用户名: 密码: 验证码:
超声磁流变复合抛光面形误差修正的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在观测系统、激光系统、光刻投影系统等高科技光学系统设计和制造中,为了获得更优越的系统性能,人们越来越多地使用精密、超精密曲面光学元件。对高质量光学曲面的需求使多种光学加工方法获得发展,并与计算机数字控制(CNC)技术相结合,形成了计算机控制抛光(CCP)技术。但是现有的光学加工方法大多受到加工条件的限制而不能应用于小曲率半径凹曲面的加工。超声磁流变复合抛光技术是针对小曲率半径凹曲面进行超精密抛光加工的新方法,在光学制造领域有着广阔的应用前景。
     本课题对超声磁流变复合抛光面形误差修正技术中的关键问题进行研究,将这种抛光方法与计算机控制抛光技术相结合,实现了平面、小曲率半径凹球面的面形误差修正。本课题的研究为推广应用超声磁流变复合抛光方法进行光学表面的面形误差修正做了技术准备,研究中开发的驻留时间算法和抛光路径规划算法等成果可用于多种类型光学加工方法的计算机控制抛光,对推动我国光学曲面面形误差修正技术的发展具有重要意义。论文主要研究内容包括:
     基于超声磁流变复合抛光的原理,研制了一套抛光实验装置,为面形误差修正技术的研究奠定了基础。对超声磁流变复合抛光的去除函数的建模方法进行了研究,根据超声磁流变复合抛光原理,通过分析加工区工件表面所受的超声压力、磁场压力和流体动压力,建立材料去除理论模型。通过实验验证了理论模型的正确性。
     驻留时间求解问题是面形误差修正技术中的关键问题之一,开发了两种驻留时间算法,并对确定驻留时间初值和克服边缘效应的方法进行了研究。通过驻留时间算法仿真分析了不同特性去除函数对加工后表面面形精度以及驻留时间的影响规律。研究了轴对称面形误差的修正方法及其专用驻留时间算法。为了克服驻留时间求解问题的病态性,并满足约束条件,将驻留时间的求解问题转化为一个约束优化问题,并用Thikhonov正则化方法求解,使驻留时间向量的解在满足约束条件时,尽量减小的预期残余误差。
     提出等驻留单元面积法,解决了确定非平行线抛光路径上驻留点的问题。这种方法使相邻驻留点的驻留单元面积相等,可以在抛光路径上获得均匀分布在工件表面的驻留点。为了解决采用非平行线抛光路径时驻留时间的计算问题,提出了非平行线路径驻留时间误差比例算法,该算法能够直接获得抛光路径上驻留点的驻留时间。为了降低小抛光工具头加工后在工件表面留下的中高频误差,开发了伪随机抛光路径规划算法。开发了边界优化算法对伪随机抛光路径进行优化,使其可高效地应用于各种边界表面的抛光。通过对比伪随机路径抛光前后工件表面的功率谱密度(PSD)值,证明了采用伪随机抛光路径规划算法能降低工件表面的中高频误差。在UG平台上,实现了超声磁流变复合抛光中,工件与实验装置的建模、前置处理、后置处理,并开发了集成仿真与校验(IS&V)系统,实现了面形误差修正加工的数控代码生成和加工过程仿真校验。
     对于超声磁流变复合抛光面形误差修正过程中的误差源,以驻留时间算法为工具进行仿真分析,研究了定位误差和去除函数误差对材料去除量和预期残余误差的影响规律。
     用超声磁流变复合抛光面形误差修正技术,在平面和凹球面工件上进行面形误差修正实验,对本文提出的驻留时间算法和抛光路径规划方法进行验证,证明了该技术在制造高质量光学元件方面的可行性。
For more superior performance, people apply more and more precision andultra-precision curved optical components in design and fabrication of opticalobservation system, laser system,lithography system and other high-tech opticalsystems. Many novel processing methods have been developed by the requirementfor high quality optical curved surface, and computer controlled polishing(CCP) isengendered by combination of these processing methods and computer numericallycontrolled(CNC)) technology. However,concave surface with small curvature radiusis difficult to fabricate by most of existing technologies for the restriction of theirmachining conditions. Ultrasonic-magnetorheological compound finishing (UMCF)is a new kind of polishing technology for ultraprecision machining of concavesurfaces with small curvature radius and has broad application prospects.
