铝合金激光填丝和电弧复合焊接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金密度低,耐腐蚀性能好,抗疲劳性能高,以及具有较高的比强度和比刚度,是飞机结构的理想材料。激光焊接具有能量密度高、焊接变形小、生产效率高等优点,利用激光填丝焊和复合焊接技术可以降低对接装配精度、改善焊缝冶金特性、提高接头机械性能等。本文针对1.2mm厚5A06铝合金和3mm厚5A90铝锂合金激光填丝焊以及3mm厚5A90铝锂合金激光电弧复合焊接技术展开研究,为航空用铝合金的推广应用提供数据参考。
     激光填丝焊接时,通过焊接工艺参数(送丝速度、激光功率、焊接速度和送丝几何位置)的优化控制焊缝背宽比(焊缝的背面宽度与表面宽度之比),从而控制焊缝的成形质量。当其它优化工艺参数固定时,光丝间距必须严格控制在+0.2~+1.5mm范围,而激光复合焊由于引入电弧,两热源产生“协同效应”,对光丝间距的要求可以放宽在0~6mm范围内。优化的复合焊接工艺可以增加焊缝熔宽和熔深,但是在其它参数一定时,只有当焊接电流超过一定阈值,复合焊的优势才能充分体现。在激光填丝焊和复合焊接主要工艺参数中,优化送丝速度的选择也与输入功率有关,且母材板厚较小有利于填丝焊优化送丝速度的提高及其范围的扩大。
     激光填丝焊和复合焊均能有效改善激光焊接的间隙适应性,其最大间隙容许裕度均可达0.9mm以上,是激光焊的4~6倍。铝合金的主要焊接缺陷是成形不良和气孔,母材板厚较大时,焊缝中气孔数量增多且尺寸增大趋势加剧,但通过严格的焊前表面处理,并实现全熔透焊接均能获得成形较好且基本无气孔的焊缝。另外,利用高速摄像监测激光填丝焊接过程中的熔滴过渡方式,发现光丝间距+1mm时的表面张力过渡比光丝间距+0.3mm时的颗粒过渡稳定性更高;而复合焊时呈现一脉一滴的射滴过渡方式,焊接过程也相对平稳。在激光填丝焊和复合焊接过程中热源和物质的相互作用呈现周期性变化。
     激光填丝焊可以提高材料对激光的吸收率,增加焊缝熔宽,提高接头的拉伸性能,如与激光焊接头相比,5A06铝合金激光填丝焊接头抗拉强度提高10%左右。激光填丝焊和复合焊均有利于铝锂合金焊缝硬度的均匀化。
Aluminum alloy is an ideal material for aerocraft structure, because of its light weight, superior strength-to-weight ratio, and excellent corrosion resistance. Laser welding with higher energy density can offer remarkable advantage over conventional fusion welding processes, such as minimal component distortion and high productivity. Laser welding with filling wire and laser-arc hybrid welding are new technologies, which can reduce assembled precision of butt-joint, improve metallurgic characteristic of weld bead, and enhance joints’mechanical property. In this paper, the experiments of 5A06 aluminum alloy with 1.2mm thickness and 5A90 aluminum-lithium alloy with 3mm thickness by laser welding with filling wire, and the 5A90 alloy by laser-arc hybrid welding have been investigated, which could offer data reference for joint technology of aluminum alloy in aerospace.
     While laser welding with filling wire, the back width to surface width ratio and the weld shaping quality are controlled by optimizing welding parameters, such as the wire feed speed, laser power, welding speed and geometry position of filling wire. With other optimized welding parameters fixed, the distance (D) between laser and wire must be controled in the range of +0.2~+1.5mm. While laser-arc hybrid welding, D is allowed to from 0mm to 6mm because of the“synergistic effect”with combining laser and arc. The optimized hybrid welding parameters can increase weld width and weld penetration. However, the advantage of hybrid welding will be sufficiently represented when the welding current exceeds some threshold value with constant other parameters. For the welding parameters of the two welding methods, the selecting wire feed speed is relative to the input power. Besides, the thinner aluminum alloy sheet demands higher wire feed speed and boarder wire feed speed range.
     The gap tolerance for laser welding is improved distinctively by laser welding with filling wire and laser-arc hybrid welding, and the maximal accommodable gap is enlarged above 0.9mm, which is 4~6 times wider than laser welding. The primary defects of welding aluminum alloy are defective weld appearance and porocity. The thicker aluminum sheet would cause more and larger pores in weld bead. However, the weld bead with good appearance and inside quality could be obtained by strict surface treatment and complete-penetration welding. While laser welding with filling wire, the droplet transition modes were inspected by high-velocity-camera. It was found that the surface tension transition of D=+1mm was more stable than the grain transition of D=+0.3mm. The shooting-droplet transition for hybrid welding, which was presented one droplet per pulse, was also comparatively stable. For the laser welding with filling wire and hybrid welding, the interaction between heat reservoir and material expressed periodic changing.
     The laser welding with filling wire could increase material’s absorptivity, weld width, and joint’s tensile property. For example, the tensile strength of joint with filling wire is increased nearly 10% than the joint by laser welding. Besides, the microhardness of Al-Li alloy weld bead is tended toward uniform by the laser welding with filling wire and laser-arc hybrid welding.
