基于飞秒光频梳的绝对距离测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长度作为七个基本物理量之一,其精确测量在前沿基础科学和先进技术应用中具有极为重要的意义。随着飞秒光频梳的出现,飞秒脉冲激光器开始应用于绝对距离测量。相对于传统测距方法中的连续激光、脉冲激光和白光等光源,锁定的飞秒脉冲激光器具有十分独特的优势,在时域上可以看作是一系列等间隔的脉冲序列,而频域上则可以提供从微波频率直到光频的一系列等间隔频率分布。本论文在国家自然科学基金和北京市自然科学基金的支持下,围绕飞秒光学频率梳绝对距离测量技术进行了深入的研究和探索。主要研究内容包括以下几个方面:
     (1)分析了现有各种绝对距离测量方法,介绍了飞秒光学频率梳绝对距离测量技术国内外研究现状及发展趋势。
     (2)综述了基于飞秒光学频率梳的绝对距离测量原理,归纳了飞秒激光器光学频率梳的应用和激光频率锁定与溯源的基本原理。
     (3)在色散脉冲传播理论的基础上,提出了飞秒光学频率梳引入非平衡迈克尔逊干涉仪的互相关离散模型。在考虑相速度、群速度和群延时色散前提下,建立了超短脉冲在不同中心波长、频谱形状和大气条件下绝对测距互相关模型。仿真结果表明,随着传播距离的增大互相关模型具有稳定啁啾和线性加宽;而大气压强、温度、湿度和二氧化碳含量的微小变化只引起互相关图形的移动,不产生任何线性加宽或啁啾。
     (4)在飞秒绝对测距互相关离散模型的基础上,提出了飞秒光学频率梳引入非平衡迈克尔逊干涉仪中的互相关连续模型。基于连续模型和二次近似算法研究了互相关中最亮条纹的位置,得到互相关图案中最亮条纹的位置随延迟距离做非线性变化,当达到一定距离后,最亮条纹移动呈线性变化。提出了非线性色散深度的概念,当距离大于非线性色散深度时,互相关的形成由光谱轮廓确定,而相干模式的每个强度点只由一个固定频率确定。
     (5)在白光色散干涉的基础上,提出了光谱分辨干涉飞秒绝对测距方法。分析了理想采样下以及光学频率梳滤出模式(3648和1824两个模式数量)情况下,光谱分辨干涉方法的性能指标。仿真结果表明光谱分辨干涉法的最小测量距离为6.3μm,非模糊范围为5.75mm,测量精度为±4μm。采用适当的组合测量方法,最大测量距离可以扩展到任意长度。研制了飞秒光谱分辨干涉法中用于滤出光梳模式的法布里-珀罗标准具,设计并实现了光谱分辨干涉法飞秒绝对测距实验装置,实验数据表明,测距范围达到±1mm,测量偏差达到±5μm。
Length is one of the seven basic physical quantities. The accurate measurement oflength has extremely important significance in the forefront of basic science and advancedtechnology applications. With the advent of femtosecond optical frequency comb, thefemtosecond pulse laser is used in the absolute distance measurement. Compared to lightsources used in traditional ranging method such as continuous wave laser, pulsed laser andwhite light, femtosecond pulse laser has very unique advantages. It can be considered as aseries of equally spaced pulse sequence in the time domain which can provide a series ofequally spaced frequency distribution from microwave frequencies to optical frequencies inthe frequency domain. The research in this dissertation was supported by National NaturalScience Foundation and Beijing Natural Science Foundation. The research and explorationof the absolute distance measurement based on femtosecond optical frequency comb waspresented in the paper. The main research contents are as the followings:
     (1) The existing methods of absolute distance measurement are analyzed. The domesticand international research present situation and the development trend of the absolutedistance measurement techniques based on femtosecond optical frequency comb areintroduced.
