基于星载大光斑LiDAR数据反演森林冠层高度及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光雷达LiDAR (Light Detection and Ranging, LiDAR)技术是近年来遥感探测、对地观测、林业调查的热点之一,在国内外森林调查和制图方面有着广泛的应用,主要集中在森林冠层高度和生物量的估测研究。为此,本研究以长白山系的吉林省汪清林业局经营区为研究区,首先回顾了激光雷达技术在林业上的国内外应用现状与动态,分析了其研究问题以及本研究的主要内容和预期目标;然后,针对大光斑激光雷达ICESat-GLAS (the Ice, Cloud, and land Elevation-Geoscience Laser Altimeter System)回波数据预处理及参数提取方法、影响森林冠层高度估测的因素(坡度等)进行了分析与研究。最后,为验证ICESat-GLAS回波波形参数与森林平均冠层高度和生物量关系,结合野外调查数据构建ICESat-GLAS回波参数与森林平均冠层高度、生物量的估测模型,并利用GIS空间分析技术实现LiDAR回波数据高精度地估测森林平均冠层高度和地上生物量。主要研究结果如下:
     1)采用小波变换和高斯滤波器分别对获取的ICESat-GLAS回波波形数据进行去噪,去噪后的ICESat-GLAS回波波形可以进行提取波形参数。与高斯滤波器相比,经小波变换后的LiDAR回波波形的均方根误差(Root Mean Square Error, RMSE)降低了0.7188,信噪比(Signal to Noise Ratio, SNR)提高了16.17dB;小波变换滤波较好地保留了回波波形中的有用信息,有效地抑制了回波波形的“叠加”问题,去噪效果优于高斯滤波器的平滑滤波。
     2)本研究利用多元统计回归方法通过分析ICESat-GLAS回波波形参数(Extent、R20、R50等)与样地平均冠层高度、森林生物量的实测值进行相关分析,并根据最大复相关系数求出平均冠层高度、森林生物量估测方程。从拟合结果可知,样地的森林平均冠层高度、森林生物量估测方程的复相关系数分别为0.801、0.710,预估精度分别为82.59%、80.56%。
     3)不同空间分辨率的DEM数据对森林平均冠层高度估测有一定的影响。77个检验样地的森林平均冠层高度实测值为21.30m,不同分辨率(20m、30m、90m)冠层高度模型CHM的森林平均冠层高度估测值分别为15.6m、18.9m、17.4m,预估精度分别为73.23%、88.73%、81.69%。经移动窗口差分滤波后的CHM模型消除坡度对估测的影响,且空间分辨率为30m时,此时森林平均冠层高度估测值为19.2m,预估精度为90.14%。
     4)分析样地坡度与森林平均冠层高度的估测值的关系方程式可知:当样地坡度≤10°时,样地坡度对森林平均冠层高度估测影响较小,波形展宽与坡度的相关性较弱;当样地坡度≥30°时,坡度对森林平均冠层高度估测影响较大,回波波形展宽呈现指数几何增长,呈现严重的“重叠”现象。
     5)利用GIS软件提取空间分辨率为30m的森林冠层高度和森林地上生物量数据,结果表明:研究区的森林平均冠层高度估测值为18.7m。77个检验样地的森林平均冠层高度估测值为19.2m,预估精度为90.14%。剔除农田、建筑用地、公路、河流等非林业用地,研究区的森林平均冠层高度估测值为23.1m。研究区森林平均地上生物量估测值为91.017t/ha,去除非林业用地后的森林平均地上生物量估测值为104.561t/ha,研究区森林地上生物量总量为5,747,996t。
     以上研究结果可为ICESat-GLAS波形数据处理和基于大光斑激光雷达波形数据对林分平均冠层高度和生物量的估测应用研究提供方法基础。
LiDAR (Light Detection and Ranging) is one of the research focuses on remote sensing, Earth observation, forestry investigation in recent years, and forest survey and mapping in China and abroad have a wide range of applications. The recent studies concentrate on the estimation of forest canopy height and forestry biomass. Therefore, the paper take Jilin province's Wangqing Forestry Bureau as the study area, where is located in the low mountain in the Changbai Mountains. The first chapter reviews of the status and trends on LiDAR technology applications in forestry at home and abroad, and analysis of its research problems, main contents and expected objectives in this study; Then, the paper has analysis of ICESat-GLAS (the Ice, Cloud, and land Elevation-Geoscience Laser Altimeter System) return waveforms preprocessing and extraction parameter method, and also studies on factors (plot slope, etc.) that effect on forest canopy height estimation. Finally, to verify the relationship between ICESat-GLAS return waveform parameters and the mean forest canopy height and forest aboveground biomass, the research combines with field survey data to construct the mean forest canopy height and forest aboveground biomass retrieval model based on ICESat-GLAS return waveform parameters. Meanwhile, the research also uses the GIS spatial analysis techniques to make further improvement on the predicted accuracy on forest mean canopy height and aboveground biomass. The main results are as follows:
     1) Respectively using Wavelet Transform method and Gaussian Filter to obtain the ICESat-GLAS return waveforms denoising, the paper extracts the denoised return waveform parameters for estimation of the forest mean canopy height and forest biomass. Its results show that compared with the Gaussian Filter, Wavelet Transform makes the Root Mean Square Error (RMSE) of ICESat-GLAS return waveforms decreased 0.7188, Signal to Noise Ratio (SNR) of that increased 16.17 dB; Wavelet Transform betters than Gaussian Filter in retaining the useful information and suppressing "overlay" problem of the ICESat-GLAS return waveforms.
     2) The research uses multivariate statistical regression method to analysis the correlation relationship between ICESat-GLAS return waveform parameters(Extent、R20、R50 etc.) and the measured plot mean canopy height, measured forest aboveground biomass. And then according to the correlation coefficient of each other, the paper calculates the forest mean canopy height, abovegroud biomass estimation equation. From the fitting results, it shows that these coefficients of multiple correlation are 0.801,0.710 respectively, these predicted accuracy are 82.59%,80.56%respectively.
     3) The different spatial resolution of Eigital Elevation Model (DEM) data has a certain impact on estimating forest mean canopy height. The forest measured mean canopy height of 77 test plots is 21.30 meters. The estimated mean canopy height from forest Canopy Height Model (CHM) with different resolutions (20m,30m,90m) is 15.6 meters,18.9 meters,17.4 meters, the predicted accuracy is 73.23%,88.73%, respectively. The moving window-difference Filter can eliminate the impact of slope on estimating forest mean canopy height. When the spatial resolution of filtered CHM is 30 meters, the predicted forest mean canopy height is 19.2 meters; and its predicted accuracy is 90.14%.
     4) By anglysis of the relationship between the plot slope and estimated forest canopy height value, its regression equation shows that:when the plots slope is less than 10°, the effect of plot slope on forest mean canopy height estimation is weak and its effection is ignored. When the plot slope is more than 30°or more, the slope of the forest canopy height estimation is larger and the waveform broadening associated with the plot slope shapes in exponential growth, showing significant "overlap" problems within the return waveforms.
     5) By GIS software to extract a forest canopy height and aboveground biomass raster data with a spatial resolution of 30m, the results show that the, the estimated forest mean canopy height value of whole study area is 18.7 meters. The measured forest mean canopy height value of 77 test plots is 19.2 meters, its predicted accuracy is 90.14%. Removal of farmland, buildings, roads, rivers and other non-forest land, the estimated forest mean canopy height value of the study area is 23.1 meters. The estimated overall forest aboveground biomass is 91.017 ton/hectare. Removal of non-forestry land, the estimated overall forest aboveground biomass is 104.561 ton/hectare. The total forest aboveground biomass of study area is 5,747, 996 tons.
     The research results provide a new method of ICESat-GLAS waveforms data processing and also provide scientific references to estimate forest mean canopy height and forest above-ground biomass based on large-footprint waveform data.
引文
[1]邢艳秋,王立海.基于森林生物量相容性模型长白山天然林生物量估测[J].森林工程,2008,24(2):1-4.
    [2]杨伯钢,冯仲科,罗旭,等LIDAR技术在树高测量上的应用与精度分析[J].北京林业大学学报,2007,29(S2):78-81.
    [3]Hyde Peter, Nelson Ross, Kimes Dan, et al. Exploring LiDAR-RaDAR synergy-predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J].Remote Sensing of Environment,2007,106(1):28-38.