引文
1曹春晓.一代材料技术,一代大型飞机.航空学报, 2008, 29(3): 701~706
    2李红萍.铝合金在飞机上的应用.民用飞机设计与研究, 2003(1): 18~22
    3《中国航空材料手册》编辑委员会.中国航空材料手册第三卷(铝合金镁合金).中国标准出版社,2001,12: 101~245
    4任家烈,吴爱萍.先进材料的连接.机械工业出版社, 2000: 39~74
    5 E. J. Lavernia, T. S. Srivatsan, F. A. Mohamed. Review strength, deformation, fracture behaviour and ductility of aluminium-lithium alloy. Journal of Materials Science, 1990, 25: 1137~1143
    6鲁隽.用先进结构和材料打造A380.国际航空, 2004(1): 41~42
    7王家淳.激光焊接技术的发展与展望.激光技术, 2001, 25(1): 51~55
    8李国华,蔡艳,高志国,等.航宇铝合金结构激光焊,航空制造技术, 2007(7): 64~66
    9 Z. Sun and M. Kuo. Bridging the joint gap wire feed laser welding. Journal of Materials Precessing Technology, 1999, 187: 213~222
    10左铁钏,肖荣诗,陈铠,等.高强铝合金的激光加工.北京:国防工业出版社, 2002: 47~141
    11 G. Sepold, T. C. Zuo, and C. Binroth. CO2 Laser beam welding aluminum alloys for transport systems. Welding Research Supplement, 2000(3): 89~90
    12 S. J. Katayama and Y. Yamaguchi. Effect of porosity and mechanical properties of CO2 laser welded aluminium alloy. Welding Research Supplement, 2005(5): 70~73
    13郑启光,辜建辉,王涛,等.激光深熔焊接的熔池行为与焊接缺陷的研究.激光技术, 2000, 24(2): 90~94
    14 M. B. D. Ellis. Fusion Welding of Aluminum-Lithium Alloys. Welding&Metal Fabrication, 1996, 64(2): 55~60
    15 Chen Yanbin, Li Liqun, Peng Xiaoyun, et al. Joints performance in laser welding Al alloy with filler wire. Transactions of the Nonferrous Metals Society of China. 2005, 15(2): 87~91
    16 Qi Junfeng, Zhang Dongyun, Xiao Rongshi, et al. Joint performance of CO2 laser beam welding 5083-H321 aluminum alloy. China Welding, 2007, 16(2): 40~45
    17 D. Fabregue, A. Deschamps, and M. Suery. Microstructure of butt laser joints of aluminiumalloy 6056 sheets with an AS12 filler. Materials Science and Technology, 2005, 21(11): 1329~1336
    18 A. S. Salminen and V. P. Kujanp??. Effect of wire feed position on laser welding with filler wire. Journal of Laser Applications. 2003, 15(1): 2~10
    19 M. N. Watson. Laser welding of structural steel with wire feed. TWI Research Report, No. 264, 1985
    20 S. E. Nielsen, L. E. Hansen, and J. K. Kristensen. High power laser welding of C/Mn steel—The effects of using different filler materials and plasma control gases. Proc. 5th Int. Conf. on Welding and Melting by Electron and Laser Beams, France, organized by Institut de Soudure and TWI, 1993, Vol. 1, pp. 203~210.
    21 Y. Arata, H. Maruo, I. Miyamoto, et al. High power CO2 laser welding of thick plate, multipass welding with filler wire. Trans. JWRI 15, 199~206 (1986).
    22 E. Beyer, K. Behler, and G. Herziger. Influence of laser beam polarisation in welding. Proc. 5th Int. Conf. Lasers in Manufacturing, 1988, pp. 233~240.
    23 E. Cicalǎ, G. Duffet, H. Andrzejewski, et al. Hot cracking in Al-Mg-Si alloy laser welding operating parametres and their effects. Materials Science and Engineering A 395(2005)1~9
    24 Antti Salminen. The effects of Filler wire Feed on the Efficiency of Laser Welding. Proceedings of SPIE Vol.4831(2003):263~268
    25 E. A. Metzbower, H. K. D. H. Bhadeshia, and R. H. Phillips. Microstructures in hot wire laser beam welding of HY80 steel. Materials Science and Technology 1994, 10(1): 56~59
    26 R. H. Phillips and E. A. Metzbower. Laser Beam Welding of HY80 and HY100 Steels Using Hot Welding Wire Addition. Welding Journal, 1992, 71(6): 201s~208s.