     (2) The absolute distance measurement principles based on femtosecond opticalfrequency comb are summarized. The two basic principles of femtosecond laser and itsfrequency locking and traceability are concluded.
     (3) Based on the dispersion pulse propagation theory, the discrete model of thecross-correlation signal the femtosecond optical frequency comb propagating in anunbalanced Michelson interferometer is proposed. Considering phase velocity, groupvelocity and the group delay dispersion the model of the cross-correlation functions of theultrashort pulse sequence propagating in air is built with different pulse center wavelength,different spectral distribution and with the change of environmental parameters. Thesimulation results show that the cross-correlation pattern has stable chirp and linearbroadening with the increase of propagation distance, but the minor changes of theenvironmental parameters, such as air pressure, temperature, humidity, and CO2content, give rise to the shift of the correlations patterns without any chirp or linear broadening.
     (4) Based on the discrete model of the cross-correlation patterns of the femtosecondabsolute distance measurement, the continuous model of the cross-correlation functions offemtosecond optical frequency comb propagating in an unbalanced Michelson interferometeris developed. By introducing the continuous model and quadratic approximation, theposition of the brightest fringe in the correlation pattern is found out. The simulation resultsshow that the position of the brightest fringe in the correlation pattern varies non-linearly forshort delay distances, and when a specific distance is reached, the brightest fringe varieslinearly. The concept of the non-linear dispersion depth is proposed. It is showed that theshape of the cross-correlation patterns at the distances greater than the non-linear dispersiondepth is determined by the source spectral profile. It is also observed that each intensity pointof the correlation pattern is formed by the contribution of one dominant stationary frequency.
     (5) Femtosecond absolute distance measurement of spectrally resolved interferometryon the basis of white light dispersion interference is advanced. The performance of spectrallyresolved interferometry method in the case of3648and1824filtered optical modes ofoptical frequency comb, with reference to the case of ideal sampling is summarized.Simulation results show that the minimum measurable distance of this method is6.3μm, thenon-ambiguity range is5.75mm and the measurement accuracy is±4μm. The maximumdistance can be extended to arbitrary length. The Fabry-Perot etalon, which is used to filterout the optical frequency comb mode, is developed. The setup of spectrally-resolvedinterferometry for absolute distance measurement is designed and realized. The experimentresult shows that the distance measurement range is±1mm, and the measurement differencereaches±5μm.
引文
