其广泛应用于高性能磁铁、发光设备、催化剂和其他功能材料等方面。稀土掺杂纳米发光材料作为一类重要的无机材料因其具有独特的光学和电学特性已经引起研究者越来越多的关注。本论文采用溶剂热法和高温固相法合成出不同体系的稀土掺杂微纳米荧光材料,并对其进行表征和发光特性研究,主要研究内容如下:
     1.使用一种简单的一步溶剂热法成功地合成出新型单分散BaCeF_5、BaCeF_5:Tb~(3+)和BaCeF_5:Tb~(3+)/Sm~(3+)纳米晶体。分别利用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电镜(TEM)、光致发光(PL)和衰减曲线等对40nm球形纳米晶体和75~80nm的八面体纳米晶进行表征。结果表明,由于Ce~(3+)离子可以把能量传递给Tb~(3+)离子,所以BaCeF_5:Tb~(3+)显示出很强的绿色光发射,峰值中心位于546nm,归属于~5D_4—~7F_5能级跃迁。Tb~(3+)的发光衰减寿命随着浓度的增加而减少。利用猝灭浓度和光谱重叠法计算出Ce~(3+)和Tb~(3+)的临界能量传递距离。实验分析和理论计算表明,Ce~(3+)和Tb~(3+)之间的能量传递是偶极-四极相互作用占主导作用。不仅如此,在该体系中掺杂Sm~(3+)离子后发现,在紫外光激发下,BaCeF_5:Tb~(3+)/Sm~(3+)样品显示出典型的Tb~(3+)离子绿色光发射带和Sm~(3+)离子橙红色光和红色光发射带,这是因为Tb~(3+)和Sm~(3+)离子之间同样存在高效能量传递,这一点也可以通过荧光光谱和荧光衰减曲线来验证。另外,通过改变Sm~(3+)离子的浓度可以很容易调节BaCeF_5:Tb~(3+)/Sm~(3+)纳米发光材料的发射光颜色。这些实验结果表明,BaCeF_5:Tb~(3+)/Sm~(3+)纳米晶体可以在三维显示器和白色光源等方面具有潜在的应用价值。
     2.利用溶剂热法成功合成出CeF_3:Er~(3+)/Yb~(3+)和CeF_3:Tm~(3+)/Yb~(3+)纳米片。使用X射线衍射(XRD),场发射扫描电子显微镜(FE-SEM),X射线光电子能谱(XPS)和上转换发光(UCL)对样品的晶相组成、尺寸、形貌以及光学特性进行表征与研究。在980nm激发下,CeF_3:Er~(3+)/Yb~(3+)样品显示出蓝光(487nm)、绿光(523,546nm)和红光(654nm)发射,这是因为Yb~(3+)离子激发态和Er~(3+)离子激发态之间存在能量传递过程。类似地,在980nm激发下,CeF_3:Tm~(3+)/Yb~(3+)样品显示出蓝光(450,475nm)和红光(649nm)发射,这也是由于Yb~(3+)离子激发态与Tm~(3+)离子激发态之间存在能量传递过程。实验结果表明,它们在光电子器件和光电应用材料方面拥有巨大潜力。
     3.使用高温固相法合成出一种新型、颜色可调谐的上转换发光材料GdPO_4:Yb~(3+)/Ln~(3+)(Ln=Er, Ho,Tm)。在980nm激发下,样品发射光谱同时存在红光、绿光和蓝光发射(RGB)。通过改变掺杂稀土的浓度,可以实现从多色光到白光发射的调节,直到制备出色坐标为(0.328,0.327)的发光样品,这与白光标准色坐标(0.333,0.333)匹配得很好。这种上转换荧光粉因为具有颜色可调、发光强和亮度好等优点,因而它完全有可能应用在白光LED_s和生物荧光标记等领域。
     4.使用高温固相法合成出新型CaEuAl_3O_7荧光粉,并对其光致发光(PL)特性进行了研究。光谱结果表明,在空气中制备的CaEuAl_3O_7荧光粉中Eu~(3+)离子显示红光发射,在碳粉还原气氛中制备的CaEuAl_3O_7样品因其部分三价铕离子被还原成二价铕离子,所以其发射光谱显示出宽带蓝光发射,发射主峰位于445nm。上述实验结果表明,在近紫外光激发下,CaEuAl_3O_7荧光粉可以同时发射红光和蓝光,所以它在固体照明领域具有潜在的应用前景。
Over the past decades, the study of nanometric luminescent materials,especially lanthanide ion-doped luminescent nanomaterials, has become one of thehottest topics in nanoscience because of their potential applications in highperformance magnets, luminescent devices, catalysts, and other functional materialsarising from4f electrons. As an important class of inorganic materials with uniqueoptical, electrical properties of nano-and micron material has caused more and moreattention. This paper used solvothermal and high temperature solid state synthesis ofthe different systems of fluorescent material, and were characterized, the maincontents are as follows:
     1. A novel monodisperse BaCeF5and BaCeF5: Tb~(3+), Sm3+nanocrystals have beensuccessfully synthesized by a simple one step solvothermal synthesis. Uniformlydistributed nanocrystals with spherical morphology and an average diameter of40nm and an octahedral morphology and particle size of75-80nm were observed.X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), photoluminescence (PL) and decay studies were employed to characterize thesamples. The results reveal that Tb~(3+)-doped BaCeF_5sample shows strong greenemission centered at546nm corresponding to the~5D_4–~7F_5transition of Tb~(3+)due toan efficient energy transfer from Ce~(3+)to Tb~(3+). The decay lifetime of Tb~(3+)monotonically decreases with increase of Tb~(3+)concentration. The critical energytransfer distance between Ce~(3+)and Tb~(3+)was also calculated by methods ofconcentration quenching and spectral overlapping. Experimental analysis andtheoretical calculations reveal that