     The theoretical and technical problems in UMCF figure correction technologyhave been studied in the dissertation. The figure correction of the plane and spherewith small curvature radius is realized by the combination of UMCFmethod and computer controlled technology. The study in the dissertation carrythrough technical preparations for the practical application for figure correction ofoptical curved surface by UMFC, and the dwell time algorithms and polishing pathplanning algorithms developed in the study can be applied in computer controlledpolishing by manifold other polishing technologies. The study has importantsignificance for promotion of figure correction technology for optical curvedsurface.The main aspects of the study are including:
     An experimental set-up of UMCF has been developed based on the principle ofUMCF, and it is the basis for figure correction study. The study on UMCF removalfunction has been conducted, and the material removal mathematical model isestablished based on the study of the principle of UMCF. The theoretical models areachieved by the analysis of the ultrasonic stress, the magnetic stress and thehydrokinetic stress on the workpiece surface in the polishing zone. The validity of thetheoretical models is examined by the experimental results.
     The dwell time solution problem is a key issue in the figure correction and,consequently, two dwell time algorithms have been developed. Themethod to determine dwell time initial value and to overcome the edge effect hasbeen studied. The effect of removal functions with different characteristics on surfaceaccuracy after polishing and processing time has been studied by dwell timealgorithm simulation analysis. The figure correction method for axisymmetric figure error and its dwell time algorithm have been studied. The figure correction problemwas solved as a constrained optimization problem, and Thikhonov regularization hasbeen used to achieve small expected residual error and overcome ill-conditioning.
     The equal dwell unit area method has been developed to solve the problem, howto determine the dwell points on non-parallel polishing path. This method makes thedwell unit areas of the adjacent points equal; thereby dwell points of thepolishing path homogeneous distribution on the workpiece surface can be obtained.In order to solve the problem of the calculation of the dwell time on the non-parallellines polishing path, the dwell time error proportional algorithm fornon-parallel paths has been developed, and the dwell time of the dwell points on thepolishing path can be solved by the algorithm directly. The pseudo-random polishingpath has been developed to remove the mid and high-frequency errors after small toolpolishing. The boundary optimization algorithm has been developed to optimizepseudo-random path, thereby it can be used in polishing workpiece surface of anyboundary shape efficiently. The power spectral density (PSD) of surface before andafter polishing with pseudo-random path has been analyzed and the result indicatedthat the high frequency error can be reduced by the application of pseudo-randompath. Workpiece and the experimental device modeling, preprocessing andpost-processing have been achieved, and the integrated simulation, and verification(IS&V) has been developed. The generation of NC code for UMCF figure correctionand process simulation verification have been achieved.
     The analysis of error source in the UMCF figure correction process has beenconducted. A dwell time algorithm was used as a tool for simulation study, and theeffect of the positioning error and removal function error on material removal andresidual error has been studied.
     Figure correction experiments on planar and spherical surfaces have beenconducted by UMCF figure correction technology, and it validate the effectiveness ofthe dwell time algorithms and polishing path planning algorithms. The security ofUMCF in fabrication of high quality optical components is proved by figurecorrection experimental results.