    [4]翟国君,黄谟涛,欧阳永忠,等.卫星测高原理及其应用[J].海洋测绘,2002,22(1):57-62.
    [5]Ben-Arie Joshua R.,Hay Geoffrey J.,Powers Ryan P.,et al. Development of a pit filling algorithm for LiDAR canopy height models [J].Computers & Geosciences,2009, 35(9):1940-1949.
    [6]Chust Guillem,Galparsoro Ibon,Borja Angel,et al.Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery [J].Estuarine, Coastal and Shelf Science,2008,78(4):633-643.
    [7]Roberts Scott D.,Dean Thomas J.,Evans David L.,et al.Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions [J].Forest Ecology and Management,2005,213(1-3):54-70.
    [8]Hyde P.,Dubayah R.,Peterson B.,et al.Mapping forest structure for wildlife habitat analysis using waveform lidar:Validation of montane ecosystems [J].Remote Sensing of Environment,2005,96(3-4):427-437.
    [9]Donoghue Daniel N.M.,Watt Peter J.,Cox Nicholas J.,et al.Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data[J].Remote Sensing of Environment,2007,110(4):509-522.
    [10]Miller Mary Ellen, Lefsky Michael,Pang Yong.Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements [J].Remote Sensing of Environment,2011,115(2):298-305.
    [11]Means Joseph E.,Acker Steven A.,Harding David J.,et al.Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon[J].Remote Sensing of Environment,1999,67(3):298-308.
    [12]Nelson R.,Ranson K.J.,Sun G,et al. Estimating Siberian timber volume using MODIS and ICESat/GLAS[J].Remote Sensing of Environment,2009,113(3):691-701.
    [13]Drake Jason B.,Dubayah Ralph O.,Knox Robert G,et al.Sensitivity of large-footprint Iidar to canopy structure and biomass in a neotropical rainforest[J].Remote Sensing of Environment,2002,81(2-3):378-392.
    [14]Ranson K. J.,Sun G.,Weishampel J.F.,et al.Forest biomass from combined ecosystem and radar backscatter modeling[J].Remote Sensing of Environment,1997,59(1):118-133.
    [15]Ranson K.J.,张钟军.利用激光雷达和多角度频谱成像仪数据估测森林垂直参数(英文)[J].遥感学报,2006,10(4):523-530.
    [16]Pang Yong,Lefsky Michael, Sun Guoqing,et al.Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar[J]. Remote Sensing of Environment,2011,In Press, Corrected Proof
    [17]张元元.大兴安岭地区森林生物量遥感模型的研究[D].硕士.哈尔滨:东北林业大学.2009
    [18]庞勇,于信芳,李增元,等.星载激光雷达波形长度提取与林业应用潜力分析[J].林业科学,2006,42(7):137-140+151.
    [19]庞勇,李增元,Michael Lefsky,等.地形对大光斑激光雷达森林回波影响研究[J].林业科学研究,2007,20(4):464-468.
    [20]Sun G.,Ranson K.J.,Kimes D.S.,et al.Forest vertical structure from GLAS:An evaluation using LVIS and SRTM data[J].Remote Sensing of Environment,2008, 112(1):107-117.
    [21]李然,王成,苏国中,等.星载激光雷达的发展与应用[J].科技导报,2007,25(14):58-63.
    [22]李建成,范春波,褚永海,等ICESAT卫星确定南极冰盖高程模型研究[J].武汉大学学报(信息科学版),2008,33(3):226-228+248.
    [23]李松.星载激光测高仪发展现状综述[J].光学与光电技术,2004,2(6):4-6.
    [24]Harding D.J.,Lefsky M.A.,Parker G.G.,et al.Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests[J].Remote Sensing of Environment,2001,76(3):283-297.
    [25]Gastellu-Etchegorry J.P.,Demarez V.,Pinel V.,et al.Modeling radiative transfer in heterogeneous 3-D vegetation canopies[J].Remote Sensing of Environment,1996, 58(2):131-156.
    [26]Dolan Katelyn A.,Hurtt George C.,Chambers Jeffrey Q.,et al.Using ICESat's Geoscience Laser Altimeter System(GLAS)to assess large-scale forest disturbance caused by hurricane Katrina[J].Remote Sensing of Environment,2011,115(1):86-96.