the dipole–dipole interaction should be thedominant mechanism for the Ce~(3+)-Tb~(3+)energy transfer. Under ultraviolet irradiation,the BaCeF_5: Tb~(3+), Sm~(3+)samples exhibit the typical green emission band of the Tb~(3+)ions, as well as an orange-red and red emission bands of the Sm~(3+)ions in thepresence of Ce~(3+)ions. The highly intense orange-red and red emission bands of theSm~(3+)ions were attributed to the effective energy transfer from the Tb~(3+)to Sm~(3+)ions,which has been justified through the luminescence spectra and the fluorescencedecay dynamics. The luminescence colours of BaCeF_5: Tb~(3+), Sm~(3+)nanophosphorscan be easily tuned by changing the concentration of Sm~(3+)ions. These resultssuggest that BaCeF_5: Tb~(3+), Sm~(3+)nanocrystals can be explored for three dimensionaldisplays, white light sources, and so on.
     2. CeF_3: Er~(3+), Yb~(3+);Tm~(3+),Yb~(3+)nanoplates have been successfully synthesized by asolvothermal method with further calcinations. The crystalline phase, size and opticalproperties were characterized using powder X-ray diffraction (XRD), fieldemission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Energy dispersive spectroscopy (EDS) and upconversion luminescence (UCL).The CeF_3: Er~(3+), Yb~(3+)samples showed blue emission (487nm), green emissions (523,546nm) and red emission (654nm) under980nm excitation. The main mechanism ofupconversion is attributed to the energy transfer (ET) among Yb~(3+)and Er~(3+)ions inexcited states. The CeF_3: Tm~(3+),Yb~(3+)samples showed blue emissions (450,475nm)and red emission (649nm) under980nm excitation. The main mechanism that allowsfor upconversion is attributed the energy transfer (ET) among Yb~(3+)and Tm~(3+)ions inexcited states. The results illustrate the large potential of this new class of material forphotonic applications involving optoelectronics devices.
     3. A novel and tunable upconversion luminescent material GdPO_4: Yb~(3+), Ln~(3+)(Ln=Er, Ho, Tm) has been synthesized by conventional solid-state reaction method.Simultaneous red, green and blue (RGB) emissions were obtained after excitation at980nm. Color emission was tuned from multicolor to white light with colorcoordinate (0.328,0.327) matching very well with the white reference (0.333,0.333).Changes in color emissions were obtained by varying the intensity ratios betweenRGB bands that were strongly concentration dependent because of the interaction ofco-dopants. The color tunability, high quality of white light and high intensity of theemitted signal make these upconversion (UC) phosphors excellent candidates forapplications in white light LEDs and biological fluorescent tags.
     4. A novel CaEuAl_3O_7phosphor was synthesized by a high temperature solid-statereaction method. the photoluminescence (PL) properties were investigated toexamine its application in the development of white light-emitting diodes (w-LED_s). The red emission was observed from Eu~(3+)ions in the CaEuAl3O7phosphor. TheCaEuAl_3O_7:Eu~(3+)/Eu~(2+)prepared in a thermal-carbon reducing atmosphere whichshows good absorption ranging from ultraviolet to a blue region centered at445nm.The above results indicate that the CaEuAl_3O_7is a good candidate as red and bluecomponent for near UV-excited w-LED_s
引文
[1]徐叙瑢,苏勉曾.发光学与发光材料:发光的定义及分类[M].北京:化学工业出版社,2004.