引文
[1] H. B. Cheng,Z. J. Feng,Y. Wu. Process Technology of Aspherical MirrorsManufacturing with Magnetorheological Finishing[J]. Materials ScienceForum,2004,6-10:471-472
    [2] S. D. Jacobs. International innovations in optical finishing[J]. The InternationalSociety for Optical Engineering,2004,5523:264-272
    [3] H. Pollicove,D. Golini. Deterministic manufacturing process for precisionoptical surfaces[J],Key Engineering Materials,2003,53-58:238-239
    [4]杨福兴.激光核聚变光学元件超精密加工技术的研究[J].光学技术,2003,29(6):649-651
    [5]高宏刚,曹健林,朱铺.超光滑表面及其制造技术的发展[J].物理,2000,29(10):610-614
    [6] A. Shorey,W. Kordonski,J. Tracy and M. Tricard. Developments in thefinishing of domes and conformal optics[J]. Window and Dome Technologiesand Materials X,2007,6545
    [7]王慧军,张飞虎,赵航,栾殿荣,陈亚春.超声波磁流变复合抛光中几种工艺参数对材料去除率的影响[J].光学精密工程,2007,15(10):1583-1588
    [8] F. H. Zhang,H. J. Wang,D. R. Luan,X. K. Shi,Y. S. Yang. Research onMagnetic Field in Ultrasonic-magnetorheological Compound Finishing[C].Proceeding of the9th International Symposium on Advances in AbrasiveTechnology,2006:140-145
    [9] H. J. Wang,F. H. Zhang,H. Zhao,D. R. Luan,Y. C. Chen. Effect of severalprocessing parameters on material removal ratio inultrasonic-magnetorheological compound finishing[J]. Optics and PrecisionEngineering,2007,15(10):1583-1588
    [10]辛企明.近代光学制造技术[M].北京:国防工业出版社,1997:40-55
    [11]杨力.先进光学制造技术[M].北京:科学出版社,2001:62-79
    [12] M. Ando,M. Negishi,M. Takimoto,A. Deguchi. Supersmooth polishing onaspherical surfaces[J]. Nanotechnology,1995,6:111-120
    [13]庞滔.超精密加工技术[M].北京:国防工业出版社,2000:166-170
    [14] Y. Zheng,Y. Li,L. Wang and D. Wang. Method of stressed lap shape control forlarge mirror fabrication[J]. Optomechanical Technologies for Astronomy,2006,6273
    [15] L. N. Allen,R. E. Keim. An ion figuring system for large optic fabrication[J].Current Developments in Optical Engineering and Commercial Optics,1989,33-50
    [16] P. M. Shanbag,M. R. Feinberg,G. Sandri,M. N. Ion beam machining ofmillimeter scale optics[J]. Applied Optics,2000,39:599-611
    [17] T. W. Drueding, T. G. Bifano, S. C. Fawcettl. Contouring Algorithm for IonFiguring[J]. Precision Engineering,1995,17(1):10-21
    [18]武建芬.离子束加工技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2010:4-7
    [19]焦长君.光学镜面离子束加工材料去除机理与基本工艺研究[D].长沙:国防科学技术大学,2008:107-108
    [20]刘晓东,郑晓泉,张要强.低温等离子体的诊断方法[J].绝缘材料,2006,39(2):43-46
    [21]刘卫国,田园.等离子体抛光对表面粗糙度的影响[J].西安工业大学学报,2010,30(2):108-111
    [22]张巨帆,王波,董申.大气等离子体抛光技术在超光滑硅表面加工中的应用[J].光学精密工程,2007,15(11):1749-1755
    [23]王慧军.超声波磁流变复合抛光关键技术研究[D].哈尔滨:哈尔滨工业大学,2008:39-43
    [24] J. A. Menapace,P. J. Davis,W. A. Steele,L. L. Wong,T. I. Suratwala,P. E.Miller. Utilization of Magnetorheological Finishing as a Diagnostic Tool forInvestigating the Three-dimensional Structure of Fractures in Fused Silica[J].Laser-Induced Damage in Optical Materials,2005,5491(599102):1-9