[1] I. Coddington, W. C. Swann, L. Nenadovic, et al. Rapid and Precise AbsoluteDistance Measurements at Long Range. Nat. Photonics,2009,3(6):351~356
    [2]赵树忠,张国雄.多边法激光三维坐标测量系统及其跟踪机构设计.现代制造工程,2005,(10):64~66
    [3]王婷,裘祖荣,李杏华.四路激光跟踪柔性坐标系统绝对零位标定.中国机械工程,2008,19(9):1051~1054
    [4]林永兵,张国雄,李真等.四路激光跟踪三维坐标测量系统最佳布局.中国激光,2002,29(11):1000~1005
    [5]赵武,张涛,周肇飞等.测量大型机件的精密测距仪.四川大学学报(工程科学版),2006,38(5):152~155
    [6]谢驰,周肇飞,蔡鹏等.激光跟踪测距方法及其应用的研究.兵工学报,2007,28(11):1377~1381
    [7]隋修武,张国雄,李杏华等.四路激光跟踪柔性坐标测量系统的跟踪器设计.仪器仪表学报,2005,26(12):1253~1261
    [8]王佳,刘永东,梁晋文.工业动态跟踪测量的原则与技术特点.计量学报,2000,21(1):34~39
    [9] V. Kapilal, A. G. Sparks, J. M. Buffington, et al. Spacecraft Formation Flying:Dynamics and Control. in IEEE. American Control Conference, San Diego, CA,1999,6:4137~4141
    [10] C. Sabol, R. Burns, C. A. McLaughlin. Satellite Formation Flying Design andEvolution. Journal of Spacecraft and Rockets,2001,38(2):270~278
    [11] A. L. Mieremet, M. W. Beijersbergen. Fundamental Spatial Resolution of an X-rayPore Optic. Appl. Opt.,2005,44(33):7098~7105
    [12] P. Gondoin, O. Absil, C. V. M. Fridlund, et al. Darwin Ground-based EuropeanNulling Interferometer Experiment (GENIE). Proc. of SPIE,2003,4838:700~711
    [13] S. Pellegrin, G. S. Buller, J. M. Smith, et al. Laser-based Distance Measurement usingPicosecond Resolution Time-correlated Singlephoton Counting. Meas. Sci. Technol.,2000,11(6):712~716
    [14] J. Kim, J. Chen, Z. Zhang, et al. Long-term Femtosecond Timing link Stabilizationusing a Singlecrystal Balanced Cross Correlator. Opt. Lett.,2007,32(9):1044~1046
    [15] J. Kim, J. A. Cox, J. Chen, et al. Drift-free Femtosecond Timing Synchronization ofRemote Optical and Microwave Sources. Nature Photon.,2008,2(11):733~736
    [16] M. E. Pritchard, M. A. Simons. A Satellite Geodetic Survey of Large-scaleDeformation of Volcanic Centres in the Central Andes. Nature,2002,418(7):167~171
    [17] D. K. Yeomans, P. G. Antreasian, J. P. Barriot, et al. Radio Science Results during theNEAR-Shoemaker Spacecraft Rendezvous with Eros. Science,2000,289(5487):2085~2088
    [18] D. E. Smith, M. T. Zuber, G. A. Neumann. Seasonal Variations of Snow Depth onMars. Science,2001,294(5549):2141~2146
    [19]朱良,郭巍,禹卫东.合成孔径雷达卫星发展历程及趋势分析.现代雷达,2009,31(4):5~10
    [20]谷德峰,朱书博,易东云.基于轨道动力学模型的分布式SAR卫星编队CDGPS相对定位.空间科学学报,2009,29(5):515~521
    [21]刘璟,郑建华,张皓.基于HLA的小卫星编队飞行分布式仿真.计算机仿真,2010,27(5):66~70
    [22]李伟,赵黎平.低轨编队卫星构形保持的模糊PID控制.计算机仿真,2010,27(4):11~16
    [23]吕建婷,曹喜滨,高岱.卫星编队飞行的相对姿态控制.哈尔滨工业大学学报.2010,42(1):9~12
    [24]田继超,荣思远,崔乃刚.卫星编队飞行队形重构防碰撞方法研究.宇航学报,2009,30(4):1525~1530
    [25]林永兵,张国雄,李真等.四路激光跟踪干涉三维坐标测量系统自标定与仿真.仪器仪表学报,2003,24(2):205~210
    [26]武腾飞,梁志国,严家骅等.飞秒光学频率梳测距技术的研究进展.计测技术,2011,31(5):41~44
    [27] S. W. Kim. MetroLogy Combs Rule. Nat. Photonics,2009,3(6):313~314
    [28]吴学健,李岩,尉昊贇等.飞秒光学频率梳在精密测量中的应用.激光与光电子学进展,2012,49(3):030001
    [29] Q. Feng, P. Sj gren, O. Stephansson, et al. Measuring Fracture Orientation at ExposedRock Faces by using a Non-reflector Total Station. Engineering Geology,2001,59(1):133~146