    [2]张思远.稀土离子的光谱学:光谱性质和光谱理论[M].北京:科学出版社,2008.
    [3] Sommerdijk J L, Bril A,de Jager A W. Two photon luminescence withultraviolet excitation of trivalent praseodymium[J],J. Lumin.,1974,8:341-343.
    [4] Vergeer P,Vlugt T J H,Meijerink A,et al. Quantum cutting by cooperativeenergy transfer in YbxY1xPO4: Tb3+[J]. Phys. Rev. B,2005,71:014119-11.
    [5] Bril A, Wanmaker W L, Philos. Tech. Rev[J].1966,27:2.
    [6]赵朋,夏海瑞,李丽霞,孟宪林. Nd:YVO4激光晶体Raman光谱的两种分析方法的比较[J],山东大学学报(理学版),2003,38:70-74.
    [7]Bloembergen N. Solid state infrared quantum counters[J]. Phys. Rev. Lett.,1959,2:84-85.
    [8]Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]Chem. Rev.,2004,104:139-173.
    [9]Chivian J S, Case W E, Eden D D. The photon avalanche: A new phenomenon inPr3+-based infrared quantum counters [J]. Appl. Phys. Lett.,1979,35:124-125.
    [10]Auzel F. Upconversion processes in coupled ion systems[J]. J. Lumin.,1990,45:341-345.
    [11] Osiac E, Sokolska I, Kuck S, Upconversion-induced blue, green and red emissionin Ho3+:BaY2F8[J]. J. Alloys Compd.,2001,323:283-287.
    [12] Liu M, Lu Y, Xie Z. B, et al. Enhancing near-infrared solar cell responseusingupconverting transparent ceramics[J]. Sol. Energy Mater. Sol. Cells,2011,95:800-803.
    [13]梁会娟.稀土掺杂氧化物和氟化物的上转换荧光增强以及光谱研究[D].哈尔滨:哈尔滨工业大学,2011.
    [14]徐淑艳.基于稀土掺杂材料的光谱下转换及其应用的研究[D].上海:上海交通大学电子信息与电气工程学院,2012.
    [15]Dexter D, Possibility of luminescent quantum yields greater than unity[J]. Phys.Rev.,1957,108:630-633.
    [16]Piper W W, Ham F S, Cascade fluorescent decay in Pr3+-doped fluorides:Achievement of a quantum yield greater than unity for emission of visible light[J]. J.Lumin.,1974,8:344-348.
    [17]Sommerdijk J L, Bril A, de Jager A. W. Luminescence of Pr3+-activatedfluorides[J]. J. Lumin.,1974,9:288-296.
    [18]Sommerdijk J L, Bril A, de Jager A W. Two photon luminescence with ultravioletexcitation of trivalent praseodymium[J]. J. Lumin.,1974,8:341-343.
    [19]Loureiro S M, Setlur A, Heward W, et al. First observation of quantum splittingbehavior in nanocrystalline SrAl12O19: Pr, Mg phosphor[J]. Chem. Mater.,2005,17:3108-3113.
    [20] Pappalardo R. Calculated quantum yield for photon cascade emission for Pr3+and Tm3+in fluoride hosts [J]. J. Lumin.,1976,14:159-193.
    [21] Feofilov S P, Zhou Y, Seo H J, et al. Host sensitization of Gd3+ions in yttriumand scandium borates and phosphates: Application to quantum cutting[J]. Phys. Rev.B,2006,74:085101.
    [22] Tian Z F, Liang H B, Han B, et al. Photon Cascade Emission of Gd3+inNa(Y,Gd)FPO4[J]. J. Phys. Chem. C,2008,112:12524-12529.
    [23] Wegh R T, Donker H, Meijerink A, et al. Vacuum-ultraviolet spectroscopy andquantum cutting for Gd3+in LiYF4[J]. Phys. Rev. B,1997,56:13841-13848.
    [24] Yang Z, Lin J H, Su M Z, et al. Photon cascade luminescence of Gd3+in GdBaB9O16[J]. J. Alloys Compd.,2000,308:94-97.
    [25] Zhou Y, Feofilov S P, Seo H J, et al. Energy transfer to Gd3+from the self-trappedexciton in ScPO4: Gd3+: Dynamics and application to quantum cutting[J]. Phys. Rev.B,2008,77:075129-075133.