    [25] S. N. Shafrir,J. C. Lambropoulos,S. D. Jacobs. A magnetorheologicalPolishing-based Approach for Studying Precision Microground Surfaces ofTungsten Carbides[J]. Precision Engineering,2007,31(2):83-93
    [26] F. H. Zhang,G. W. Kang,Z. J. Qiu. Magnetorheological finishing of glassceramic[J]. Key Engineering Materials,2004,257-258:511-514
    [27] E. Pitschke,P. Sperber,R. Stamp,R. Rascher,L. Smith,M. Smith,M.Schinhaerl. Prediction of MRF Polishing by Classification of the Initial Errorwith Zernike Polynomials[J]. Optical Manufacturing and Testing V,2003,5180:115-122
    [28] V. Bagnoud,M. J. Guardaben,J. Puth. High-energy,High-average-power Laserwith Nd:YLF Rods Corrected by Magnetorheological Finishing[J]. AppliedOptics,2005,44(2):282-288
    [29] C. H. Lim,Y. J. Kim,S. H. Lee,W. B. Kim,S. J. Lee. Polishing of the ThreeDimensional Surfaces of Micro Structure by Magnetorheological Fluid[C]. The5th Korean MEMS Conference,2003:185-190
    [30]林偉民,大森整,渡邉裕,森田晋也,尹韶輝.磁性流体研磨法(MRF)によるELID研削面の超精密仕上げ[C].2004年度精密工学会春季大会学術講演会講演論文集,2004:181-182
    [31] F. H. Zhang,X. W. Sun,S. Dong,L,J,Zhang. Research on Ultra-low Feed ServoControl Technology of Ultra-precision Machine Based on Semi-closed LoopControl[J]. Advances in Machining&Manufacturing Technology VIII. KeyEngineering Materials,2006,486-491
    [32] Xiwei Sun,Feihu Zhang,Shen Dong,Longjiang Zhang. Research on Low SpeedServo Control Technology of Ultra-precision Machine Tool[C]. Proceeding ofThe First International Conference on Precision Engineering and Micro/NanoTechnology in Asia,2005:290-293
    [33]孙希威,张飞虎,董申,栾殿荣.磁流变抛光光学曲面的两级插补算法[J].光电工程,2006,2:61-64
    [34]孙希威,张飞虎,董申,张龙江. KDP晶体加工专用超精密机床数控系统开发[J].制造技术与机床,2005,(11):95-98
    [35]孙希威,张飞虎,董申,康桂文.磁流变抛光去除模型及驻留时间算法研究[J].新技术新工艺,2006,(2):73-75
    [36]张飞虎,孙希威,董申,康桂文.磁流变抛光技术及其应用[J].新技术新工艺增刊,2005,33-37
    [37]孙希威,张飞虎,董申,栾殿荣.磁流变抛光非球面插补算法的研究[C].2005年机械工程学会年会论文集,2005:52
    [38]孙希威.磁流变抛光机床数控系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2006:88-91
    [39]孙希威,张飞虎,董申,张龙江. KDP晶体加工专用超精密机床数控系统开发[C].全国生产工程学会第9届年会暨第4届青年科技工作者学术会议,2004:314-318
    [40]彭小强.确定性磁流变抛光的关键技术研究[D].长沙:国防科学技术大学,2004:2-3
    [41]张云,冯之敬,赵广木.磁流变抛光工具及其去除函数[J].清华大学学报(自然科学版),2004,44(2):190-193
    [42]程灏波,王英伟,冯之敬.永磁流变抛光纳米精度非球面技术研究[J].光学技术.2005,31(1):52-54
    [43]彭小强,戴一帆,李圣怡.磁流变抛光中的磁场与磁流变液缎带成型分析[J].高技术通讯,2004,4:58-60
    [44]彭小强,戴一帆,唐宇.基于灰色预测控制的磁流变抛光液循环控制系统[J].光学精密工程,2007,15(1):100-105
    [45]张峰.磁流变抛光技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000:60-61
    [46]戴一帆,袁征,陈浩锋.热压多晶氟化镁的磁流变抛光研究[J].国防科技大学学报,2008,30(5):99-102