    [27]Φrka Hans Ole,N(?)sset Erik,Bollandsas Ole Martin. Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning[J].Remote Sensing of Environment,2010, 114(7):1445-1461.
    [28]Nassset Erik,φkland Tonje. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002,79(1):105-115.
    [29]Naesset Erik, Gobakken Terje. Estimating forest growth using canopy metrics derived from airborne laser scanner data[J]. Remote Sensing of Environment,2005,96(3-4):453-465.
    [30]Andersen Hans-Erik, Mcgaughey Robert J.,Reutebuch Stephen E. Estimating forest canopy fuel parameters using LIDAR data[J].Remote Sensing of Environment,2005, 94(4):441-449.
    [31]Dempster A. P.;, Laird N. M.;,Rubin D.B.Maximum Likelihood from Incomplete Data viat he EM Algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological),1977,39(1):1-38.
    [32]Zwally H.J.,Schutz B., Abdalati W., et al. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics,2002,3-4(3-4):405-445.
    [33]Morlet D.,Couderc J.Ph,Touboul P.,et al.Wavelet analysis of high-resolution ECGs in post-infarction patients:role of the basic wavelet and of the analyzed lead[J]. International Journal of Bio-Medical Computing,1995,39(3):311-325.
    [34]Zhou You-He, Zhou Jun. A modified wavelet approximation of deflections for solving PDEs of beams and square thin plates[J].Finite Elements in Analysis and Design,2008, 44(12-13):773-783.
    [35]Xing Yanqiu,De Gier Alfred, Zhang Junjie,et al.An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain:A case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(5):385-392.
    [36]马宁,陈莉,王晓军,等.小波变换在弱信号检测中的应用[J].哈尔滨工业大学学报,2009,41(3):257-258.
    [37]Yakimov A. V.,Hooge F.N.A simple test of the Gaussian character of noise[J].Physica B: Condensed Matter,2000,291(1-2):97-104.
    [38]Mallat S.G. A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions Pattern Analysis and Machine Intelligence,1989, 11(7):674-693
    [39]Han Min,Liu Yunxia. Noise reduction method for chaotic signals based on dual-wavelet and spatial correlation[J].Expert Systems with Applications,2009,36(6):10060-10067.
    [40]Li Xiaoli,Li Jin,Yao Xin.A wavelet-based data pre-processing analysis approach in mass spectrometry[J].Computers in Biology and Medicine,2007,37(4):509-516.
    [41]Chen Shuo,Hong Don,Shyr Yu.Wavelet-based procedures for proteomic mass spectrometry data processing[J]. Computational Statistics & Data Analysis,2007, 52(1):211-220.
    [42]Hollaus M., Wagner W., Eberhofer C, et al. Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2006, 60(5):323~338.
    [43]Deng Guang, Tay David B. H., Marusic Slaven. A signal denoising algorithm based on overcomplete wavelet representations and Gaussian models[J]. Signal Processing,2007, 87(5):866-876.
    [44]邢艳秋,王立海.基于ICESat-GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例[J].武汉大学学报(信息科学版),2009,34(6):696-700.
    [45]刘增东,刘建国,陆亦怀,等.基于EMD的激光雷达信号去噪方法[J].光电工程,2008,35(6):79-83.
    [46]李松,周辉,石岩,等.激光测高仪的回波信号理论模型[J].光学精密工程,2007,15(1):33-39.
    [47]Labat David. Recent advances in wavelet analyses:Part 1. A review of concepts[J]. Journal of Hydrology,2005,314(1-4):275-288.
    [48]Lefsky M. A., Cohen W. B., Acker S. A., et al. Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests[J]. Remote Sensing of Environment,1999,70(3):339-361.
    [49]Lefsky Michael A., Harding D., Cohen W. B., et al. Surface Lidar Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland, USA[J]. Remote Sensing of Environment,1999,67(1):83-98.
    [50]杨庚,黄春明.激光测高仪回波分解算法[J].空间科学学报,2005,25(2):125-131.
    [51]童慧,江慧,匡湖林,等.基于MATLAB的激光测高仪回波信号分析[J].硅谷,2011,(13):60-61.