    [26] Wegh R T, van Loef E V D, Burdick G W, et al. Luminescence spectroscopy ofhigh-energy114f levels of Er3+in fluorides[J]. Mol. Phys.,2003,101:1047-1056.
    [27] Peijzel P S, Meijerink A. Visible photon cascade emission from the high energylevels of Er3+[J]. Chem. Phys. Lett.,2005,401:241-245.
    [28] Wegh R T, Donker H, Oskam K D, et al. Visible quantum cutting in LiGdF4:Eu3+through downconversion[J]. Science,1999,283:663-666.
    [29] Oskam K D, Wegh R T, Donker H, et al. Downconversion: A new route to visiblequantum cutting[J]. J. Alloys Compd.,2000,300:421-425.
    [30] Wegh R T, Donker H, van Loef E V D, et al. Quantum cutting throughdownconversion in rare-earth compounds[J]. J. Lumin.,2000,87:1017-1019.
    [31] Donker H, Oskam K D, et al. Visible quantum cutting in Eu3+-doped gadoliniumfluorides via downconversion[J]. J. Lumin.,1999,82:93-104.
    [32]Wegh R T, Van Loef E V D, Meijerink A. Visible quantum cutting viadownconversion in LiGdF4: Er3+, Tb3+upon Er3+4f11->4f105d excitation[J]. J. Lumin.,2000,90:111-122.
    [33] Wegh R T, van Loef E V D, Meijerink A. Visible quantum cutting viadownconversion in LiGdF4:Er3+,Tb3+upon Er3+11104f→4f5dexcitation[J]. J.Lumin.,2000,90:111-122.
    [34] Liu B, Chen Y, Shi C, et al. Visible quantum cutting in BaF2: Gd, Eu viadownconversion[J]. J. Lumin.,2003,101:155-159.
    [35] Karbowiaka M, Mecha A, Romanowski W R, Optical properties of Eu3+:CsGd2F7downconversion phosphor[J]. J. Lumin.,2005,114:65-70.
    [36] Kodama N, Oishi S. Visible quantum cutting through downconversion inKLiGdF5:Eu3+crystals[J], J. Appl. Phys.,2005,98:103515.
    [37] Kodama N, Watanabe Y. Visible quantum cutting through downconversion inEu3+-doped KGd3F10and KGd2F7crystals[J]. Appl. Phys. Lett.,2004,84:4141-4143.
    [38] Tzeng H Y, Cheng B M, Chen T M. Visible quantum cutting in green-emittingBaGdF5: Tb3+phosphors via downconversion[J]. J. Lumin.,2007,122–123:917-920.
    [39] Lee T J, Luo L Y, Diau E W G, et al. Visible quantum cutting through K2GdF5:Tb3+phosphors[J]. Appl. Phys. Lett.,2006,89:131121-131123.
    [40] Hua R N, Niu J H, Chen B J, et al. Visible quantum cutting in GdF3: Eu3+nanocrystals via downconversion[J]. Nanotechnology,2006,17:1642-1645.
    [41] Fu Y B, Zhang G B, Wu W Q, et al. The energy transfer processes in LaMgB5O10:Pr3+, Mn2+[J]. J. Solid State Chem.,2007,68:1779-1784.
    [42] Nie Z G, Zhang J H, Zhang X, et al. Evidence for visible quantum cutting viaenergy transfer in SrAl12O19: Pr, Cr[J]. Opt. Lett.,2007,32:991-993.
    [43] Fu Y B, Zhang G B, Qi Z M, et al. Energy transfer in LaMgB5O10: Pr3+, Mn2+under VUV excitation[J]. J. Lumin.,2007,124:370-374.
    [44] Chen Y H, Shi C S, Yan W Z, et al. Energy transfer between Pr3+and Mn2+inSrB4O7: Pr, Mn[J]. Appl. Phys. Lett.,2006,88:061906-061908.
    [45] Chen Y H, Yan W Z, Shi C S. Energy transfer in Pr3+and Mn2+co-doped SrB6O10and SrB4O7[J]. J. Lumin.,2007,122–123:21-24.
    [46]符义兵,Pr3+, Mn2+共激活氧化物量子剪裁材料的探索及蓝色长余辉材料Sr2MgSi2O7: Eu2+, Dy3+的余辉机理研究[D].中国科技大学博士论文,2007.
    [47] Feldmann C, Jüstel T, Ronda C R, Quantum efficiency of down-conversionphosphor LiGdF4:Eu[J]. J. Lumin.,2001,92:245-254.