    [47] J. F. Song,Y. X. Yao,D. G. X. Effects of Polishing Parameters on materialremoval for curved optical glasses in bonnet Polishing[J]. Chinese Journal ofMechanical Engineering(English Edition),2008,(21):29-33
    [48] J. F. Song,Y. X. Yao,D. G. Xie. Experimental research on Polishing spot ofbonnet Polishing[J]. Applied Mechanics and Materials.2008,10-12:385-389
    [49]宋剑锋,姚英学,谢大纲等.超精密气囊工具抛光方法的研究[J].华中科技大学学报(自然科学版),2007,35(增刊1):104-107
    [50]宋剑锋.曲面光学零件气囊抛光工艺参数优化及其相关技术研究[D].哈尔滨:哈尔滨工业大学,2009,8
    [51] J. Gonzalez Garcia,A. Cordero-Davila,E. Luna. Static and dynamic removalrates of a new hydrodynamic polishing tool[J]. Applied Optics.,2004,43:3623-3631
    [52] W. Kordonski,D. Golini,S. Hogan. System for abrasive jet shaping andpolishing of surface using magnetorheological fluid. US Patent5,971,835,1999
    [53] S. M Booij,O. W Fahnle,H. v. Brug,J. J. M. Braat. Nanometer Deep ShapingWith Fluid Jet Polishing[J]. Opt. Eng,2002,41(8):1926–1931
    [54] W. Kordonski. Apparatus and method for abrasive jet finishing of deeplyconcave surfaces using magnetorheological fluid. US Patent6,561,874,2003
    [55] W. I. Kordonski,A. B. Shorey,M. Tricard. Magnetorheological Jet(MR Jet)Finishing Technology[J]. Journal of Fluids Engineering,2006,128:24-25
    [56]张学成.磁射流抛光技术研究[D].长沙:国防科学技术大学,2007:98
    [57]张学成,戴一帆,李圣怡,彭小强.磁射流抛光时几种工艺参数对材料去除的影响[J].光学精密工程,2006,14(6):1004-1008
    [58] I. V. Prokhorov,W. I. Kordonski,L. K. Gleb,G. R. Gorodkin,M. L. Levin. NewHigh-Precision Magnetorheological Instrument-based Method of PolishingOptics[J]. OSA OF&T Worhshop Digest,1992,24:134-136
    [59] W. I. Kordonski. Magnetorheological Effect as a Base of New Devices andTechnologies[J]. Journal of Magnetism and Magnetic Materials,1993,122:395-398
    [60] Y. Tain,K. Kawata. Development of High-efficiency Fine Finishing ProcessUsing Magnetic Fluid[C]. Annals of the CIRP,1984,33:217-220
    [61] W. I. Kordonski, D. Golini. Fundamentals of Magnetorheological FluidUtilization in High Precision Finishing[J]. Journal of Intelligent MaterialSystems and Structures,1999,10:683-689
    [62] W. I. Kordonski,D. Golini,P. Dumas. Magnetorheological Suspension-basedFinishing Technology[J]. Industrial and Commercial Applications of SmartStructures Technologies,1998,3326:527
    [63] S. D. Jacobs,A. B. Shorey. Magnetorheological Finishing[C]. New Fluids forNew Materials. Optical Society of America,2000:142-144
    [64]杨雪玲,苏君.磁流变抛光技术现状与进展[J].武汉理工大学学报,2010,12-30
    [65] H. J. Wang,F. H. Zhang,Z. Hang,D. R. Luan,Y. C. Chen. Study on OpticalPolishing of Optical Glass by means of Ultrasonic-magnetorheologicalCompound Finishing[J]. Advanced Optical Manufacturing Technologies,2007,6722(67221):1-5
    [66]李克华,王振民,王玉,鲁涛.纤维油石在超声波抛光中的应用[J].金刚石与磨料磨具工程,2001,24-26
