利用ICESat和GRACE卫星观测数据确定极地冰盖变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化是大气和海洋科学以及固体地球物理学等的交叉研究领域。评价地球如何随着全球变暖而变化,一个有效可行的方法是研究极地冰盖的变化以及冰盖与海洋和大气之间的相互作用。冰盖消融是影响全球气候变化的重要因素,研究表明冰盖的演化对全球海平面变化有较大的影响,这种影响目前表现为平均海面上升,正在威胁人口集中的沿海陆地和南太平洋某些岛国的生存环境。尽管较大范围的融化不会马上来临,但是冰盖的持续变化影响着全球气候变化的进程和全球的温室效应。冰盖和海洋之间的年质量交换大约相当于全球海平面高度的8mm的海水质量,因此即使是小的质量交换比率的变化也是很重要的。1992年IPCC(政府间气候变化专门委员会)关于气候变化的科学评估增刊中谈到,关于海平面高在认识上最大的不确定性,在于未能充分理解反映气候变化,同时也影响海面高预测的极地冰盖。美国国家科学院(1990)也指出,格陵兰岛和南极冰盖质量平衡中的变化是我们了解全球气候变化和海平面升高的关键,也是海平面高预测量化和精化的关键。由于冰盖质量平衡的不确定性直接影响全球海面变化率的不确定性,因此,极地冰盖的量化监测和评估非常重要。研究冰盖对于气候变化的响应需要高精度的观测数据集和均衡的冰面覆盖。
     ICESat激光测高卫星是NASA对地观测系统的一部分,ICESat卫星上的地学激光测高系统可以年际和长时间尺度监测极地冰盖高程变化,量化极地冰盖质量变化和质量平衡的改变。本论文主要研究内容为利用ICESat激光测高卫星观测数据联合GRACE卫星重力数据研究年际和长周期的极地冰盖变化,探讨极地冰盖总量平衡和对海平面变化的贡献;获取预测冰盖总量和海平面变化所需的关键数据;研究质量平衡改变的原因以及它们对全球海平面和全球气候变化的影响。
     本文的主要研究内容和成果包括:
     (1)从全球气候变化、海平面上升及冰盖冰川消融三者的关系出发,综述了冰盖冰川的消融现状及南极洲和格陵兰岛冰盖的质量平衡进程,阐述了监测冰盖表面高程及质量变化的相关技术和方法;
     (2)总结和评述了ICESat激光测高技术的应用及ICESat卫星的在轨性能,分析了激光测高监测冰盖表面高程变化的优势,对ICESat上搭载的唯一有效载荷即地学激光测高系统(GLAS)的波形和测高精度进行了分析;分析了激光测的误差来源,及相关地球物理改正;
     (3)详细描述了GRACE数据产品构成,总结并研究了利用GRACE时变重力场反演地球表面质量变化的基本理论;
     (4)研究并实施了ICESat卫星激光测高数据预处理,给出了交叉点计算方法,获得了“净化”的可靠数据集;
     (5)较系统地研究了三种数据内插方法,包括Shepard方法和连续曲率张力样条法及Kriging方法,利用实测数据,通过对三种内插方法的多项实例分析比较,提出确认连续曲率张力样条方法更适合于极地冰盖数据的内插;
     (6)利用交叉点计算得到的高程差与时间差的导数计算平均高程变化率,分析了冰盖变化趋势,探讨了影响冰盖高程变化的因素;
     (7)利用GRACE卫星观测数据反演了南极洲和格陵兰岛冰盖的质量变化,分析了冰盖质量变化的时间特征及其与气候变化的关系;
     (8)对比分析了ICESat数据与GRACE数据所得极地冰盖变化结果,揭示了极地冰盖质量平衡与全球海平面变化之间的相关性。
     综上所述,本文的主要研究成果包括:ICESat激光测高数据的预处理技术;数字地面高程模型的高精度插值方法;基于ICESat测高数据建立了极地高精度高分辨率冰面数字高程模型;基于交叉点算法获取了极地冰盖高程变化时间序列;利用GRACE时变重力位模型反演了极地冰盖质量变化;对比分析ICESat与GRACE数据所得极地冰盖变化结果;揭示了极地冰盖质量平衡与全球海平面变化之间的相关性;研制了可联合卫星重力数据和激光测高数据推求极地冰盖变化与水质量变化的多功能软件系统。
Climate change studies require scientific evidence from a network of atmospheric and oceanic sciences as well as solid earth geophysics. One possible way to assess how the Earth changes due to global warming is by studying ice sheet changes and the interaction among ice sheet, ocean and atmosphere. Melting of ice sheet is a key factor which influences the global climate change. Research has showed that the evolution of ice sheet, which now has been making the mean sea level rise and severely threatening the continent where human survive, has major effect on global sea level change. Although major melting is not imminent, the continuous changes of ice sheets impact on the processes of global climate change and greenhouse effect. Since the annual mass exchange between the ice sheets and the ocean is about 8 mm/year of global sea level equivalent, small changes in this rate are significant.1992 IPCC Supplement on Scientific Assessment of Climate Change noted that the largest uncertainty about sea level is "rooted in our inadequate understanding of polar ice sheets whose response to climate change also affects predictions of sea level rise". The National Academy of Sciences(1990) stated "possible changes in the mass balance of the Greenland and Antarctic ice sheets are fundamental gaps in our understanding and are crucial to the quantification and refinement of sea-level forecasts". Quantifying the state of the polar ice sheet is of great importance since uncertainty in ice sheet mass balance directly affects uncertainty of the global sea level change rate. Studies on ice sheet response to climate change require data sets with high accuracy and uniform ice-sheet coverage.
