城区LiDAR点云的树木提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载LiDAR(Light Detection and Ranging)系统是一种主动式对地观测系统,是70年代初开始发展的一门新兴技术。LiDAR代表了一种新的独立的技术,可低成本、高密集、快速度、高精度的直接获取三维地表数据,自动化生成数字表面模型,成为各种测量应用中深受欢迎的一个高新技术。
     在数字城市中,可视化是其中一项重要的研究内容,因此城市表面信息的提取显得十分重要。机载LiDAR系统虽可获取城市表面信息,但这些表面信息特征不一,包含的内容繁杂,对这些不加以分析处理难以实现准确的城市建模,因此,树木与建筑物必须在地形表面上各自表示出来。目前LiDAR点云数据的地物提取研究大多集中在建筑物提取上,而树木提取研究又大部分集中在森林地区,对城区树木信息提取研究非常稀少。树木作为城市表面信息的重要组成部分,在可视化中不可忽视。因此,从城市环境中利用LiDAR点云数据提取树木具有很大的应用价值。
     目前对于LiDAR点云的树木提取主要就是一个分割与分类的过程,绝大部分算法都是基于这种思想实现。分割大部分通过聚类的方式或者图像处理算法实现,分类可以采用监督或非监督分类实现。较为典型的如Secord的树木提取算法,也是基于分割与分类的思想实现LiDAR数据的分类。Secord首先融合遥感影像,通过计算LiDAR数据点与点之间的相似性,再利用区域增长算法分割LiDAR点云数据,最后计算每一分割区域的特征向量,再采用支持向量机(SVM)对分割结果进行分类。这些树木提取算法在分割过程中没有充分考虑LiDAR点云自身的特点,分割算法过于复杂。在分类过程中,很多需要选取样本进行训练,为此需要大量高质量的有标记样本,计算复杂度高。
     本文首先探讨了LiDAR点云数据处理效率的问题,通过对LiDAR点云数据建立空间索引,极大地提高数据处理效率。然后在分割与分类的基础上,分析LiDAR点云DSM表面特征,提出了基于区域增长与梯度分割的树木提取算法,直接对LiDAR点云首次回波进行处理,提取出树木脚点,最后利用对应的影像对树木提取结果进行评估,提取率为85.9%,正确率为86.8%。实验表明,算法能比较好地从LiDAR点云数据中提取出树木脚点。由于基于区域增长与梯度分割的树木提取算法会将建筑物顶面的异常点误判为树木点,这种错误比较明显,在此对改算法改进,提出了对LiDAR点云数据进行灰度形态学开运算,滤除掉大的建筑物屋顶区域的异常点,再利用区域分割与梯度分割的思想提取树木,改进后的算法得到的树木提取率为86.3%,提取正确率为87.9%。与基于区域增长与梯度分割的树木提取原算法相比,除树木提取率与正确率略有改善外,更重要的是算法能在城区树木提取比较准确的基础上,极大地避免了屋顶异常点被判为树木点的错误。
Airborne Light Detection and Ranging (LiDAR) is an active Earth Observation System (EOS), its development goes back to the 1970s and 1980s, with an early NASA system and other attempts in USA and Canada. It represents a new and independent technology. The 3D surface data can be acquired in low-cost、high-density、rapid、high-precision, to generate Digital Surface Model (DSM) automatically. Now, LiDAR has become a new technique in the survey field.
     As an important research content of the development of digital city, the extraction of city surface information signifies much for visualization. Though the LiDAR system can acquire the city surface information, the information has made up of different objects. It is difficult to realize city modeling if the surface information had not been processed. Therefore, the trees or buildings have to be represented separately on the terrain surface. At present, the research about the surface information extraction from LiDAR cloud data mainly focus on the building extraction and the tree extraction relatively lacks. Tree as an important part of city surface information, its visualization cannot be neglected. Therefor, extracting the tree from urban area in LiDAR data has much application value.
     At present, most of the methods to extract trees from LiDAR data are the course of segmentation and classification. We can use clustering or the usual algorithms of digital image processing to segment the LiDAR data, following, the trees may be separated from the segmented data by supervised classification or unsupervised classification. These algorithms, such as Secord's algorithm, have two-step methods for tree detection consisting of segmentation followed by classification. The segmentation is done by a simple region-growing algorithm with weighted features from aerial image and LiDAR. His algorithm's judging standard is based on the similarity between the points. Then, a feature vector is defined for each segment. The classification is done by weighted support vector machines (SVM). These methods do not fully consider the characteristic of the LiDAR data during the segmentation, and rather complicated. During the classification, they need select many high quality marked samples, and the calculation complications is high.