    [67] F. H. Zhang,H. J. Wang,D. R. Luan. Research on Machining Mechanics andExperiment of Ultrasonic-magnetorheological Compound Finishing[J].International Journal of Computer Applications in Technology,2007,29(2/3/4):252-256
    [68]张飞虎,王慧军,康桂文,栾殿荣.超声波磁流变复合抛光方法及装置:中国,200410044076.0[P].2005-05-13
    [69] A. H. Greenleaf,Computer controlled optical surfacing[J]. Active OpticalDevices and Applications,1980,228:41-54
    [70] R. A. Jones. Computer controlled optical surfacing with orbital tool motion[J].Optical Engineering,1986,25:785-790
    [71] R. A. Jones,W. J. Rupp. Rapid optical fabrication with CCOS[J]. AdvancedOptical Manufacturing and Testing,1990,1333:34-43
    [72] S. R. Wilson,J. R. McNeil. Neutral ion beam figuring of large optical surfaces[J].Current Developments in Optical Engineering II,1987,818:320-324
    [73] S. R. Wilson,D. W. Reicher,C. F. Kranenberg and J. R. McNeil. Ion beammilling of fused silica for window fabrication[J]. Laser Induced Damage inOptical Materials,1990,1441:82-86
    [74] L. N. Allen,R. E. Keim. An ion figuring system for large optic fabrication[J].Current Developments in Optical Engineering and Commercial Optics,1989,1168:33-50
    [75] M. Tricard,P. Dumas,G. Forbes and M. DeMarco. Recent advances insub-aperture approaches to finishing and metrology[J]. Advanced OpticalManufacturing Technologies,2006,6149(614903):1-19
    [76]王权陡.计算机控制离轴非球面制造技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2001:10-11
    [77]郑楠,李海波,袁志刚.大口径光学元件磁流变抛光工艺软件设计[J].强激光与粒子束,2001,23(2):419-422
    [78]舒朝濂,田爱玲,杭凌侠,郭忠达.现代光学制造技术[M].北京:国防工业出版社,2010:6-8
    [79]阙银中.计算机控制小工具抛光去除函数的优化设计及工艺研究[D].长春:长春理工大学,2008:1-32
    [80] David D,Walker David B,Andrew K. The Precessions tooling for polishing andfiguring flat[J],spherical and aspheric surfaces. OPTICS EXPRESS,2003,11(8):958-964
    [81]王毅,倪颖,余景池.小型非球面数控抛光技术的研究[J].光学精密工程,2007,10(15):1527-2533
    [82] H. J. Wang,F. H. Zhang,D. R. Luan. Research on Material Removal ofUltrasonic-magnetorheological Compound Finishing[J]. International Journal ofMachining and Machinability of Materials,2007,2(1):50-58
    [83]张峰,张学军,余景池等.磁流变抛光数学模型的建立[J].光学技术,2000,26(2):190-192
    [84]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998:9-19
    [85] C. j. Jiao,S. Y. Li,X. H. Xie. Algorithm for ion beam figuring of low-gradientmirrors. Applied Optics,2009,,48(21):4090-4096
    [86]俞敏,杨力,万勇建.驻留时间参数优化分析[J].光学与光电技木,2006,4(1):5-7
    [87]肖庭延,齐忠涛.解二维卷积型积分方程的正则化方法[J].装甲兵工程学院学报,1996,10(2):25-31
    [88]李全胜,成晔,蔡复之,冯之敬,张伯鹏.计算机控制光学表面成形驻留时间算法研究[J].光学技术,1999,3:56-62
    [89]邓伟杰,郑立功,史亚莉,王孝,张学军.基于线性代数和正则化方法的驻留时间算法[J].光学精密工程,2007,15(7):1009-1015
    [90]石峰,戴一帆,彭小强,宋辞.基于矩阵运算的光学零件磁流变加工的驻留时间算法[J].国防科技大学学报,2009,31(2):103-106
    [91]杨伯平,郭伟远.基于Clean算法的离子束抛光技术的驻留时间求法[J].天文研究与技术,2009,6(2):124-129