     The Ice, Cloud and land Elevation Satellite (ICESat), as part of NASA's Earth Observing System program to study the Earth atmosphere and cryosphere, was launched in Jan 2003. The GLAS(Geoscience Laser Altimeter System) on the ICESat can determine the inter-annual and long-term changes in polar ice sheet mass, and quantify the change of polar ice sheet mass and its equilibrium. The aim of this dissertation is to investigate the inter-annual and long-term changes of polar ice sheets and the contribution of the total mass balance of polar ice sheets to global sea level rise using combined ICESat observation data and GRACE gravity data; to obtain key data necessary for predicting the change of total ice sheets mass and the change of sea level; and to investigate the causes of changes in mass balance as well as their impacts on global sea level and global climate.
     Main contents and achievements of this paper include:
     (1) Originating from the relationships among global climate change, sea level rise as well as ablation of ice sheets and glaciers, ablation status of ice sheets and glaciers, together with ice sheets mass balance progress in Anactica and Greenland, has been illustrated in detail, and techniques of monitoring surface elevation change and quality change of ice sheet have been studied;
     (2) The application of ICESat laser altimetry and on-orbit performance of ICESat have been summarized, then the advantage of monitoring ice sheet surface elevation change using laser altimetry has been analyzed, together with waveform and altimetry precision of GLAS; error sources of laser altimetry have been analyzed, and corresponding corrections have been given;
     (3) GRACE data products and development of GRACE gravity field have been described in detail, and the methods of determining earth gravity model using GRACE data, as well as the theory of determining mass change of earth surface using GRACE time-variable gravity field, have been studied;
     (4) "Clean"and reliable data set was obtained by studying and realizing the techniques of pre-processing, refining ICESat laser altimetry data with which the cross-over point algorithm was described;
     (5) The interpolation methods, such as Shephard, continuous curvature splines in tension and Kriging method, have been studied with the conclusion that continuous curvature splines in tension is more suitable for data interpolatation of polar ice sheet;
     (6) Through the average chang rate of elevation computed by derivatives of elevation difference and time difference obtained from cross-over point algorithm, change tendency of ice sheet mass and its precision were analysized, the factors affect elevation change of ice sheet were revealed;
     (7) Ice sheet mass changes of Antarctica and Greenland were deduced by using GRACE observations;
     (8) Through comparing the results of polar ice sheet changes obtained from ICESat data and GRACE data, correlation between polar ice sheet mass balance and sea level change was revealed.
     In conclusion, the main achievements of this dissertation includes:ICESat laser altimetry data pre-processing and refinement techniques; high-precision digital terrain elevation model interpolation method; a high-precision and high-resolution polar ice DEM was established based on ICESat altimetry data; time series of the polar ice sheets elevation change were obtained via cross-over point algorithm; the changes of polar ice sheet mass were deduced by utilizing GRACE time-varible gravity data; correlation between polar ice sheet mass balance and sea level change was revealed through comparing the results of polar ice sheet changes obtained from ICESat data and GRACE data; the multi-functional software system with independent intellectual property rights was developed for calculating polar ice mass changes and water storage change by combining satellite gravity data and laser altimetry data.
引文
[1]. Abdalati W., I. Allison, F. Carsey, G. Casassa, et.al. Recommendations for the collection and synthesis of antarctic ice sheet mass balance data [A]. In:Global and Planetary Change[C]. The ISMASS Committee,2004:1-15.
    [2]. Abdalati W., K. Steffen. Greenland ice sheet melt extent:1979-1999[J]. J. Geophys Res.,2001,106(24):33983-33988.
    [3]. Abdalati W., W. krabill, E. Frederick, S. Manizade, C. Martin, J. Sonntag, R. Swift, R. Thomas, W. Wright, J. Yungel. Airborn laser altimetry mapping of the greenland ice sheet:Application to mass balance assessment [J]. Journal of Geodynamics,2002, 34:391-403.
    [4]. Abshire J.B., X Sun, H Riris, M. Sirota, J. McGarry, S. Palm, D. Yi, and P. Liiva. Geoscience laser altimeter system (Glas) on the icesat mission:On-orbit measurement performance[J]. Geophys. Res. Lett.,2005,32:L21S02.
    [5]. Ali A.H. and V. Zlotnicki. Quality of wind stress fields measured by the skill of a barotropic ocean model:Importance of stability of the Marine Atmospheric Boundary Layer[J]. Geophys. Res. Lett.,2003,30(3):1129-1143.
    [6]. Bae S. and B.E. Schutz. Geoscience Laser Altimeter System (GLAS) Precision Attitude Determination[R]. Austin:Center for Space Research, The University of Texas, 2001:
    [7]. Bae S., B.E. Schutz. Precision attitude determination (pad)[A].In:Geoscience Laser Altimeter System(GLAS) Algorithm Theoretical Basis Document,version 2.2[M]. NASA,2002.
    [8]. Bamber J.L. A digital elevation model of the Antarctic Ice Sheet derived from ERS-1 altimeter data and comparison with terrestrial measurement [J]. Ann. Glaciol.,1994b,20: 48-54.
    [9]. Bamber J.L. and R.A. Bindschadler. An improved elevation dataset for climate and ice-sheet modelling:validation with satellite imagery[J].Annals of Glaciology,1997,25: 438-444.
    [10]. Bamber J.L., R.A. Bindschadler. An improved elevation dataset for climate and ice-sheet modelling:validation with satellite imagery[J]. Ann. Glaciol.,1997,25: 439-444.
    [11]. Bettadpur S., D. Chamber, F. Flechtner, R. Schmidt, S. Swenson, D. Yuan, J. Wahr, V. ZIotnicki. Status report, UTCSR RL02 reprocessing[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [12]. Biancale R., G Balmino, S. Bruinsma, J. Lemoine, S. Loyer, F. Perosanz. GRACE data processing in CNES/GRGS; results and discussion[R]. Austin/Texas: GRACE Science Team Meeting,2005:
    [13]. Bindschadler R.A., P.L. Vornberger. Detailed elevation map of ice stream C, Antarctica, using satellite imagery and airborne radar [J]. Ann. Glaciology,1994 20: 327-335.