    [30] J. O. Dickey, P. L. Bender, J. E. Faller, et al. Lunar Laser Ranging: A ContinuingLegacy of the Apollo Program. Science,1994,265(5171):482~490
    [31] W. T. Estler, K. L. Edmundson, G. N. Peggs, et al. Large-scale Metrology-an Update.CIRP Ann. Manuf. Technol.,2002,51(2):587~609
    [32] S. M. Beck, J. R. Buck, W. F. Buell, et al. Synthetic-aperture Imaging Laser Radar:Laboratory Demonstration and Signal Processing. Appl. Opt.,2005,44(35):7621~7629
    [33] S. Nagano, T. Yoshino, H. Kunimori, et al. Displacement Measuring Technique forSatellite-to-satellite Laser Interferometer to Determine Earth’s Gravity Field. Meas.Sci. Technol.,2004,15(12):2406~2411
    [34] R. Pierce, J. Leitch, M. Stephens, et al. Inter-satellite Range Monitoring using OpticalInteferometry. Appl. Opt.,2008,47(27):5007~5019
    [35] R. D ndliker, Y. Salvadé, E. Zimmermann. Distance Measurement by Multiple-wavelength Interferometry. J. Opt.,1998,29(3):105~114
    [36] T. Kinder, K.-D. Salewski. Absolute Distance Interferometer with Grating-stabilizedTunable Diode Laser at633nm. J. Opt. A: Pure Appl. Opt.,2002,4(6): S364~S368
    [37] H. J. Yang, J. Deibel, S. Nyberg, et al. High-precision Absolute Distance andVibration Measurement with Frequency Scanned Interferometry. Appl. Opt.,2005,44(19):3937~3944
    [38] R. W. Fox, B. R. Washburn, N. R. Newbury, et al. Wavelength References forInterferometry in Air. Appl. Opt.,2005,44(36):7793~7801
    [39] S. A. Diddams, T. Udem, J. C. Bergquist, et al. An Optical Clock based on a SingleTrapped199Hg+Ion. Science,2001,293(5531):825~828
    [40] C. Gohle, T. Udem, M. Herrmann, et al. A Frequency Comb in the ExtremeUltraviolet. Nature,2005,436(7):234~237
    [41] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, et al. Sr Lattice Clock at1×1016Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science,2008,319(5871):1805~1808
    [42] K. N. Joo, S. W. Kim. Absolute Distance Measurement by Dispersive Interferometryusing a Femtosecond Pulse Laser. Opt. Express,2006,14(13):5954~5960
    [43] K. N. Joo, Y. Kim, S. W. Kim. Distance Measurements by Combined Method basedon a Femtosecond Pulse Laser. Opt. Express,2008,16(24):19799~19806
    [44] Th. Udem, J. Reichert, R. Holzwarth, et al. Accurate Measurement of Large OpticalFrequency Differences with a Mode-locked Laser. Opt. Lett.,1999,24(13):881~883
    [45]康岩辉.双纵模双频激光干涉仪信号处理系统的研究:[硕士学位论文].成都:四川大学图书馆,2005
    [46]赵树忠.提高激光跟踪三维坐标测量精度的研究:[博士学位论文].天津:天津大学图书馆,2007
    [47]孔东.相位法激光测距仪的研究:[硕士学位论文].西安:西安电子科技大学图书馆,2007
    [48]周兴林.大尺寸截面几何形状视觉测量系统的研究:[博士学位论文].天津:天津大学图书馆,2007
    [49] K. Minoshima, H. Matsumoto. High-accuracy Measurement of240-m Distance in anOptical Tunnel by Use of a Compact Femtosecond Laser. Appl. Opt.,2000,39(30):5512~5517
    [50] K. Minoshima, H. Inaba, H. Matsumoto. Ultrahigh Dnamic-range Dstance Masurementusing a Femtosecond Frequency Comb. IEEE/LEOS Summer Topical Meetings,2007,186~187