    [52]苏国中,高红,丁向辉,等.星载多回波LiDAR数据提取地形参数算法应用研究[J].航天器工程,2009,18(5):67-72.
    [53]宋志英,文汉江ICESAT卫星激光测高数据中地面特征参数的提取[J].测绘工程,2009,18(6):29-32.
    [54]Luthcke S. B., Carabajal C. C, Rowlands D. D. Enhanced geolocation of spaceborne laser altimeter surface returns:parameter calibration from the simultaneous reduction of altimeter range and navigation tracking data[J]. Journal of Geodynamics,2002,34(3-4):447-475.
    [55]Clevis Quintijn, Tucker Gregory E., Lancaster Stephen T., et al. A simple algorithm for the mapping of TIN data onto a static grid:Applied to the stratigraphic simulation of river meander deposits[J].Computers & Geosciences,2006,32(6):749-766.
    [56]Ali Tarig,Mehrabian Ali.A novel computational paradigm for creating a Triangular Irregular Network (TIN) from LiDAR data[J]. Nonlinear Analysis:Theory,Methods & Applications,2009,71(12):624-629.
    [57]Naesset Erik. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J].Remote Sensing of Environment,2002, 80(1):88-99.
    [58]王博.基于Aster G-Dem的海南岛地形地貌信息提取与土地利用景观格局分析[D].硕士.南京:海南大学.2010
    [59]鄂栋臣,沈强,徐莹,等.基于ASTER立体数据和ICESat/GLAS测高数据融合高精度提取南极地区地形信息[J].中国科学(D辑:地球科学),2009,(3):351-359.
    [60]沈强,鄂栋臣,周春霞ASTER卫星影像自动生成南极格罗夫山地区相对DEM[J].测绘信息与工程,2005,30(3):47-49.
    [61]陶旸.DEM数值精度与地形形态精度分析[C].中国地理信息系统协会第四次会员代表大会暨第十一届年会论文集,中国北京,2007,pp:399-406.
    [62]周辉,卢德军,金银龙ASTER立体影像提取DEM的研究[J].地理空间信息,2008,6(1):28-30.
    [63]Simard Marc,Rivera-Monroy Victor H.,Mancera-Pineda Jos Ernesto,et al.A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data:Application to Cienaga Grande de Santa Marta,Colombia[J].Remote Sensing of Environment,2008,112(5):2131-2144.
    [64]Sun G.,Ranson K.J.,Kharuk V.I.,et al.Validation of surface height from shuttle radar topography mission using shuttle laser altimeter[J].Remote Sensing of Environment, 2003,88(4):401-411.
    [65]李梅香,许捍卫.基于SRTM DEM的ASTER GDEM异常区域插补方法研究[C].Proceedings of 2010 International Conference on Remote Sensing(ICRS 2010)中国杭州,2010,pp:306-310.
    [66]Reuter H.I.,Hengl T.,Gessler P.,et al.Chapter 4 Preparation of DEMs for Geomorphometric Analysis Developments in Soil Science:Elsevier,2009:87-120.
    [67]Lefsky Michael A.,Hudak Andrew T.,Cohen Warren B., et al.Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest[J].Remote Sensing of Environment,2005,95(4):532-548.
    [68]Lefsky M.A.,Ramond T,Weimer C.S.Alternate spatial sampling approaches for ecosystem structure inventory using spaceborne lidar[J].Remote Sensing of Environment, 2011,115(6):1361-1368.
    [69]Lefsky M.A.,Turner D.P.,Guzy M.,et al.Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity [J]. Remote Sensing of Environment,2005,95(4):549-558.
    [70]Naesset Erik. Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data[J]. Remote Sensing of Environment,2009,113(1):148-159.
    [71]Lima A., De Vivo B., Cicchella D., et al. Multifractal IDW interpolation and fractal filtering method in environmental studies:an application on regional stream sediments of (Italy), Campania region[J]. Applied Geochemistry,2003,18(12):1853-1865.
    [72]Bartier Patrick M., Keller C. Peter. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW)[J]. Computers & Geosciences,1996, 22(7):795-799.
    [73]Chaplot Vincent, Darboux Frederic, Bourennane Hocine, et al. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density[J]. Geomorphology,2006,77(1-2):126-141.