    [14]. Brenner A.C., H.J.Zwally, C.R.Bentley, B.M.Csatho, D.J.Harding, M.A.Hofton, J.B. Minster, L.A. Roberts, J.L. Saba, R.H. Thomas, D. Yi. Derivation of range and range distributions from laser pulse waveform analysis for surface elevetions, roughness,slope,and vegetation heights[A]. In:Geoscience Laser Altimeter System(GLAS)Algorithm Theoretical Basis Document,version 4.1[M].NASA,2003, pp234-267.
    [15]. Brooks R.L., W.J. Campbell, R.O. Ramseier, H.R. Stanley, H.J.Zwally. Ice sheet topography by satellite altimetry [J]. Nature,1978,274:539-543.
    [16]. Bufton J.L. Laser altimetry measurements from aircraft and spacecraft [A]. In: Proceedings of the IEEE,1989,:463-477.
    [17]. Bufton J.L., J. E. Robinson, M.D. Femiano, and F.S. Flatow. Satellite laser altimeter for measurement of ice sheet topography [J]. EEE Trans. Geosci. Remote Sensing,1982,20 (4):544-549.
    [18]. Chambers D. Observing seasonal steric sea level variations with GRACE and satellite altimetry [J]. J. Geophys. Res.,2006a,111:C03010.
    [19]. Chambers D., J. Wahr and R.S. Nerem. Preliminary observations of global ocean mass variations with GRACE [J]. Geophys. Res. Lett.,2004,31:L13310.
    [20]. Chambers, D. Evaluation of new GRACE time-variable gravity data over the Ocean[J]. Geophys. Res. Lett.,2006b,33:L17603.
    [21]. Chao B.F. On inversion for mass distribution from global (time-variable) gravity field [J]. J. Geodynamics,2005,39:223-230.
    [22]. Chen J.L., B.D. Tapley, C.R. Wilson. Alaskan mountain glacial melting observed by satellite gravity [J]. Earth and Planetary Science Letters,2006d,248(1-2):368-378.
    [23]. Chen J.L., C.R. Wilson, B.D. Tapley. Satellite gravity measurements confirm accelerated melting of Greenland ice Sheet[J]. Science,2006b,313(5795):1958-1960.
    [24]. Chen J.L., C.R. Wilson, D.D. Blankenship, B.D. Tapley. Antarctic mass change rates from GRACE [J]. Geophys. Res. Lett.,2006e,33:L11502.
    [25]. Chen Y.Q., B. Schaffrin and C.K. Shum. Continental water storage changes from GRACE line-of-sight range acceleration measurements [A].In:Proc. VI Hotine-Marussi International Symposium of Theoretical and Computational Geodesy: Challenge and Role of Modern Geodesy, Wuhan, China,2006.
    [26]. Chen Y.Q., S. Han, B. Schaffrin and C.K. Shum. Calibration of CHAMP accelerometer observations for precise determination of in-situ gravity measurements [J]. Journal of Geospatial Eng.,2004,6(1):1-12.
    [27]. Chen yiqun. Recovery of terrestrial water storage change from low-low satellite-to-satellite tracking [D]. Columbus:The Ohio State University,2007:
    [28]. Church J.A., J.M.Gregory, P.Huybrechts, M.Kuhn, K.Lambeck, M.T.Nhuan, D.Qin, P.L.Woodworth.Changes in sea level [A]. In:Houghton et al.Climate change 2001 the scientific basis [M]. Cambridge:Cambridge University Press,2001:639-693.
    [29]. Curran R.J. NASA's plans to observe earth's atmosphere with Lidar [J]. IEEE Trans, on Geosci. Remote Sens.,1989,27(2):154-163.
    [30]. Davis C.H., Y. Li, J.R. McConnell, M.M. Frey, E. Hanna. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise[J]. Science,2005,308: 1898-1901.
    [31]. Davis J., P. Elo'segui, J. Mitrovica and M. Tamisiea. Climate-driven deformation of the solid Earth from GRACE and GPS[J]. Geophys. Res. Lett.,2004,31:L24605.
    [32]. Desai S., R. Gross, J. Wahr. The impact of the ocean pole tide on various geodetic observables[J]. J.Geophys. Res.2006, p09168
    [33]. Desai S.D. and D.N. Yuan. Application of the convolution formalism to the ocean tide potential:Results from the Gravity Recovery and Climate Experiment (GRACE)[J]. J. Geophys. Res.,2006,111:C06023.
    [34]. Dickey J.O., C.R. Bentley, R. Bilham, et al. Satellite gravity and the geosphere[R]. Washington:National Research Council,1997:
    [35]. DiMarzio J.P., H.J. Zwally, and A.C. Brenner. Comparisons of envisat and ers radar altimetry and icesat laser altimetry for ice-sheet elevation change studies[R]. Salzburg, Austria:ESA ENVISAT Symposium,2004:
    [36]. Ditmar P., A.A. van Eck van der Sluijs. A technique for modeling the Earth's gravity field on the basis of satellite accelerations [J]. J. Geodesy,2004,78(1-2):12-33.
    [37]. Douglas B.C.Global sea rise:A redetermination[J].Surveys in Geophysics,1997,18: 279-292.
    [38]. Duda D.P., J.D. Spinhirne and E.W. Eloranta. Atmospheric multiple scattering effects on glas altimetry-part ⅰ :Calculations of single pulse bias [J]. IEEE Trans. on Geoscience and Remote Sensing,2001,39:92-101.
    [39]. Eanes R.J., S. Bettadpur. The CSR 3.0 global ocean tide model:Diurnal and semidiurnal tides from Topex/Poseidon altimetry[R]. Austin/Texas:CSR,1996:
    [40]. Egbert E. and R. Ray. Deviation of long period tides from equilibrium: Kinematics and geostrophy [J]. J. Physical Oceanography,2002,33:822-839.
    [41]. Egbert G.D., A.F. Bennett and M.G.G. Foreman. TOPEX/POSEIDON tides estimated using a global inverse model [J]. J. Geophys. Res.,1994,99:24821-24852.
    [42]. Ekholm S. A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data [J]. J. Geophys.Res.,1996,101 (B10): 21961-21972.
