合金元素对高铬耐磨铸铁凝固组织和亚临界硬化行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铬耐磨铸铁(high chromium cast iron,abbr.HCCI)的显微组织是在高强度又有良好韧性的基体上分布着高硬度的且彼此孤立分布而连不成网状的M_7C_3型共晶碳化物。正是由于它的特殊的显微组织使得它具有杰出的耐磨能力,而被广泛地应用于矿山、冶金、建材、电力和化工等行业。铸态高铬耐磨铸铁并不具有很好的耐磨能力,一般都要经过适当的热处理才能具有很好的使用性能。亚临界处理是一种很好的高铬耐磨铸铁热处理方法,高铬耐磨铸铁经过亚临界处理后能获得较好的使用性能。随着工业技术的发展,人们常常在高铬耐磨铸铁中添加一些合金元素来提高它的使用性能。为了合理而高效地利用合金元素,研究合金元素对高铬耐磨铸铁凝固组织和亚临界处理的影响,是很有必要的。本文正是通过一系列的对比实验和深冷处理来研究锰、铜和钒对高铬耐磨铸铁性能的影响,
     本文通过电子探针、X衍射、SEM、DTA、磁性法和硬度测量法来研究了一系列不同的成分的高铬耐磨铸铁的凝固组织和亚临界处理的时效硬化行为,详细分析了锰、铜和钒三种合金元素对高铬耐磨铸铁性能的影响,还分析了深冷处理对高铬耐磨铸铁亚临界硬化行为的影响。
     研究结果表明:高铬耐磨铸铁的铸态组织由奥氏体,马氏体和M_7C_3型碳化物组成。在高铬耐磨铸铁中分别加入Mn、Cu、V,基于不同的原因高铬耐磨铸铁的铸态试样的残余奥氏体含量都增加;Cu能显著增大碳化物的数量;V能细化晶粒,改善组织结构和分布,提高材料的硬度。高铬耐磨铸铁在一定的亚
    
     四川大学硕卜学位论文
    临界处理过程中会发生二次硬化效应,并且其显微组织中残余奥氏体含量越高,
    二次硬化效果越明显。二次硬化的具体机制是由于在亚临界处理过程中,由于
    残余奥氏体中的合金碳化物的析出使得Ms点上升而发生马氏体转变。含Cu、
    V的高铬耐磨铸铁在亚临界处理过程中要析出。一Cu相和VC,使材料由于弥散
    强化而硬度提高。由于Cu和VC的析出需要一定的时间,故由它们析出引起的
    二次硬化峰要迟于由于马氏体转变引起地二次硬化峰。用深冷处理后的试样进
    行对比亚临界处理也证实了高铬耐磨铸铁在亚临界处理中的第一个硬化峰是由
    马氏体转变引起的,并且深冷处理后,试样由于其残部分余奥氏体转变为马氏
    体而硬化。
In the microstructures of as-cast High Chromium Cast Irons (HCCIs), there is the eutectic type M7C3 carbide that has high hardness, doesn't join into net and is isolated distribution in the matrix, which has high strength and good toughness. The HCCIs have excellent wear resistance because it's particular microstructure and being widely applied in the miner areas, metallurgy, manufacture of building materials, power plant and chemical industry and so on. The as-cast HCCIs have not well abrasion resistance and they must be properly heat-treated, then has the finer wear resistance, commonly. The sub-critical treatment is an appropriate heat treatment method and through it, the HCCIs have good mechanical properties. With the development of industry technology, the alloying elements are added into HCCIs to achieve favorable performance .The study on the effect of the alloying element on solidification microstructure and the sub-critical treat hardening behavior of HCCIs is needed for reasonably and availably uti
    lization of the precious alloy resource. Our task is to study the effects of manganese, copper and vanadium on the HCCIs through some contrastive experiment.
    In this paper, the solidification microstructure and sub-critical heat treatment
    
    
    