     This paper discusses the efficiency of the LiDAR data processing firstly. The efficiency of data processing can be greatly raised by building the spatial index for LiDAR data. Then the DSM characteristics are analyzed base on the segmentation and classification, and a tree extracting algorithm is presented from the LiDAR data of the first return pulse in complicated urban environment. This algorithm based on region-growing and gradient threshold. Finally using the corresponding image to evaluate the experimental results, the tree extracted ratio is 85.9% and its accurate ratio is 86.8%. The experimental results show that new algorithm can extract trees accurately from LiDAR data in urban region. Analyzing the tree extraction results, there have some abnormal points on the roof that had been mistaken as tree points. This is the obvious mistake. So, this algorithm needs to improve, and gray open operation is implemented to remove the abnormal points on the building roof. Then the region-growing and gradient threshold value is used to extract trees. After improved, the tree extracted ratio is 86.3% and the accurate ratio is 87.9%. Compare with the original algorithm, besides there is a slight improvement in the tree extracted ratio and its accurate ratio, what is more important the improved algorithm can avoid the obvious mistake that the abnormal points are taken as tree points.
引文
[1]Norbert Haala,Claus Brenner.Extraction of Buildings and Trees in Urban Environments [J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:130-137.
    [2]尤红建,刘彤,苏林,刘少创,郭冠军,李树楷.城市DSM的快速获取及其三维显示的研究[J].遥感学报,2001,5(1):8-12.
    [3]尤红建,苏林,刘彤,李树楷.城市三维遥感信息的快速获取与数据处理[J].测绘科学,2002,27(3):26-28.
    [4]李英成,文沃根,王伟等.快速获取地面三维数据的LIDAR技术系统[J].测绘科学,2002,27(4):35-38.
    [5]Friedrich Ackermann.Airbome laser scanning--present status and future expectations[J].ISPRS Journal of Photogrammetry & Remote Sensing,1999,54:64-67.
    [6]刘经南,张小红.激光扫描测高技术的发展与现状[J].武汉大学学报·信息科学版,2003,28(2):132-137.
    [7]Juha Hyypp(a|).Feasibility for Estimation of Single Tree Characteristics Using Laser Scanner [A].Geoscience and Remote Sensing Symposium[C].2000,3:981-983.
    [8]Marek B.Zaremba.Fusion of High-Resolution Satellite and Lidar Data for Individual Tree Recognition[A].Electrical and Computer Engineering,2006.CCECE '06.Canadian Conference on[C].2006:1112-1115.
    [9]Christopher A.Weed.Classification of LIDAR Data Using a Lower Envelope Follower and Gradientbased Operator[A].Proceedings to the IEEE IGARSS conference,Toronto,Canada,2002.
    [10]Sagi Filin.Surface Classification from Airbome Laser Scanning Data[J].Computers &Geosciences,2004,30:1033-1041.
    [11]Jingjue Jiang,Zuxun Zhang,Ying Ming.Data Segmentation for Geometric Feature Extraction from Lidar Point Clouds[A].Geoscience and Remote Sensing Symposium[C].2005,5:3277-3280.
    [12]Carla Nardinocchi,Gvianfranco Forlani,Primo Zingaretti.Classification and Filtering of Laser Data[A].Proceedings of the ISPRS Working Group Ⅲ/3 Workshop 3-D Reconstruction from Airborne Laserscanner and InSAR Data[C].Dresden,Germany,2003.
    [13]John Secord,Avideh Zakhor.Tree Detection in LiDAR Data[A].Image Analysis and Interpretation,2006 IEEE Southwest Symposium on[C].2006:86-90.
    [14]庞勇,赵峰,李增元,周淑芳,邓广,刘清旺,陈尔学.机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158.
    [15]杨海全,余洁,秦昆张国宁.基于知识的LIDAR数据地物提取研究[J].测绘通报,2006,(12):9-11.
    [16]刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报·信息科学版,2005,30(3):189-193.
    [17]曾齐红,毛建华,李先华,刘学锋.机载激光雷达点云的阶层式分类[J].测绘科学,2008,33(1):103-105.
    [18]郑金水.LIDAR技术及其应用[J].科技信息,2007(6):28-29.
    [19]Renslow M.,2001,Development of A Bare Ground DEM and Canopy Layer In NW Forestlands Using High Performance LIDAR.ESRI international user conference.
    [20]罗志清,张惠荣,吴强等.机载LiDAR技术[J].信息技术,2006,(2):20-25
    [21]Aloysius Wehr,Uwe Lohr.Airbome laser scanning--an introduction and overview[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:68-82.
    [22]陈松尧,程新文.机载LIDAR系统原理及应用综述[J].测绘工程,2007,16(1):27-31.
    [23]何儒云,王耀南,毛建旭.合成孔径雷达干涉测量(InSAR)关键技术研究[J].测绘工程,2007,16(5):53-56.
    [24]刘国祥,丁晓利,李志林,陈永奇,刘文熙,李志伟.InSAR DEM的质量评价[J].遥感信息,2000,(4):7-10.
    [25]刘国祥.InSAR应用实例及其局限性分析[J].四川测绘,2005,28(3):139-143.
    [26]E.P.Baltsavias.Airborne laser scanning:existing systems and firms and other resources [J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:164-198.