    [43]. Etkins R., E.S. Epstein.The rise of global mean sea level as an indicator of climate change[J]. Science,1982,215(4530):287-289.
    [44]. Flechtner F. Status of atmosphere and ocean dealiasing Level-1B product (AOD1B) [R]. Austin/Texas:GRACE Science Team Meeting,2005a:
    [45]. Fricker H.A., A. Borsa, J.B. Minstcr, C. Carabajal, K. Quinn and B. Bills. Assessment of ICEsat performance at salar de Uyuni, Bolivia [J]. Geophys. Res. Lett., 2005,32:L21S06.
    [46]. Giovinetto M.B., H.J. Zwally. Spatial distribution of net surface accummulation on the antarctic ice sheet[J]. Annals of Glaciology,2000,31:178-183.
    [47]. Goldstein R. M., H. Engelhardt, B. Kamb, R.M. Frolich. Satellite radar interferometry for monitoring ice sheet motion:application to an Antarctic ice stream [J]. Science,1993,262:1525-1530.
    [48]. Han S.C. Efficient global gravity determination from satellite-to-satellite tracking (SST)[R]. Columbus:The Ohio State University,2003b:
    [49]. Han S.C., C. Jekeli, and C.K. Shum. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field [J]. J. Geophys. Res.,2004,109:B04403.
    [50]. Han S.C., C.K. Shum, and A. Braun. High-resolution continental water storage recovery from low-low satellite-to-satellite tracking [J]. J. of Geodyn.,2005a,39(1): 11-28.
    [51]. Han S.C., C.K. Shum, and C. Jekeli. Precise estimation of in situ geopotential difference from GRACE low-low satellite-to-satellite tracking and accelerometry data[J]. J. Geophys. Res.,2006b,111:B04411.
    [52]. Han S.C., C.K. Shum, C. Jekeli, and D. Alsdorf.Improved estimation of terrestrial water storage changes from GRACE [J]. Geophys. Res. Lett.,2005b,32: L07302.
    [53]. Han S.C., C.K. Shum, K. Matsumoto. GRACE observations of M2 and S2 ocean tides below the Filchner-Ronne and Larsen Ice Shelves, Antarctica [J]. Geophys. Res, Lett., 2005c,32:L20311.
    [54]. Han S.C., C.K. Shum, M. Bevis, C. Ji, and C. Kuo. GRACE observed crustal dilatation following the 2004 Sumatra-Andaman Earthquake[J]. Science,2006c,313: 658-662.
    [55]. Han S.C., C.K. Shum. Coseismic gravity change following the December 2004 Sumatra-Andaman earthquake:Evidence in the GRACE global gravity fields[J]. Geophys. Res. Lett.,2006d,30(7):12453-12462.
    [56]. Hansen M., et al. Global percent tree cover at a spatial resolution of 500 meters:First results of the MODIS vegetation continuous fields algorithm [J]. Earth Interact,2003, 7:1-15.
    [57]. Harding D.J., C.C. Carabaial. ICESat waveform measurements Of within-footprint topographic relief and vegetation vertical structure[J]. Geophys.Res.Letts.,2005,32: L21S10.
    [58]. Harding D.J., J.L. Bufton, and J.J. Frawley. Satellite laser altimetry of terrestrial topography:Vertical accuracy as a function of surface slope, roughness, and cloud cover [J]. IEEE Trans, on Geoscience and Remote Sensing,1994,32 (2):329-339.
    [59]. Helsen M.M., M.R. van den Broeke, R.S.W. van de Wal, W.J. van de Berg, E. Van Meijgaard, C.H. Davis, Y. Li, and I. Goodwin. Elevation changes in Antarctica mainly determined by accumulation variability [J]. Science,2008,320 (5883):1626-1629.
    [60]. Herring T.A. and K. Quinn. Atmospheric delay correction to glas laser altimeter Ranges[A]. In:Geosciencc Laser Altimeter System:Algorithm Theoretical Basis Docurnent,version 1.0[M].NASA,1999.
    [61]. Houghton J.T., BA Callander, and SK Varney. The 1992 IPCC supplement: scientific assessment [M]. Cambridge:Cambridge University Press,1992.
    [62]. Hulbe C.L. and L.M. Whillans. A method for determining ice-thickness change at remote locations using GPS [J]. Ann. Glaciology,1994,20:263-268.
    [63]. Huybrechts P., L. Muer. Predicted present-day evolution patterns of ice thickness and bedrock elevation over Greenland and Antarctica [J]. Polar Research,1999,18 (2): 299-306.
    [64]. IGARB. Independent Glas anomaly review board executive summary. unpublished, November 2003.
    [65]. Ivins E., E. Rignot, X. Wu, T. James and T. Casassa. Ice mass balance and Antarctic gravity change:Satellite and terrestrial perspectives, Earth Observation with CHAMP: Results from 3 years in Orbi[R]. Berlin/Heidelberg:Springer:,2005:
    [66]. Ivins E.R., and T.S. James (2005), Antarctic glacial isostatic adjustment:A new assessment, Antarctic Science,17(4),541-553.
    [67]. Jacobs S.S.,H.H. Helmer, C.S. Doake, A. Jenkins, R.M. Frolich. Melting of ice shelves and the mass balance of Antarctica [J]. J. of Glaciology,1992,38(130):375-387.
    [68]. Jekeli C. The determination of gravitational potential differences from satellite-to-satellite tracking [J]. Celes. Mech. Dyn. Astron,1999,75:85-100.
    [69]. Kang E., B. Tapley, S. Bettedpur, J. Ries, P. Nagel, P. Paster. Precise orbit determination for GRACE using GPS data[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [70]. Kim J.R. Evaluation of the KBR simulation model with flight data[R]. Austin/ Texas:GRACE Science Team Meeting,2005:
    [71]. Krabill W., E. Frederick, S. Manizade, C. Martin, J. Sonntag, R. Swift, R. Thomas, W. Wright, J. Yungel. Rapid thinning of parts of the southern greenland ice sheet [J]. Science,1999,283:1522-1524.