    [92]王云飞,姚英学,余顺周.回转对称非球面气囊抛光控制算法研究[J].现代制造工程,2006,8:9-14
    [93]彭小强,戴一帆,李圣怡,尤伟伟.回转对称非球面光学零件磁流变成形抛光的驻留时间算法[J].国防科技大学学报,2004,26(3):89-92
    [94]孙希威,韩强,于大泳,刘胜.磁流变抛光驻留时间算法[J].光电工程,2009,36(1):115-119
    [95]周林,戴一帆,解旭辉.计算机控制抛光中基于等面积增长螺旋线的加工路径[J].国防科技大学学报,2009,31(4):1-4
    [96]李圣怡,解旭辉,焦长君等.离子束加工光学元件的拼接加工方法:中国,200910042430.9[P].2009-07-15
    [97]戴一帆,李圣怡,周林等.一种离子束抛光路径的规划方法:中国,20080958.X[P].2008-10-01
    [98] Yuhao Li, Jingchun Feng, Yuhan Wang. Fractal Tool-Path Planning forFree-form Surface Polishing System[J]. Key Engineering Materials,2008,359-360:484-488
    [99]戴一帆,石峰,彭小强,李圣怡.基于熵增原理抑制磁流变抛光中高频误差[J].中国科学,2009,39(10):1663-1669
    [100]于瀛结,李国培.关于光学元件波面测量中的功率谱密度[J].计量学报,2003,24(2):103-107
    [101]徐芳,魏全忠,伍凡.功率谱密度函数评价方法探讨[J].光学仪器,2000,22(3):21-24
    [102]周林.光学镜面离子束修形理论与工艺研究[D].长沙:国防科学技术大学,2008:8
    [103]王飞,冯之敬,程灏波.基于Kohonen自组织网络算法规划数控抛光路径[J].航空精密制造技术,2005,41(6):15-17
    [104]Lee Hui-Lung, Lee Chia-Feng, Chen Ling-Hwei. A perfect maze basedsteganographic method[J]. Journal of Systems and Software,2010,83(12):2528-2535
    [105]Liu Xiang,Gong Daoxiong. A comparative study of A-star algorithms for searchand rescue in perfect maze[C].2011International Conference on ElectricInformation and Control Engineeri,2011:24-27,
    [106]Tsapatsis,Michael. Pores by pillaring:Not always a maze[J]. AngewandteChemie-International Edition,2008,47(23):4262-4263
    [107]Lee Hui-Lung,Lee Chia-Feng,Chen Ling-Hwei. An improved method forhiding data in a maze[C]. The7th International Conference on MachineLearning and Cybernetics,2008,6:3161-3165
    [108]陆宇昊,沈燕,韦克安等. UG二次开发技术的研究[J].广西大学学报(自然科学版),2005,30:134-137
    [109]刘新宇,王高潮,窦蓉.基于UG的模具CAD/CAPP/CAM集成系统的研究[J].模具制造,2003,8:6-9
    [110]王磊,李浙昆,谭毅等. UG/OPenAPI对UG二次开发技术研究[J].机电产品开发与创新,2006,19(5):105-206
    [111]韩翔,刘义,余永健. UG工程系统应用与开发实例[M].北京:清华大学出版社,2008:26-27
    [112]赵波,龚勉,浦维达等. UG CAD实用教程[M].北京:清华大学出版社,2002:78-80
    [113]Zhou Lin,Dai Yifan,Xie Xuhui. Analysis of correcting ability of ion beamfiguring[J]. Key Engineering Materials,2008,364:470-475
    [114]D. W. Camp,M. R. Kozlowski,L. M. Sheehan,M. A. Nichols,M. Dovik,R. G. Raether and I. M. Thomas. Subsurface damage and polishing compoundaffect the355-nm laser damage threshold of fused silica surfaces[J].Laser-Induced Damage in Optical Materials,1998,3244:356-364
    [115]H. C. Lee,G. J. Jeon. Real time compensation of two-dimensional contour errorsin CNC machine tools[C]. International Conference on Advanced IntelligentMechatronics,1999:623-628
    [116]E. Fess,J. Schoen,M. Bechtold,D. Mohring,C. Bouvier. UltraForm FinishingProcesses for Optical Materials[J]. Optical Manufacturing and Testing VI,2005,5869:0F1-0F6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700