    [48]黄小勇,稀土掺杂发光材料下转换发光特性研究[D],华南理工大学博士论文,2011.
    [49]王国凤,稀土纳米氟化物的制备及其发光性质的研究[D],吉林大学博士论文,2008.
    [50]Sheng T Q, Fu Z L, et al. Solvothermal synthesis of CeF3: Er3+, Yb3+nanoplateswith visible upconversion luminescence by980nm excitation[J]. Mater. Res. Bull.,2013,48:884-888.
    [51]Sheng T Q, Fu Z L, et al. Solvothermal synthesis of CeF3:Tm3+,Yb3+microcrystals with visibleupconversion luminescence by980nmexcitation[J]. J. Alloy. Compd.,2013,549:362-365.
    [52] Jin Y, Qin W P, Zhang J S. Preparation and optical properties of SrF2: Eu3+nanospheres[J]. J. Fluorine. Chem.,2008,129:515-518.
    [53] Huang Y J,You H P, Jia G, Song Y H, Zheng Y H, Yang M, Liu K, Guo N.Hydrothermal Synthesis, Cubic Structure, and Luminescence Properties of BaYF5:RE(RE=Eu, Ce, Tb) Nanocrystals[J]. J. Phys. Chem. C,2010,114:18051-18058.
    [54] Lai H, Bao A, Yang Y M, Tao Y C, Yang H, Zhang Y, Han L L. UVLuminescence Property of YPO4:RE (RE=Ce3+, Tb3+)[J]. J. Phys. Chem. C,2008,112:282-286.
    [55] Yu M, Lin J, Fu J, Zhang H J, Han Y C, Sol–gel synthesis andphotoluminescent properties of LaPO4:A (A=Eu3+, Ce3+, Tb3+) nanocrystalline thinfilms[J]. J. Mater. Chem.,2003,13:1413-1419.
    [56] Cheng S D, Kam C H, Buddhudu S. Lipoblastoma: Pathophysiology and surgicalmanagement[J]. Mater. Res. Bull.,2001,36:1131-1137.
    [57]Kumar G A, Biju P R, Jose G, Unnikrishnan N V. Cerebellar astrocytes treated bythyroid hormone modulate neuronal proliferation[J]. Mater. Chem. Phys.,1999,60:247-255.
    [58] Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R. Separate andconcomitant use of lamotrigine, lithium, and divalproex in bipolar disorders[J]. J.Phys. Chem. Solids,2003,64:841-846.
    [59] Dexter D L, Schulman J A J. Synthesis and Luminescence Properties ofBaAl2Si2O8:Eu3+Phosphor[J]. Chem. Phys.,1954,22:1063-1070.
    [60] Verstegen J M P J, Sommerdijk J L, and J. G. Verriet, CERIUM ANDTERBIUM LUMINESCENCE IN LaMgAl11O19J. Lumin,1973,6,425-431.
    [61] Liu G K, Jacquier B. Spectroscopic Properties of Rare Earthsin OpticalMaterials[J]. Springer, Beijing,2005.
    [62] Antipeuko B M, Bataev I M, Ermolaev V L, Lyubimov E I, Privalova T A.Luminescent properties of Eu3+and Tb3+activated Zn3Ta2O8[J]. Opt. Spectrosc,1970,29:177. H220-H224.
    [63] aldi o U G. Structural requirements for DNA binding of GCM proteins[J]. J.Phys. Condens. Matter,2003,15:3821-3830.
    [64] Dexter D L. A Theory of Sensitized Luminescence in Solids[J]. J. Chem. Phys,1953,21:836-850.
    [65] Zhang Z, Wang J, Zhang M, Zhang Q, Su Q. The energy transfer from Eu2+toTb3+in calcium chlorapatite phosphor and its potential application in LEDs[J]. Appl.Phys. B: Laser Opt.,2008,91:529-537.
    [66] Yuvaraj D, Narasimha R K, Barai K. Synthesis of platestacks and microtowers ofzinc by thermal evaporation[J]. Solid State Commun.2009,149:349-351.
    [67]Wang Z L. Transmission Electron Microscopy of Shape-ControlledNanocrystalsand Their Assemblie[J]. J. Phys. Chem. B.2000,4:1153-1175.
    [68]Qu X S, Yang H K, Pan G H, Chung J W, Moon B K, Choi B C, Jeong J H.Controlled Fabrication and Shape-Dependent Luminescence Properties of HexagonalNaCeF4, NaCeF4:Tb3+Nanorods via Polyol-Mediated Solvothermal Route[J]. Inorg.Chem.,2011,50:3387-3393.