    [72]. Krabill W., W. Abdalati, E. Frederick, S. Manizade, C. Martin, J. Sonntag, R. Swift, R. Thomas, W. Wright, J. Yungel. Greenland Ice Sheet:high-elevation balance and peripheral thinning[J]. Science,2000,289:428-430.
    [73]. Kruzinga G., W. Bertiger, C. Finch, D. Kuang, L. Romans, M. Watkins, S. Wu, S. Bettadpur, F. Wang. GRACE Level-1 Status[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [74]. Kusche J., E.J.O. Schrama. Surface mass redistribution invsersion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data[J].J. Geophys. Res.,2005,110:B09409.
    [75]. Le Provost C., A.F. Bennett, and D.E. Cartwirght. Ocean tides for and from TOPEX/POSEIDON [J]. Science,1995,267:639-642.
    [76]. Le Provost C., M.L. Genco, F. Lyard, P. Vincent, and P. Canceil. Spectroscopy of the world ocean tides from a finite element hydrodynamic model[J], J. Geophys. Res.,1994, 99:24777-24797.
    [77]. Lee H.K. Radar altimetry methods for solid earth geodynamics studies[R]. Columbus:The Ohio State University,2008:
    [78]. Leysinger-Vieli G., M J Siegert, A P Payne. Reconstructing ice sheet accumulation rates at ridge B,East Antarctica [J].Annals of Glaciol.,2004,39(1): 326-330.
    [79]. Liang C.K. The adjustment and combination of Geos-3 and Seasat Altimeter Data[R]. Columbus:Ohio State University,1983:
    [80]. Lisano M.E. and B.E. Schutz. Arcsecond-level pointing calibration for icesat laser altimetry of ice sheets[J]. J. of Geodesy,2001,75:99-108.
    [81]. Luthcke S. B., D.D. Rowlands, C.C. Carabajal, D.J. Harding, J. L. Bufton, and T.A. Williams. ICESat laser altimeter pointing, ranging and timing calibration from integrated residual analysis:A summary of early mission results [A]. In: Proceedings of NASA Flight Mechanics Symposium Conference,2003.
    [82]. Luthcke S. B., D.D. Rowlands, F.G. Lemoine, S. Klosko, R. Ray, D. Chinn, J. McCarthy, C. Cox. Monthly spherical harmonic gravity solutions from GRACE KBRR data alone[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [83]. Luthcke S.B., D.D. Rowlands, F.G. Lemoine, S. Klosko, J. McCarthy, D. Chinn. Greenland and Antarctica ice sheet drainage basin mass change observations from GRACE [A].In:AGU Joint Assembly, Baltimore,2006.
    [84]. Luthcke S.B., D.D. Rowlands, T.A. Williarns, and M. Sirota. Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection [J].Geophys. Res. Lett.,2005,32:L21S05.
    [85]. Luthcke S.B., H.J.Zwally, D.D. Rowlands, W. Abdalati, R.S. Nerem, R.D. Ray, F. Lemoine, D. Chinn. Recent ice sheet mass change observations from GRACE mascon solutions[A]. In:AGU Fall meeting,2006.
    [86]. Mayer-Gurr T., A. Eicker, K.H. Ilk. Gravity field recovery from GRACE-SST data of short arcs [A].In:Flury, J., et al. (ed.), Observations of the Earth System from Space[M]. Berlin:Springer,2006:131-148.
    [87]. Mayer-Gurr T., A. Eicker, K.H. Ilk. ITG-GRACE01s:A GRACE gravity field derived from short arcs of the satellite's orbit[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [88]. Mayer-Gurr T., K.H. Ilk, A. Eicker, and M. Feuchtinger. ITG-CHAMP01:A CHAMP gravity field models from short kinematical arcs of a one-year observation Period [J]. J. Geodesy,2005a,78 (7-8):462-480.
    [89]. Nerem R.S., B.J. Haines, J.Hendricks, J.F. Minster, G.T. Mitchum, W.B. White. Improved determanation of global mean sea level variations using topex/poseidon altimeter data [J]. Geophys. Res. Lett.,1997,24(11):1331-1334.
    [90]. Nerem R.S., G.T. Mitchum. Sea level change[A].In:L.L.Fu, A.Cazenave.Satellite Altimetry and Earth Science [M]. San Diego:Academic Press,2001b:329-349.
    [91]. Nguyen A.T.T. Height change detection in Antarctica using satellite altimetry data and Kriging/Kalman filtering techniques [D]. Massachusetts Massachusetts Institute of Technology,2006:
    [92]. O'Keefe J. An application of Jacobi's integral to the motion of an Earth satellite[J]. The Astronomical Journal,1957,62(8):266-267.
    [93]. Ohmura A., N. Reeh. New precipitation and accumulation maps for Greenland[J]. Journal, of Glaciology,1991,37(125):140-148.
    [94]. Paterson W.S.B. The physics of glaciers [M]. New York:Pergamon Press,1981:157
    [95]. Paulson A. Inference of the Earth's mantle viscosity from post-glacial rebound [D]. Colorado:University of Colorado.2006:
    [96]. Peacock N.R., S.W. Laxon, R. Scharoo, W. Maslowski, D.P. Winebrenner, Geophysical signatures from precise altimetric height measurements in the Arctic Ocean [A]. In:Proc. Intl. Geosci. Rem. Sens. Symp., Seattle,1998,:1964-1966.
    [97]. Peltier W. Global glacial isostasy and the surface of the ice-age earth:The ICE-5G (VM2) model and GRACE [J]. Annual Review of Earth and Planetary Science, 2004,32:111-149.
    [98]. Phillips H.A., I. Allison, R. Coleman, G. Hyland, P. Morgan, N.W. Young. Comparison of ERS satellite radar altimeter heights with GPS-derived heights on the Amery ice shelf, East Antarctica [J]. Ann.Glaciol.,1998,27:19-24.