    [27]赖旭东,郑学东,万幼川.激光雷达技术在数字流域中的应用探讨[J].长江科学院院报,2005,22(5):88-90.
    [28]隋立春,张宝印.Lidar遥感基本原理及其发展[J].测绘科学技术学报,2006,23(2):127-129.
    [29]马洪超,姚春静,张生德.机载激光雷达在汶川地震应急响应中的若干关键问题探讨[J].遥感学报,2008,12(6):925-932.
    [30]韩改新.机载激光雷达(LIDAR)技术在铁路勘测设计中的应用探讨[J].铁道勘察,2008,(3):1-4.
    [31]伍爱华.三维散乱数据点集k近邻的快速搜索算法[J].湖南工业大学学报,2007,2(12):84-87.
    [32]岳小平,鞠时光,李芷.空间数据索引技术[J].计算机应用研究,2002,19(2):32-34.
    [33]Les A Piegl,Wayne Tiller.Algorithm for finding all k nearest neighbors[J].Computer-Aided Design,2002,34:167-172.
    [34]吴焕萍,潘懋,胡金星,马照亭,宋杨.基于空间索引的规则格网DTM内插算法研究[J].地理与地理信息科学,2004,20(1):43-46.
    [35]王涛,杨建思,廖明生.一种从LIDAR数据提取城区DTM的方法[J].遥感学报,2007,11(2):209-213.
    [36]梁欣廉,张继贤,李海涛.一种应用于城市区域的自适应形态学滤波方法[J].遥感学报,2007,11(2):276-281.
    [37]万幼川,徐景中,赖旭东,张圣望.基于多分辨率方向预测的LIDAR点云滤波方法[J].武汉大学学报·信息科学版,2007,32(11):1011-1015.
    [38]K.Kraus,N.Pfeifer.Determination of terrain models in wooded areas with airborne laser scanner data[J].ISPRS Journal of Photogrammetry & Remote Sensing,1998,53:193-203.
    [39]Vosselman G.Slope based filtering of laser altimetry data[J].International Archives of Photogrammetry and Remote Sensing,2000,33(B3):935-942.
    [40]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2003:102-104.
    [41]魏克让,江聪世.空间数据的误差处理[M].科学出版社,2003:149-152.
    [42]J.Dash,E.Steinle,R.P.Singh,H.P.B(a|)hr.Automatic building extraction from laser scanning data:an input tool for disaster management[J].Advances in Space Research,2004,33:317-322.
    [43]居红云,张俊本,李朝峰,王正友.基于K-means与SVM结合的遥感图像全自动分类方法[J].计算机应用研究,2007,24(11):318-320.
    [44]张艳,兰光华,郁生阳,杨静宇.一种快速SVM学习算法[J].计算机工程与应用,2006,42(32):36-38.
    [45]贾永红.数字图像处理[M].武汉:武汉大学出版社,2003:150-151.
    [46]刘修国,张靖,高伟,陈启浩.Lidar点云数据中建筑物的快速提取[J].地球科学-中国地质大学学报,2006,31(5):615-618.
    [47]吴冰,秦志远.自动确定图像二值化最佳阈值的新方法[J].测绘学院学报,2001,18(4):283-286.
    [48]郭薇;郭菁;胡志勇.空间数据库索引技术[M].上海:上海交通大学出版社,2006:84-88.
    [49]狄红卫,许瑶.数学形态学在图象滤波中的应用[J].暨南大学学报(自然科学版),2003,24(3):42-45.
    [50]王芳,夏丽华.基于灰度形态学的高分辨率遥感图像边缘检测研究[J].测绘与空间地理信息,2006,29(2):23-25.
    [51]唐常青,吕宏伯,黄铮,张方.数学形态学方法及其应用[M].北京:科学出版社,1990:98-113.
    [52]崔屹.图象处理与分析:数学形态学方法及应用[M].北京:科学出版社,2000:76-90.
    [53]Jisheng Song,Edward J.Delp.The analysis of morphological filters with multiple structuring elements[J].Computer Vision Graphics and Image Processing,1990,50(3):308-328.
    [54]张奋,邹北骥.基于多结构元素的图像边界识别方法研究[J].计算机工程与设计,2006,27(10):1775-1776.
    [55]李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639.
    [56]徐前祥,廖明生,杨建思.基于距离限制的机载激光数据滤波方法[J].武汉大学学报·信息科学版,2007,32(7):605-608.
    [57]E.P.Baltsavias.A Comparison between Photogrammetry and Laser Scanning[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:83-94.
    [58]E.P.Baltsavias.Airborne laser scanning:basic relations and formulas[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:199-214.
    [59]Xuelian Meng,Le Wang,Jos(?) Luis Silv(?)in-C(?)rdenas,Nate Currit.A multi-directional ground filtering algorithm for airborne LIDAR[J].ISPRS Journal of Photogrammetry and Remote Sensing,2009,64:117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700