    [69] Sheng T Q, Fu Z L, Wang J, Yu Y N, Zhou S H, Zhang S Y, Dai Z W.Solvothermal synthesis and luminescence properties of BaCeF5, and BaCeF5:Tb3+nanocrystals[J]. RSC Adv.2012,2:4697-4702.
    [70] Kumar G A, Biju P R, Jose G, Unnikrishnan N V. Static energy transfer forMn2+: Pr3+system in Phosphate glasses[J]. Mater. Chem. Phys.,1999,60:247-255.
    [71]Reisfeld R, Jorgensen C K. Lasers and excited states of rare earths. Speringer:Berlin,1977.
    [72] Becker P C, Olsson N A, Simpson.J R. Erbium doped amplifiers: fundamentalsand technology. Academic Press: San Diego,1999
    [73] Qu X S, Yang H K, Chung J W, Moon B K, Choi B C, Jeong J H, Kim K H.Polyol-mediated solvothermal synthesis and luminescence properties of CeF3, andCeF3:Tb3+nanocrystals [J]. J. Solid. State. Chem.,2010,184:246-251.
    [74] Wang Z L, Quan Z W, Jia P Y, Lin C K, Lou Y, Chen Y, Fang J, Zhou W,O'Connor C J, Lin J. A Facile Synthesis and Photoluminescent Properties ofRedispersible CeF3, CeF3: Tb3+and CeF3: Tb3+/LaF3(Core/Shell) Nanoparticles[J].Chem. Mater.,2006,18:2030-2037.
    [75] Tan M C, Kumar G A, Riman R E. Near infrared-emitting Er-and Yb-Er-dopedCeF3nanoparticles with no visible upconversion[J]. Opt. Express,2009,17:15904-15910.
    [76] Dantelle G, Mortier M, Vivien D, Patriarche G. Effect of CeF3Addition on theNucleation and Up-Conversion Luminescence in Transparent OxyfluorideGlass-Ceramics[J]. Chem. Mater.,2005,17:2216-2222.
    [77] Yu Y L, Shan Z F, Chen D Q, Huang P, Lin H, Wang Y S. Improving Er3+1.53μmluminescence by CeF3nanocrystallization in aluminosilicate glass[J]. J. Appl. Phys.,2010,108:123523-5.
    [78] Wang Q G, Su L B, Zheng L H, Li H J, Tang H L, Guo X, Jiang D P, Xu J.Growth and Spectroscopic Characteristics of Er-Doped CeF3–CaF2DisorderedCrystals[J]. J. Am. Ceram. Soc.,2012,95:972-976.
    [79] Vossler G L, Brooks C L, Winik K A, Planar Er: Yb glass ion exchangedwaveguide laser[J]. Electron. Lett.,1995,31:1162-1163.
    [80] Whitley T H, Millar C A, Wyatt R, Beierley M C, Szebesta D. Upconversionpumped green lasing in erbium doped fluorozirconate fibre[J]. Electron. Lett.,1991,27:1785-1786.
    [81] Roman J E, Camy P, Hempstead M, Brocklesby W S, Nouth S, Beguin A,Lerminiaux C, Wilkinson J S, Ion-exchanged Er/Yb waveguide laser at1.5pmpumped by laser diode[J]. Electron. Lett.,1995,31:1345-1346.
    [82] Gapontsev V P, Matisin S M, Iseneev A A, Kravchencko V B. Erbium glass lasersand their applications[J]. Opt. Laser Technol.,1982,14:189-196.
    [83] Tallant D R, Miller M P, Wright J C. Energy transfer and relaxation phenomenain CaF2:Er3+[J]. J. Chem. Phys.,1976,65:510-521.
    [84] Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C. Comparative investigationon structure and luminescence properties of fluoride phosphors codoped withEr3+/Yb3+Spectrochim[J]. Acta. Part A,2009,74:441-445.
    [85] Hewes R A, Server J F. Infrared Excitation Processes for the VisibleLuminescence of Er3+, Ho3+, and Tm3+in Yb3+-Sensitized Rare-Earth Trifluorides[J].Bull. Am. Phys. Sci.,1968,182:427-436.
    [86] Dexter D L, Schulman J H. A Theory of Sensitized Luminescence in Solids[J]. J.Chem. Phys.,1953,21:836-850.
    [87] Stringfellow G B, Craford M G. High Brightness Light Emitting Diodes[M].1997,48.
    [88] Yen W M, Shionoya S, Yamamoto H. Phosphor Handbook[M].1998,459-460.