    [99]. Phillips H.A., J.R Ridgway., D. Yi et al. Tidal corrections [A]. In:Geoscience Laser Altimeter System:Algorithm Theoretical Basis Document, version 2.0. NASA,1999.
    [100]. Ramillien G., A. Lombard, A. Cazenave, E. Ivins, M. Llubes, F. Remy and R. Biancale. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE [J]. Global & Planetary Change,2006,53(3):198-208.
    [101]. Ray R. and G. Egbert. The global S1 tide[J]. J. Physical Oceanography,2004,34(8): 1922-1935.
    [102]. Ray R., S. Luthcke, D. Rowlands. Tidal analysis of GRACE intersatellite ranging data[A]. In:AGU Joint Assembly, Baltimore,2006.
    [103]. Reubelt T., G. Austen, E. Grafarend. Harmonic analysis of the Earth's gravitational field by means of semi-continuous ephemeris of a low Earth orbiting GPS-tracked satellite. Case study:CHAMP [J]. J. Geodesy,2003,77(5-6): 257-278.
    [104]. Rim H.J. and B.E. Schutz. Precision orbit determination(pod)[A]. In Geoscience Laser Altimeter System:Algorithm Theoretical Basis Document, version 2.2[M].NASA,2002.
    [105]. Robin G.Q. Mapping the Antarctic ice sheet by satellite altimetry [J]. Callnadian J. Earth Sciences,1966,3(6):893-901.
    [106]. Rodell M., and J. Famiglietti. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE)[J]. Water Resour. Res.,2001,37(5):1327-1339.
    [107]. Rodell M.,and J. Famiglietti. Detectibility of variations in continental water storage from satellite observations of the time variable gravity field [J]. Water Resour. Res.,1999,35(9):2705-2723.
    [108]. Rodell M., J.L. Chen, H. Kato, J.S. Famiglietti, J. Nigro, C.R. Wilson. Estimating ground water storage changes in the Mississippi river basin (USA) using GRACE [J].Hydrogeology Journal,2007,15(1):159-166.
    [109]. Rossow W.B., B. Cairns. Monitoring Changes of Clouds [J]. Climatic Change,1995,31: 301-347.
    [110]. Sauber J., B. Molnia,C. Carabajal, et. al. Ice elevations and surface change on the Malaspina Glacier, Alaska[J]. Geophys. Res. Lett.,2005,32:L23S01.
    [111]. Schenk T., B. Csatho, C.J. van der Veen, et.al. Registering imagery to ICESat data for measuring elevation changes on Byrd Glacier,Antarctica[J]. Geophys. Res. Lett.,2005, 32:L23S05.
    [112]. Schmidt M., J. Kusche, J. van Loon, C.K. Shum, S.C. Han, O. Fabert. Multi-resolution representation of regional gravity data [A]. In:Jekeli C, Bastos L, Fernandes J (eds.) Gravity, Geoid and Space Missions [M]. Berlin:Springer,2005b: 167-172.
    [113]. Schmidt M., O. Fabert, C.K. Shum. On the estimation of a multi-resolution representation of the gravity field based on spherical harmonics and wavelets [J]. Journal of Geodynamics,2005c,39:512-526.
    [114]. Schmidt M., O. Fabert, C.K. Shum. Towards the estimation of a multi-resolution representattion of the gravity field based on spherical wavelets [A]. In:Sanso F (ed.). A Window on the Future of Geodesy[M]. Berlin:Springer,2005a:362-367.
    [115]. Schmidt M., S.C. Han, J. Kusche, L. Sanchez, C.K. Shum. Regional high- resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets [J].Geophys. Res. Lett.,2006,33:L08403.
    [116]. Schotman H., L. Vermeersen. Sensitivity of glacial isostatic adjustment models with shallow low-viscosity earth layers to the ice-load history in relation to the performance of GOCE and GRACE[J]. Earth & Planetary Science Letts.,2005,236: 828-844.
    [117]. Schrama E.J.O. and P.N.A.M. Visser. Accuracy assessment of the monthly GRACE geoids based upon a simulation [J]. J. Geodesy,2006,81(1):67-80.
    [118]. Schutz B.E. Laser footprint location (geolocation) and surface profiles[A].In: Geoscience Laser Altimeter System(GLAS) Algorithm Theoretical Basis Document, version 3.0. NASA,2002.
    [119]. Schutz B.E. Overview of the ICESat mission [J]. Geophys. Res. Letts.,2005,32: L21S01.
    [120]. Schwiderski E.W. On charting global ocean tides [J]. Rev. of Geophys. and Space Phys., 1998,18(1):243-268.
    [121]. Seo K.W., C.R. Wilson, J.S. Famiglietti, J.L. Chen, M. Rodell. Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE)[J]. Water Resources Research,2006,42:W05417.
    [122]. Shum C.K., S. Han and A. Braun. Spaceborne gravity sensors for continental hydrology and geodynamic studies [J]. Korean Journal of Remote Sensing,2005b,21(1): 51-57.
    [123]. Shum C.K., S. Han, and K. Matsumoto. GRACE observed ocean tides underneath large Antarctic ice shelves [A].In:Eos Trans. AGU, San Francisco,2005.
    [124]. Shum, C.K., S. Han, C. Kuo. Coseismic deformation studies using GRACE and GOCE[R]. Frascati, Italy:3rd International GOCE Workshop, ESA ESRIN,2006:
    [125]. Shuman C.A., H.J. Zwally, B.E. Smith, et. al.. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment [J]. Geophys. Res. Lett.,2006,33: L07501.
    [126]. Skourup H. A study of Arctic sea ice freeboard heights,gravity anomalies and dynamic topography from ICESat measurements[D]. Copenhagen:Faculty of Science University of Copenhagen,2009:
    [127]. Smith B.E., C.R. Bentley, C.F. Raymond. Recent elevation changes on the Ice streams and ridges of the Ross Embayment from ICESat crossovers [J]. Geophys. Res. Lett., 2005,32:L21S09.
    [128]. Smith W, Wessel P. Gridding with continuous curvature splines in tension [J]. Geophysics.1990,55 (3):293-305.