    [51] T. Yasui, K. Minoshima, H. Matsumoto. Stabilization of Femtosecond Mode-lockedTi: sapphire Laser for High-accuracy Pulse Interferometry. IEEE J. QuantumElectron.,2001,37(1):12~19
    [52] J. Ye. Absolute Measurement of a Long, Arbitrary Distance to less than an OpticalFringe. Opt. Lett.,2004,29(10):1153~1155
    [53] M. Cui, R. N. Schouten, N. Bhattacharya, et al. Experimental Demonstration ofDistance Measurement with a Femtosecond Frequency Comb Laser. Journal EuropeanOptical Society,2008,3:08003
    [54] D. Wei, S. Takahashi, K. Takamasu, et al. Analysis of the Temporal CoherenceFunction of a Femtosecond Optical Frequency Comb. Opt. Express,2009,17(9):7011~7018
    [55] P. Balling, P. K en, P. Ma ika, et al. Femtosecond Frequency Comb based DistanceMeasurement in Air. Opt. Express,2009,17(11):9300~9313
    [56] M. Cui, M. G. Zeitouny, N. Bhattacharya, et al. High-accuracy Long-distanceMeasurements in Air with a Frequency Comb Laser. Opt. Lett.,2009,34(13):1982~1984
    [57] M. G. Zeitouny, M. Cui, N. Bhattacharya, et al. From a Discrete to a ContinuousModel for Interpulse Interference with a Frequency-comb Laser. Physical Review A,2010,82(2):023808
    [58] M. G. Zeitouny, M. Cui, A. J. E. M. Janssen, et al. Time-frequency Distribution ofInterferograms from a Frequency Comb in Dispersive Media. Opt. Express,2011,19(4):3406~3417
    [59] J. Jin, Y.-J. Kim, Y. Kim, et al. Absolute Length Calibration of Gauge Blocks usingOptical Comb of a Femtosecond Pulse Laser. Opt. Express,2006,14(13):5968~5974
    [60] J. Jin, Y. J. Kim, Y. Kim, et al. Absolute Distance Measurements using the OpticalComb of a Femtosecond Pulse Laser. Precis. Eng.&Manu.,2007,8(4):22~26
    [61] S. Hyun, Y.-J. Kim, Y. Kim, et al. Absolute Length Measurement with the FrequencyComb of a Femtosecond Laser. Meas. Sci. Technol.,2009,20(9):095302
    [62] S. Hyun, Y.-J. Kim, Y. Kim, et al. Absolute Distance Measurement using theFrequency Comb of a Femtosecond Laser. CIRP Annals-Manufacturing Technology,2010,59(1):555~558
    [63] T. Udem, J. Reichert, R. Holzwarth, et al. Absolute Optical Frequency Measurementof the Cesium D1Line with a Mode-locked Laser. Phy. Rev. Lett.,1999,82(18):3568~3571
    [64] J. D. Jost, J. L. Hall, J. Ye. Continuously Tunable, Precise, Single Frequency OpticalSignal Generator. Opt. Express,2002,10(12):515~520
    [65] N. Schuhler, Y. Salvadé, S. Lévêque, et al. Frequency-comb-referenced Two-wavelengthSource for Absolute Distance Measurement. Opt. Lett.,2006,31(21):3101~3103
    [66] Y. Salvadé, N. Schuhler, S. Lévêque, et al. High-accuracy Absolute DistanceMeasurement using Frequency Comb Referenced Multiwavelength Source. Appl. Opt.,2008,47(14):2715~2720
    [67] J. Y. Lee, Y.-J. Kim, K. W. Lee, et al. Time-of-flight Measurement with FemtosecondLight Pulses. Nat. Photonics,2010,4(10):716~720
    [68]韩海年,张炜,王鹏等.飞秒钛宝石光学频率梳的精密锁定.物理学报,2007,56(5):2760~2764
    [69]李鹏,王爱民,王希等.北京大学研制成功重复频率330MHz掺镱光纤飞秒激光器.中国激光,2011,38(2):59~59
    [70]蔡岳,王贵重,孟飞等.光纤飞秒光学频率梳的研制及绝对光学频率测量.物理学报,2011,60(10):100601