    [89] Joshi C, Rai R N, Rai S B. Structural, thermal, and optical properties of Er3+/Yb3+co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics[J]. J. Quant.Spectrosc. Ra.,2012,113:397-404.
    [90] Miazato K, Sousa D F de, Delben A, Delben J R, Oliveira S L de, Nunes L A O.Upconversion mechanisms in Tm3+doped lead fluoroindogallate glasses[J]. J.Non-cryst. Solids,2000,273:246-251.
    [91] Booth I J, Archambault J L, Ventrudo B F. Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers[J]. Opt. Lett.,1996,21:348-350.
    [92]Jackson S D. Cross relaxation and energy transfer upconversion processes rel-evant to the functioning of2μm Tm3+-doped silica fibre lasers[J]. Opt. Commun.,2004,230:197-203.
    [93] Ni H, Rand S C. Avalanche upconversion in Tm: YALO3, Opt. Lett.,1991,16:1424-1426.
    [94] Wei Y, Lu F Q, Zhang X R, Chen D P. Synthesis and characterization of efficientnear-infrared upconversion Yb and Tm codoped NaYF4nanocrystal reporter[J]. J.Alloy. Compd.,2007,427:333-340.
    [95] Liu L, Li B, Qin R F, Zhao H F, Ren X G, Su Z M. Synthesis and characterizationof nanoporous NaYF4: Yb3+, Tm3+@SiO2nanocomposites[J]. Solid State Sci.,2010,12:345-349.
    [96] Ghosh P, Rosa E de la, Oliva J, Solis D, Kar A, Patra A. Influence of surfacecoating on the upconversion emission properties of LaPO4: Yb/Tm core-shellnanorods[J]. J. Appl. Phys.2009,105:1135321-5.
    [97] Dexter D L, Schulman J H. A Theory of Sensitized Luminescence in Solids[J]. J.Chem. Phys.,1953,21:836-851.
    [98]吴雪艳,洪广言,曾小青,等.(Y, Gd)BO3: Eu的真空荧光光谱特性.高等学校化学学报,2000,21:1658—1659.
    [99] Krupa J C, Queffelec M. UV and VUV optical excitations in wide band gapmaterials doped with rare earth ions:4f-5d transitions. J Alloys and Compounds,1997,250:287—292
    [100]李峰,郭兴家;等. GdPO4∶Eu3+和GdPO4∶Ce3+,Tb3+纳米晶多元醇法的合成与表征[J],无机化学学报,2009,25:968-972.
    [101]李岚,李光雯,等.真空紫外光激发下GdPO4: RE3+荧光材料的能量传递过程[J],中国科学E辑技术科学,2006,36(11):1313~1319.
    [102] Lisiecki R, Ryba-Romanowski W, Speghini A, Bettinelli M. Luminescencespectroscopy of Er3+-doped and Er3+, Yb3+-codoped LaPO4single crystals, J. Lumin.,2009,129:521-525.
    [103] Ahn B Y, Seok S Il, Hongb Suk-In, Oha Jae-Seok, Junga Ha-Kyun, Chungc W J,Optical properties of organic/inorganic nanocomposite sol-gel films containing LaPO4:Er,Yb nanocrystals[J]. Opt. Mater.,2009,28:374-379.
    [104] Nakazawa E, Shiga F. Lowest4f-to-5d and Charge-Transfer Transitions ofRare-Earth Ions in LaPO4and Related Host-Lattices[J]. Jpn. J. Appl. Phys.2003,42:1642-1647.
    [105] Ghosh P, Oliva J, Rosa E D la, Haldar K K, Solis D, Patra A. Enhancement ofUpconversion Emission of LaPO4: Er@Yb Core-Shell Nanoparticles/Nanorods[J]. J.Phys. Chem. C.2008,112:9650-9658.
    [106] Hachani S, Moine B, El-akrmi A, Férid M. Luminescent properties of someortho-and pentaphosphates doped with Gd3+–Eu3+: Potential phosphors for vacuumultraviolet excitation[J]. Opt. Mater.,2009,31:678-684.
    [107] Qiao X S, Fan X P, Xue Z, Xu X H, Luo Q. Upconversion luminescence ofYb3+/Tb3+/Er3+-doped fluorosilicate glass ceramics containing SrF2nanocrystals[J]. J.Alloy. Compd.,2011,509:4714-4721.
    [108] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H. Y, Zhang C, Hong MH, Liu X G. Simultaneous phase and size control of upconversion nanocrystalsthrough lanthanide doping, Nature[J].2010,463:1061-1065.