    [129]. Song Y.T., and V. Zlotnicki. Ocean bottom pressure waves predicted in the tropical Pacific [J]. Geophys. Res. Lett.,2004,31:L05306.
    [130]. Spinhirne J.D. Glas science team meeting atmospheric group rcport[R]. Boulder: ICESat Science Team,2005:
    [131]. Swenson S., and J. Wahr. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity [J]. J. Geophys. Res.,2002,107(B9):2193.
    [132]. Swenson S., and J. Wahr. Post-processing removal of correlated errors in GRACE data [J]. Geophys. Res. Lett.,2006,33:L08402.
    [133]. T.V. Martin, H.J. Zwally, A.C. Brenner, and R.A. Bindschadler. Analysis and retracking of continental ice sheet radar altimeter waveforms [J]. J. Geophys. Res.,1983, 88(C3):1608-1616.
    [134]. Tapley B.D., S. Bettadpur, J. Ries, P. Thompson, and M. Watkins. GRACE measurements of mass variability in the Earth system [J]. Science,2004b,305: 503-505.
    [135]. Tapley B.D., S. Bettadpur, M. Watkins, and C. Reigber. The gravity recovery and climate experiment:Mission overview and early results [J]. Geophys. Res. Lett.,2004, 31:L09607.
    [136]. Thomas R., B. Csatho, S. Gogineni, K.C. Jezek, K. Kuivinen. Thickening of the western part of the greenland ice sheet [J]. Science,2000b,289(5480):653-658.
    [137]. Thomas R., T. Akins, B. Csatho, M. Fahnestock, P. Gogineni, C. Kim, J. Sonntag. Mass balance of the greenland ice sheet at high elevations [J]. Science,2000a, 289:426-428.
    [138]. Thompson P.F., S. Bettadpur, and B. Tapley. Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates [J]. Geophys. Res. Lett.,2004, 31:L06619.
    [139]. Turner J., W.M. Connolley, S. Leonard, G.J.Marshall,and D.G. Vaughan. Variability of net snow accumulation over the antarctic from ecmwf re-analysis project data [J].Int. J. of Climatol.,1999,19:697-724.
    [140]. Van den Broeke M., W.J. van de Berg, and E. Van Meijgaard. Snowfall in coastal West Antarctica much greater than previously assumed[J]. Geophys. Res. Lett.,2006,33: L02505.
    [141]. Van der Veen C.J. State of balance of the cryosphere[J].Rev. Geophysics,1991,29(3):433-455.
    [142]. Van Gysen H., R. Coleman. On the satellite altimeter crossover problem [J]. Journal of Geodesy,1997,71(2):83-96.
    [143]. Van Lipzig N.M., E.V. Meijgaard, J.Oerlemans. The spatial and temporal variability of the surface mass balance in antarctica:Results from a regional atmospheric climate model [J].Int.J. of Climatol.,2002,22:1197-1217.
    [144]. Vannaroth Nuth. The analysis of radar altimeter waveform reflections over continental ice sheets [D]. Austin:The University of Texas,1999:
    [145]. Velicogna I., and J. Wahr. Acceleration of Greenland ice mass loss in spring 2004[J]. Nature,2006b,443:329-331.
    [146]. Velicogna I., and J. Wahr. Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? [J]. J. Geophysical Research,2001,106 (B8):16,415-16,434.
    [147]. Velicogna I., and J. Wahr. Measurements of time-variable gravity show mass loss in Antarctica [J]. Science,2006a,311:1754-1756.
    [148]. Velicogna I., J. Wahr, et al. Measurements of time-variable gravity show mass loss in Antarctica [J]. Science,2006,311(5768):1754-1756.
    [149]. Velicogna I., J. Wahr. A method for separating antarctic postglacial rebound and ice mass balance using future icesat geoscience laser altimeter system,gravity recovery and climate experiment, and gps satellite data[J]. J. Geophys. Res.,2002,107(B10): 2263-2273.
    [150]. Wahr J., D. Wingham, C.A Bentley. Method of combining ICESat and Grace satellite data to constrain Antarctic mass balance [J]. J. Geophys. Res.,2000,105 (B7): 279-294.
    [151]. Wahr J., F. Molenaar, F. Bryan. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE [J]. J. Geophys.Res.,1998,103(B12):30,205-30,229.
    [152]. Wahr J., S. Swenson, V. Zlotnicki, and I. Velicogna. Time variable gravity from GRACE:First results [J]. Geophys. Res. Lett.,2004,31:L11501.
    [153]. Watkins M., S. Bettadpur, D. Chambers, F. Flechtner, R. Schmidt, S. Swenson, D. Yuan, J. Wahr, V. Zlotnicki. Evaluation of GRACE mission[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [154]. Wingham D.J., A.J. Ridout, R. Scharroo, R.J. Arthern, C.K. Shum. Antarctic elevation change from 1992 to 1996[J]. Science,1998,282:456-458.
    [155]. Wu S. C., G. Kruizinga, W. Bertiger. Algorithm theoretical basis document for GRACE Level-1B data processing (GRACE 327-741)[M]. JPL,2004.
    [156]. Wu, P. Sensitivity of relative sea levels and crustal velocities in Laurentide to radial and lateral viscosity variations in the mantle [J]. Geophys. J. Int.,2006,165:401-413.
    [157]. Yi D., J.B. Minster and C. Bentley. Ocean tidal loading corrretions [A].In: Geoscience Laser Altimeter System:Algorithm Theoretical Basis Document, version 1.0[M].NASA,1999.
    [158]. Yuan D. and M. Watkins. Status of JPL L2 verification solution for RL02[R]. Austin/Texas:GRACE Science Team Meeting,2005:
    [159]. Yuan D., D. Kuang, and M. Watkins. Verification of GRACE gravity solutions[R]. GFZ Potsdam:Proc. Joint CHAMP/GRACE Meeting,2004:
    [160]. Zlotnicki V., J. Wahr, I. Fukumori and Y.T. Song. Antarctic Circumpolar Current transport variability during 2003-2005 from GRACE [J]. J. Physical Oceanog., 2006,37(2):230-244.