    [74]Oh Hyun-Joo, Kim Yong-Sung, Choi Jong-Kuk, et al. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea[J]. Journal of Hydrology,2011,399(3-4):158-172.
    [75]马兰艳,周春平,胡卓玮,等.基于SRTM DEM和ASTER GDEM的辽河流域河网提取研究[J].安徽农业科学,2011,39(5):2692-2695.
    [76]Somasundaram K., Shanmugavadivu P. Impulsive noise detection by second-order differential image and noise removal using adaptive nearest neighbourhood filter[J]. AEU-International Journal of Electronics and Communications,2008,62(6):472-477.
    [77]Kawazu Mugen, Chen Jing, Suga Hiroshi, et al. Active light noise filter by a differential operation[J]. Optics and Lasers in Engineering,1997,28(3):237-241.
    [78]赵淑清,方精云,宗占江,等.长白山北坡植物群落组成、结构及物种多样性的垂直分布[J].生物多样性,2004,12(1):164-173.
    [79]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究[D].博士学位论文.哈尔滨:东北林业大学.2005
    [80]Mallet Clement, Bretar Frederic. Full-waveform topographic lidar:State-of-the-art[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(1):1-16.
    [81]Popescu Sorin C., Wynne Randolph H., Nelson Ross F. Estimating plot-level tree heights with lidar:local filtering with a canopy-height based variable window size[J]. Computers and Electronics in Agriculture,2002,37(1-3):71-95.
    [82]鄂栋臣,徐莹,张小红.星载激光测高及其在极地的应用研究分析[J].极地研究,2006,18(2):148-155.
    [83]韩爱惠.森林生物量及碳储量遥感监测方法研究[D].博士.北京:北京林业大学. 2009
    [84]刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,20(3):189-193.
    [85]Chai Liyuan, Wang Zhenxing,Wang Yunyan,et al.Ingestion risks of metals in groundwater based on TIN model and dose-response assessment--A case study in the Xiangjiang watershed,central-south China[J].Science of The Total Environment,2010, 408(16):3118-3124.
    [86]Chang Ying-Pin,Low Chinyao.An ant direction hybrid differential evolution heuristic for the large-scale passive harmonic filters planning problem[J].Expert Systems with Applications,2008,35(3):894-904.
    [87]Clark Barnaby,Suomalainen Juha,Pellikka Petri.An historical empirical line method for the retrieval of surface reflectance factor from multi-temporal SPOT HRV,HRVIR and HRG multispectral satellite imagery[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(2):292-307.
    [88]N(?)sset Erik.Determination of mean tree height of forest stands using airborne laser scanner data[J].ISPRS Journal of Photogrammetry and Remote Sensing,1997,52(2):49-56.
    [89]Nilsson Mats.Estimation of tree heights and stand volume using an airborne lidar system[J].Remote Sensing of Environment,1996,56(1):1-7.
    [90]Riano David,Meier Erich,Allg(?)wer Britta,et al.Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling [J]. Remote Sensing of Environment,2003,86(2):177-186.
    [91]顾耀林,张萍.规则DEM地形数据转换为TIN模型的迭代搜索算法[J].计算机工程与应用,2007,23):69-71+76.
    [92]张咏,杨瑜华,董汉军.二维Delaunay三角网的任意点插入算法研究[J].地理与地理信息科学,2009,04):45-48.
    [93]方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算[J].中国科学(D辑:地球科学),2007,37(6):804-812.
    [94]于颖,范文义,李明泽,等.利用大光斑激光雷达数据估测树高和生物量[J].林业科学,2010,46(9):84-87.
    [95]王莺,夏文韬,梁天刚,等.基于MODIS植被指数的甘南草地生物量[J].兰州大学学报(自然科学版),2009,45(5):73-78+87.
    [96]吴红波,邢艳秋,单炜,等.基于MODIS植被指数估测降水量——以黑龙江省为例[J].东北林业大学学报,2010,38(11):82-85.
    [97]Hudak Andrew T., Lefsky Michael A., Cohen Warren B., et al. Integration of lidar and Landsat ETM+data for estimating and mapping forest canopy height[J]. Remote Sensing of Environment,2002,82(2-3):397-416.