    [109] Deng R R, Xie X J, Vendrell M, Chang Y, Liu X. G. Intracellular GlutathioneDetection Using MnO2-Nanosheet-Modified Upconversion Nanoparticles[J]. J. Am.Chem. Soc.,2011,133:20168-20171.
    [110] Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G.Tuning upconversion through energy migration in core–shell nanoparticles[J]. Nat.Mater.,2011,10:968-973.
    [111] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals[J]. Chem. Soc. Rev.,2009,38:976-989.
    [112] Zhang C M, Ma P, Li C X, Li G G, Huang S S, Yang D M, Shang M M, Kang XJ, Lin J. Controllable and white upconversion luminescence in BaYF5: Ln3+(Ln=Yb,Er, Tm) nanocrystals[J]. J. Mater. Chem.,2011,21:717-723.
    [113] Kir’yanov A V, Aboites V, Belovolov A M, Timoshechkin M I, Belovolov M I,Damzen M J, Minassian A. Powerful visible (530–770nm) luminescence in Yb, Ho:GGG with IR diode pumping[J]. Opt. Express,2002,10:832-839.
    [114] Gouveia-Neto A S, Bueno L A, Afonso A C M, Nascimento J F, Costa E B,Messaddeq Y, Ribeiro S J L. Upconversion luminescence in Ho3+/Yb3+-andTb3+/Yb3+-codoped fluorogermanate glass and glass ceramic[J]. J. Non-Cryst. Solids,2008,354:509-514.
    [115] Zhang J, Wang Y H, Guo L N, Zhang F, Wen Y, Liu B T, Huang Y. Vacuumultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+,Na+(RE=Tb, Yb, Er, Tm, and Ho)[J]. J Solid State Chem.,2011,184:2178–2183.
    [116] Lakshminarayana G, Yang H C, Qiu J R. White light emission from Tm3+/Dy3+co-doped oxyfluoride germanate glasses under UV light excitation[J]. J. Solid StateChem.,2008,182:669-676.
    [117] Guo C F, Zhang W, Luan L, Chen T, Cheng H, Huang D X. A promisingred-emitting phosphor for white light emitting diodes prepared by sol–gel method[J].Sens. Actuators, B: Chem.,2008,133:33-39.
    [118] Mueller A H, Petruska M A, Achermann M, Werder D J, Akhadov E A, KoleskeD D, Hoffbauer M A, Klimov V I. Multicolor Light-Emitting Diodes Based onSemiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers[J].Nano. Lett.,2005,5:1039-1044.
    [119]Zhang X M, Zhang J H, Su Q, et al. Luminescence of SrGdGd3O7: RE3+(RE=Eu,Tb)phosphors and energy transfer from Gd3+to RE3+[J]. Mater. Res. Bull.,2005,40:281-288.
    [120]Kaczmarek S M, et al. Nucl Instrum Methods Phys Res Sect B-Beam Interact.Mater Atoms, Radiation defects defects in SrLaGd3O7crystals doped with rare-earthelements[J].1998,142:515-522.
    [121] Blasse G, Grabmaier B C. Luminescent materials. Springer-Verlag: Berlin; NewYork[M].1994,232.
    [122] Liu X, Lin C K, Lin J. White light emission from Eu3+in CaIn2O4hostlattices[J]. Appl. Phys. Lett.,2007,90:081904-081906.
    [123] Liu X M, Lin J. Dy3+-and Eu3+-doped LaGaO3nanocrystalline phosphors forfield emission displays[J]. J. Appl. Phys.,2006,100:124306-124312.
    [124] Dorenbos P. The Eu3+charge transfer energy andthe relation with the band gapof compounds[J]. J. Lumin.,2005,111:89-104..
    [125] Dorenbos P. Lanthanide charge transfer energies and related luminescence,charge carrier trapping, and redox phenomena[J]. J. Alloys Compd.,2009,488:568-573.
    [126] Zhang S Y. Spectroscopy of Rare Earth Ions-Spectral Property and SpectralTheory[M].2008,134-137.
    [127] Hreniak D, Strek W, Deren P, Bednarkiewicz A, Lukowiak A. Synthesis andluminescence properties of Eu3+-doped LaAl3nanocrystals[J]. J. Alloys Compd.,2006,408:828-830.
    [128] Mao Z Y, Wang D J, Lu Q F, Yu W H, Yuan Z H. Tunable single-dopedsingle-host full-color-emitting LaAlO3: Eu phosphor via valence state-controlledmeans[J]. Chem. Commun.,2009,346-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700