    [71] H. Y. Xia, C. X. Zhang. Ultrafast Ranging Lidar based on Real-time FourierTransformation. Opt. Lett.,2009,34(14):2108~2110
    [72] D. J. Jones, S. A. Diddams, J. K. Randka, et al. Carrier-envelope Phase Control ofFemtosecond Mode-locked Lasers and Direct Optical Frequency Synthesis. Science,2000,288(5466):635~639
    [73] R. Holzwarth, T. Udem, T. W. H nsch, et al. Optical Frequency Synthesizer forPrecision Spectroscopy. Phys. Rev. Lett.,2000,85(11):2264~2267
    [74] J. L. Hall. Nobel Lecture: Defining and Measuring Optical Frequencies. Rev. Mod.Phys.,2006,78(4):1279~1309
    [75] T. Udem, R. Holzwarth, T. W. H nsch. Optical Frequency Metrology. Nature,2002,416(3):233~237
    [76] S. A. Diddams. The Evolving Optical Frequency Comb. J. Opt. Soc. Am. B,2010,27(11): B51~B62
    [77] N. R. Newbury. Searching for Applications with a Fine-tooth Comb. Nat. Photonics,2011,5(4):186~188
    [78] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, et al. Full Range Complex SpectralOptical Coherence Tomography Technique in Eye Imaging. Opt. Lett.,2002,27(16):1415~1417
    [79] C. E. Towers, D. P. Towers, D. T. Reid, et al. Fiber Interferometer for SimultaneousMultiwavelenth Phase Measurement with a Broadband Femtosecond Laser. Opt. Lett.,2004,29(23):2722~2724
    [80] S. T. Cundiff, J. Ye. Colloquium: Femtosecond Optical Frequency Combs. Rev. Mod.Phys.,2003,75(1):325~342
    [81] K. P. Birch, M. J. Downs. An Updated Edlén Equation for the Refractive Index of Air.Metrologia,1993,30(3):1055~1062
    [82] C. Dorrer, D. C. Kilper, H. R. Stuart, et al. Linear Optical Sampling. IEEE PhotonicsTechnology Letters,2003,15(12):1746~1748
    [83] K. J. Siemsen, R. F. Siemsen, J. E. Decker, et al. A Multiple Frequency HeterodyneTechnique for the Measurement of Long Gauges. Metrologia,1996,33(6):555~563
    [84] M. Tsai, H. Huang, M. Itoh, et al. Fractional Fringe Order Method using FourierAnalysis for Absolute Measurement of Block Gauge Thickness. Opt. Rev.,1999,6(5):449~454
    [85] J. E. Decker, J. R. Pekelsky. Uncertainty Evaluation for the Measurement of GaugeBlocks by Optical Interferometry. Metrologia,1997,34(6):479~493
    [86] R. D ndliker, R. Thalmann, D. Prongué. Two-wavelength Laser Interferometry usingSuperheterodyne Detection. Opt. Lett.,1988,13(5):339~341
    [87] H. Kikuta, K. Iwata, R. Nagata. Distance Measurement by the Wavelength Shift ofLaser Diode Light. Appl. Opt.,1986,25(17):2976~2980
    [88] D. Xiaoli, S. Katuo. High-Accuracy Absolute Distance Measurement by Means ofWavelength Scanning Heterodyne Interferometry. Meas. Sci. Technol.,1998,9(7):1031~1035
    [89] L. Xu, C. Spielmann, A. Poppe, et al. Route to Phase Control of Ultrashort LightPulses. Opt. Lett.,1996,21(24):2008~2010
    [90] A. M. Chekhovsky, A. N. Golubev, M. V. Gorbunkov. Optical Pulse Distance-multiplyingInterferometry. Appl. Opt.,1998,37(16):3480~3483
    [91] Y. Yamaoka, K. Minoshima, H. Matsumoto. Direct Measurement of the GroupRefractive Index of Air with Interferometry between Adjacent Femtosecond Pulses.Appl. Opt.,2002,41(21):4318~4324