    [98]马泽清,刘琪璟,徐雯佳,等.基于TM遥感影像的湿地松林生物量研究[J].自然资源学报,2008,23(3):467-478.
    [99]De Jong Rogier, De Bruin Sytze, De Wit Allard, et al. Analysis of monotonic greening and browning trends from global NDVI time-series [J]. Remote Sensing of Environment,2011, 115(2):692-702.
    [100]Chopping Mark, Nolin Anne, Moisen Gretchen G, et al. Forest canopy height from the Multiangle Imaging SpectroRadiometer (MISR) assessed with high resolution discrete return lidar[J]. Remote Sensing of Environment,2009,113(10):2172-2185.
    [101]Dhodhi Muhammad K., Saghri John A., Ahmad Imtiaz, et al. D-ISODATA:A Distributed Algorithm for Unsupervised Classification of Remotely Sensed Data on Network of Workstations [J]. Journal of Parallel and Distributed Computing,1999,59(2):280-301.
    [102]Irvin Barbara J., Ventura Stephen J., Slater Brian K. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin[J]. Geoderma, 1997,77(2-4):137-154.
    [103]Streutker David R., Glenn Nancy F. LiDAR measurement of sagebrush steppe vegetation heights[J]. Remote Sensing of Environment,2006,102(1-2):135-145.
    [104]Suarez Juan C, Ontiveros Carlos, Smith Steve, et al. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry [J]. Computers & Geosciences,2005,31(2):253-262.
    [105]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92.
    [106]李文华,周沛村.暗针叶林在欧亚大陆分布的基本规律及其数学模型的研究[J].自然资源,1979,(1):21-34.
    [107]冯宗炜,陈楚莹,李昌华,等.湖南会同杉木人工林生长发育与环境的相互关系[J].南京林业大学学报(自然科学版),1982,(3):19-38.
    [108]刘世荣.应用遥感技术,提高林业资源调查水平[J].广西林业,1984,1):23-24.
    [109]陈灵芝,陈清朗,鲍显诚,等.北京山区的侧柏林(Platycladus orientalis)及其生物量研究[J].植物生态学与地植物学丛刊,1986,10(1):17-25.
    [110]党承林,吴兆录.元江栲群落的生物量研究[J].云南大学学报(自然科学版),1994,16(3):195-199.
    [111]程武学,杨存建,周介铭,等.森林蓄积量遥感定量估测研究综述[J].安徽农业科学,2009,37(16):7746-7750.
    [112]汪少华,张茂震,赵平安,等.基于TM影像、森林资源清查数据和人工神经网络的森林碳空间分布模拟[J].生态学报,2011,31(4):998-1008.
    [113]王登伟,黄春燕,马勤建,等.棉花高光谱植被指数与LAI和地上鲜生物量的相关分析[J].中国农学通报,2008,24(3):426-429.
    [114]刘新新.基于RS和GIS的森林生物量估算研究[D].硕士.济南:山东师范大学.2010
    [115]王建伟,陈功.草地植被指数及生物量的遥感估测[J].云南农业大学学报,2006,21(3):372-375.
    [116]于嵘,蔡博峰,温庆可,等.基于MODIS植被指数的西北农业灌溉区生物量估算[J].农业工程学报,2008,45(10):141-144+314.
    [117]Patenaude G.,Hill R.A.,Milne R.,et al.Quantifying forest above ground carbon content using LiDAR remote sensing[J].Remote Sensing of Environment,2004,93(3):368-380.
    [118]宋丽楠.帽儿山林场森林生物量估测及时空动态格局分析[D].硕士.哈尔滨:东北林业大学.2010
    [119]N(?)sset Erik,Bjerknes Kjell-Olav. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data[J].Remote Sensing of Environment,2001, 78(3):328-340.
    [120]Φrka Hans Ole, N(?)sset Erik, Bollandsas Ole Martin. Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data[J]. Remote Sensing of Environment,2009,113(6):1163-1174.
    [121]Popescu Sorin C. Estimating biomass of individual pine trees using airborne lidar[J]. Biomass and Bioenergy,2007,31(9):646-655.
    [122]Popescu Sorin C., Zhao Kaiguang. A voxel-based lidar method for estimating crown base height for deciduous and pine trees[J]. Remote Sensing of Environment,2008, 112(3):767-781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700