    27梅汉华,肖荣诗,左铁钏.采用填充焊丝激光焊接工艺的研究.北京工业大学学报, 1996, 22(3): 38~41
    28 W. M. Steen. Arc augmented laser processing of materials. Appli. Phys, 1980, 51(11): 5636~5639
    29 A. Mahrle, E. Beyer. Hybrid Laser Beam Welding-Classification, Charaeteristies, and Application. Journal of Laser Applications, 2006, 18(3):169~173
    30 T. Graf, H. Staufer. Laser-hybrid welding drives VW improvements. Welding Journal, 2003, 82(1): 42~48
    31高志国,黄坚,蔡艳,等.轻金属的激光复合焊技术.焊接, 2006(9): 35~39
    32宋刚,刘黎明,王继锋,等.激光-TIG复合焊接镁合金AZ31B焊接工艺.焊接学报, 2004, 25(3): 31~34
    33芦凤桂,唐新华,姚舜,等.汽车用铝合金激光+TIG复合焊接工艺研究.汽车技术, 2006(1): 39~41
    34柳绪静,刘黎明,王恒,等.镁铝异种金属激光-TIG复合热源焊焊接性分析.焊接学报, 2005, 26(8): 31~34
    35李志宁,常保华,都东,等.激光-等离子弧复合焊温度场的数值模拟.焊接学报, 2007, 28(6): 29~33
    36李志宁,都东,常保华,等.激光等离子弧复合焊熔池流动和传热的数值分析.焊接学报, 2007, 28(7): 37~40
    37陈俐,段爱琴. YAG激光等离子弧复合焊接热源光谱特征分析.电加工与模具, 2007(6): 18~21
    38高志国,黄坚,蔡艳,等.轻金属的激光复合焊技术.焊接, 2006(9): 35~39
    39吕尚高,史春元,董春林,等.激光-电弧复合热源焊接研究及应用现状.航空制造技术, 2005(5): 86~88
    40雷振,秦国梁,林尚扬.激光与MIG/MAG复合热源焊接工艺发展概况.焊接, 2005(9): 361~364
    41许良红,田志凌,彭云,等.高强铝合金的激光-MIG复合焊接的实验研究.稀有金属, 2005, 29(5): 773~779
    42王威,王旭友,秦国梁,等.铝合金激光-小功率脉冲MIG电弧复合热源焊接特性分析.焊接学报, 2007, 28 (8): 37~40.
    43雷正龙,陈彦宾,李俐群,等. CO2激光-MIG复合焊接射滴过渡的熔滴特性.应用激光, 2004, 24(6): 361~364
    44张旭东,陈武柱,双元卿,等.CO2激光-MIG同轴复合焊方法及铝合金焊接的研究.应用激光, 2005,25(1): l~3
    45 T. H. Boellinghaus, H. Sehobbert. Nd:YAG Laser Plasma Powder Hybrid Welding of Austenitic stainlesssteels. 6th International Trends in welding Research Conference Proeeedings, April 2002: 453~458
    46 M. E. IRayes,C. Walz, and G. SePold. The Influenee of Various Hybrid WeldingParalmeters on Bead Geometry. The Welding Journal, 2004: 147~153
    47 T. Shide, M. Nayama, N. Sakamoto, et al. Hybrid YAG Laser Welding for Aluminum Alloy. IIW Doc, 1997, IV: 687~697
    48 P. L. Moore, D. S. Howse, and E. R. Wallach. Development of Nd: YAG laser,and laser/MAG hybrid welding for land pipeline application. Welding and Cutting, 2004,3(3): 186~191
    49 Lu Dengping, Zhang Xiaobin. Study on mechanism of Mutual Effect Between Laser&Arc and Its Effect on Weld Penetration. ChinaWelidng, 1993, 2(2):104~108
    50 W. Philip, F. Schbach. Laser Assisted Plasma Arc Welding. SeetionD-ICALEO1999:102~109
    51 V. Vavilov, L. Decker. Study of A Laser Enhanced Welding Arc Using Advanced Split Anode Technique. Welding Joumal, 1994, 11(2): 112~123
    52 T. C. Nguyen, D. C. Weckman, D. A. Johnson. The Discontinuous weld bead defect in High-Speed Gas Metal Arc Welds. Welding Research, 2007(11): 360~371.
    53 W. Guo, A. Kar. Determination of weld pool shape and temperature distribution by solving three-dimensional phase change heat conduction problem. Science and Technology of Welding and Jointing, 2000(5): 317~323
    54 J. Greses, C. Y. Barlow, P. A. Hilton, et al. Effects of different gas environments on CO2 and Nd: YAG laser welding process efficiencies. University of Cambridge, May 2002, 1~7
    55陈伯蠡.焊接冶金原理.北京:清华大学出版社, 1991.
    56汪兴均,黄文荣,魏齐龙,等.电子束焊接5A06铝合金接头Mg元素蒸发烧损行为分析.焊接学报, 2006, 27(11): 61~64.
    57刘北兴,覃耀春,李仁顺.分级时效工艺对1420Al-Li合金组织与性能的影响.宇航材料工艺, 2001(3) : 49~51
    58张蕾,祝铭亮,黄正.双级时效对1420合金模锻材料组织和性能的影响.轻合金加工技术, 2003, 31(6): 36~39
    59黄光杰,汪凌云,杨文敏,等. 1420Al-Li合金模锻件热处理新工艺及机理.重庆大学学报, 2002, 25(12): 42~45
    60刘北兴.电场热处理对1420合金组织与性能的影响.材料科学与工艺, 2002, 10(2): 156~159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700