    [92] J. Zhang, Z. H. Lu, L. J. Wang. Precision Refractive Index Measurements of Air, N2,O2, Ar, and CO2with a Frequency Comb. Appl. Opt.,2008,47(17):3143~3151
    [93] J. S. Oh, S.W. Kim. Femtosecond Laser Pulses for Surface-profile Metrology. Opt.Lett.,2005,30(19):2650~2652
    [94] L. Wang, H. X. Zhang, R. P. Wang. Ultrashort Gaussian Pulse-width Expansion andShape Deformation Induced by Group Velocity Dispersion. JETP Lett.,2006,84(8):425~429
    [95] K. E. Oughstun, N. A. Cartwright. Physical Significance of the Group Velocity inDispersive, Ultrashort Gaussian Pulse Dynamics. J. Mod. Opt.,2005,52(8):1089~1104
    [96] S. P. Dijaili, A. Dienes, J. S. Smith. ABCD Matrices for Dispersive Pulse Propagation.IEEE J. Quantum Electron.,1990,26(6):1158~1164
    [97] J. Jones. On the Propagation of a Pulse through a Dispersive Medium. Am. J. Phys.,1974,42(1):43~45
    [98] A. M. Nugrowati, S. F. Pereira, A. S. van de Nes. Near and Intermediate Fields of anUltrashort Pulse Transmitted through Young’s Double-slit Experiment. Phys. Rev. A,2008,77(5):053810
    [99] B. Edlén. The Refractive Index of Air. Metrologia,1966,2(2):71~80
    [100] K.P. Birch, M.J. Downs. Correction to the Updated Edlén Equation for the RefractiveIndex of Air. Metrologia,1994,31(4):315~316
    [101] P. E. Ciddor. Refractive Index of Air: New Equations for the Visible and NearInfrared. Appl. Opt.,1996,35(9):1566~1573
    [102] A. Bartels, D. Heinecke, S. A. Diddams. Passively Mode-locked10GHz Femtosecond Ti:sapphire Laser. Opt. Lett.,2008,33(16):1905~1907
    [103] J. Schwider, L. Zhou. Dispersive Interferometric Profiler. Opt. Lett.,1994,19(13):995~997
    [104] K. Sakai. Michelson-type Fourier Spectrometer for the Far Infrared. Appl. Opt.,1972,11(12):2894~2901
    [105] L. Lepetit, G. Chériaux, M. Joffre. Linear Techniques of Phase Measurement byFemtosecond Spectral Interferometry for Applications in Spectroscopy. J. Opt. Soc.Am. B,1995,12(12):2467~2474
    [106] M. Takeda, H. Ina, S. Kobayashi. Fourier-transform Method of Fringe-patternAnalysis for Computerbased Topography and Interferometry. J. Opt. Soc. Am.,1982,72(1):156~160
    [107]吕明爱,柳建,王江.激光测距回波信号高速采样处理技术研究.光电工程,2011,38(5):59~63
    [108] T. Steinmetz, T. Wilken, C. Araujo-Hauck, et al. Fabry-Pérot Filter Cavities forWide-spaced Frequency Combs with Large Spectral Bandwidth. Appl. Phys. B,2009,96(2):251~256
    [109]田芊,廖延彪,孙利群.工程光学.北京:清华大学出版社,2006.192~203
    [110]母国光,战元龄.光学.北京:人民教育出版社,1978.250~257
    [111] M. Stryjak, A. Budnicki, R. Lewicki, et al. Discretely Tunable and MultiwavelengthErbium Doped Fibre Lasers with Fabry-Perot Etalon. Opto-Electronics Review,2008,16(2):179~184
    [112] J. Zhang, J. W. Arkwright, D. J. Farrant. Distortion Induced Effects on the Finesse ofHigh-performance Large-aperture Fabry-Perot Etalon Filters. Opt. Express,2006,14(13):5994~6000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700