    [161]. Zwally H. J., A.C. Brenner Ice sheet dynamics and mass balance [A]. In:Lee-Lueng Fu, Anny Cazenave.Satellite altimetry and earth sciences [M]. San Diego:Academic Press,2001:351-370.
    [162]. Zwally H. J., A.C. Brenner, J.A. Major, R.A. Bindschadler, J.G. Marsh. Growth of greenland ice sheet:measurement [J].Science,1989,246:1587-1589.
    [163]. Zwally H.J. and J. Li. Seasonal and interannual variations of firn densification and icesheet surface elevation at the Greenland summit [J]. J. Glaciol.,2002,48:199-207.
    [164]. Zwally H.J., A.C. Brenner, J.A. Major, R.A. Bindschandler, and J.G. Marsh. Growth of Greenland ice sheet:measurement [J]. Science,1989,246(4937):1587-1589.
    [165]. Zwally H.J., B. Schutz, W. Abdalati, J.Abshire, C. Bentley, A. Brenner, J. Bufton,Dezio J., D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. Spinhirne, and R. Thomas. Icesat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics,2002,34:205-445.
    [166]. Zwally H.J., J.A. Major, A.C. Brenner, R.A. Bindschadler. Ice measurements by Geosat radar altimetry [J]. Johns Hopkins APL Tech.Dig,1987a,8(2):251-254.
    [167]. Zwally H.J., Li Jun. Seasonal and interannual variations of firn densification and ice-sheet surface elevation at the greenland summit [J]. J. of Glaciol.,2002,48 (161): 199-207.
    [168]. Zwally H.J., R.A. Bindschadler, A.C. Brenner, T.V. Martin, R.H. Thomas. Surface elevation contours of Greenland and Antarctic ice sheets [J]. J.Geophys. Res., 1983,88(C3):1589-1596.
    [169]. Zwally H.J., R.H Thomas, and R.A. Bindschadler. Ice-sheet dynamics by satellite laser altimetry [A]. In:IEEE proceedings of International Geosciences and Remote Sensing Symposium,1981:1012-1022.
    [170]. Zwally H.J., B.E. Schuz, W. Abdalati, etal. ICESat's laser measurements of polar ice, atmosphere, ocean and land[J]. J.Geodynamics,2002,34(3-4):405-445.
    [171].陈春明,李建成.利用地球重力场模型确定南极大地水准而[J].极地研究,2000,20(1):10-17.
    [172]].陈俊勇.重力卫星和测高卫星五年来的进展[J].测绘科学,2005,30(5):9-10.
    [173]].陈俊勇.重力卫星五年运行对求定地球重力场模型的进展和展望[J].地球科学进展,2006,21(7):661-666.
    [174].褚永海,李建成,赵向方,马晶,金涛勇,邢乐林.利用测高数据研究南极冰盖高程变化[J].大地测量与地球动力学,2008,28(2):67-70.
    [175].褚永海.卫星测高波形处理理论研究及应用[D].武汉:武汉大学,2007:
    [176].范春波.星载激光测高理论与应用[D].武汉:武汉大学,2007:
    [177].胡小工,陈剑利,周永宏,黄珹,廖新浩.利用GRACE空间重力测量监测长江流域水储量的季节性变化[J].中国科学D辑,2006,36(3):225-232.
    [178].黄城,胡小工GRACE重力计划在揭示地球系统质量重新分布中的应用[J].天文学进展,2004,22(1):35-44.
    [179].姜卫平.卫星测高技术在大地测量学中的应用[D].武汉:武汉大学,2001:
    [180].蒋涛,工正涛,金涛勇,陈明GRACE时变重力场位系数相关误差的滤波消除技术[J].武汉大学学报(信息科学版),2009,34(12):1407-1409.
    [181].蒋涛.联合卫星重力和卫星测高数据研究全球海平面变化[D].武汉:武汉大学,2008:
    [182].金涛勇,李建成,王正涛,姜卫平.近四年全球海水质量变化及其时空特征分析[J].地球物理学报,2010,53(1):49-56.
    [183].金涛勇.多源海洋观测数据确定全球海平而及其变化的研究[D].武汉:武汉大学,2010:
    [184].李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准而的确定[M].武汉:武汉大学出版社,2003:279-281.
    [185].李建成,宁津生,晁定波.卫星测高在物理大地测量应用中的若干问题[J].武汉测绘科技大学学报,1996,21(1):9-14.
    [186].罗佳.利用卫星跟踪卫星确定地球重力场的理论与方法[D].武汉:武汉大学,2003:
    [187].唐枫.利用ICESat海冰数据联合地球重力场模型求定北冰洋地区海冰干舷高[D].武汉:武汉大学,2007:
    [188].王清华.东南极Lambert冰川-Amery冰架系统冰川运动学研究[D].武汉:武汉大学,2002:
    [189].工正涛.卫星跟踪卫星测量确定地球重力场的理论与方法[D].武汉:武汉大学,2005:
    [190].徐莹ICESat星载激光测高技术在南极Dome-A地区的应用研究[D].武汉:武汉大学,2007:
    [191].殷述广,朱耀仲,钟敏,闫吴明,朱江.全球海水质量季节变化研究[J].大地测量与地球动力学,2005,25(4):33-37.
    [192].翟国君,黄谟涛,谢锡君,欧阳永忠.卫星测高数据处理的理论与方法[M].北京:测绘出版社,2000,105-123.
    [193].张赤军,陆洋.南极冰盖的形成与消融对全球大地水准面与海面的影响[J].海洋与湖沼,1998,29(1):104-108.
    [194].周旭华,吴斌,彭碧波等.全球水储量变化的GRACE卫星检测[J].地球物理学报,2006,49(6):1644-1650
    [195].朱广彬.利用GRACE位模型研究陆地水储量的时变特征[D].北京:中国测绘科学研究院,2007:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700