    
    hardening behavior of a series of different composition HCCIs has been researched by using electron probe analyzer, X-ray diffraction, SEM, DTA, magnetic method and hardness test, and the influence of different content of manganese, copper and vanadium on HCCIs is gone into particular.
    The results indicate that, the microstructure of as-cast HCCIs is composed with austenite, martensite and type MiCj, carbide. And with the manganese, copper, or vanadium is added into HCCIs, the retained austenite of the HCCIs increases based on distinct mechanism, respectively. Copper can increase the amount of carbide when it been added into HCCIs and vanadium can fine the microstructure of HCCIs that can bring on HCCIs hardening. HCCIs will appear secondary hardening in the sub-critical treatment, and the more austenite content HCCIs have, the more obvious the phenomenon is. The mechanism of secondary hardening is that with the precipitation of carbide from austenite, the Ms point of HCCIs increase, and occurs martensite transformation and hardening in the course of cooling. The HCCIs contented copper or vanadium will precipitation the e-Cu phase or VC, respectively, in the process of sub-critical treatment, which will lead to dispersion strengthening and HCCIs hardening. Because the precipitation of e-Cu
     or VC will last longer time, the secondary hardening peak owing to that will posterior to the first hardening peak due to martensite transformation. Through experiment with the cryogenic treated sample also confirm that the first hardening peak of hardening curve results from martensite transformation. And through cryogenic treatment, the hardness of HCCIs augments as a result of retained austenite changed into martensite.
引文
1. Guoquan, R.; Haiqi, Z.; Jingde, etal, Application and study on the models of predicting wear failure in the mechanical equipment[J], Proceedings of the International Symposium on Test and Measurement, 2001 (2): 1130-1132.
    2. Tanner, Danelle M., Dugger, Michael T. , Wear mechanisms in a reliability methodology[J] Proceedings of SPIE - The International Society for Optical Engineering, 2003 (4980): 22-40.
    3. Finkin, Eugene F. , EXPLANATION OF THE WEAR OF METALS[J].Wear, , Mar, 1978, 47 (1) : 107-117.
    4. Wardany, T.I. El; Elbestawi, Prediction of tool failure rate in turning hardened steels[J], International Journal of Advanced Manufacturing Technology, 1997, 13 (1) : 1-16.
    5. Fukumori. K, Kurauchi. T, STATIC FATIGUE OF THERMOPLASTIC ELASTOMERS[J], Journal of Materials Science, May, 1985,20(5): 1725-1732.
    6 郝石坚,高铬耐磨铸铁[M],煤炭工业出版社,1993:23-29.
    7 章守华主编,合金钢[M],冶金工业出版社,1981:40.
    8.杨丰 陈晓微,耐磨材料在士壤耕作部件中的应用[J],农机化研究.2000,(3):111-112.
    9.仝健民,耐磨钢研究进展[J],水利电力机械.2003,25(2):29-32.
    10.何廷树 许云华 张治元,高效耐磨双金属复合水力旋流器的研制与应用金属矿山[J].2003,(5):41-43.
    11.刘湘 沈蜀西,镶铸高速钢—碳钢舣金属耐磨材料结合机理的研究[J],铸造技术.2003,24(1):67-68.
    12.袁斌,耐磨材料在浮选机上的应用[J],金属矿山.2002,(10):57-58.
    13.章希胜,低合金回火马氏体铸钢及其应用铸造[J].1999,(2):32-34.
    14.荆天辅 林之华,热连轧09MnVTiN钢板冷冲压成型性的研究[J],钢铁.1991,26(3):44-47.
    15.赵九根 缪勇,12MnVBS非调质钢汽车前轴的开发[J],特殊钢.2000,21(4):46-48.
    16.陈银莉 余伟等,42Mn2V钢管形变热处理的模拟试验[J],特殊钢.2002,23(6):12-14.
    17.陈会文 朱俊,锯片基体用50Mn2V钢的研制[J],江苏冶金.2000,28(2):38-42.
    18.周文龙 康伟 低铬耐磨钢冲击磨料磨损的研究[J],水利电力机械.1996,(1):45-47.
    
    
    19.吴宇宁,造粒机平模用新型高铬耐磨钢的研制[J],江苏冶金.1989,(5):10-12.
    20.王建华 任立军,高锰钢加工硬化机理研究[J],煤矿机械.2003,(1):24-27.
    21.齐德新 赵树国,浅谈ZGMn13高锰钢的切削加工性[J],煤矿机械.2003,(1):50-51.
    22.李茂林,我国金属耐磨材料的发展和应用[J],铸造.2002,51(9):525-528.
    23.王豫 斯松华,高锰钢加工硬化规律和机理研究[J],钢铁.2001,36(10):54-56.
    24.吕宇鹏 朱瑞富,超高锰耐磨钢的组织与性能研究[J],矿山机械.1998,26(6):69-71.
    25.朱瑞富 韩志强,变质中锰耐磨钢与铸态水韧节能热处理[J],钢铁.1997,32(2):57-60.
    26.李卫 王洪发,耐磨材料与磨损技术新进展[J],铸造.2001,50(1):13-28.
    27.苏应龙 方纲,镍硬白口铸铁冶金学[J],北京工业大学学报.1993,19(3):19-26.
    28.朱正芳,镍硬铸铁切削加工性的研究[J],硬质合金.1989,(1):34-38.
    29.张立波 陈迪林,铸造抗磨材料的发展概况与趋势[J],现代铸铁.1999,(3):12-15.
    30.解培民 符寒光,多元微合金化和热处理对稀土中锰白口铸铁组织和性能的影响[J],热加工工艺.1991,(3):23-26.
    31.马前 王兆昌,热处理对中锰白口铸铁组织与性能的影响[J],金属热处理.1992,(9):32-36.
    32.谭银元 许小平,多元低合金对高铬锰白口铸铁组织和性能的影响[J],南京理工大学学报)自科版),2001,25(2):160-164.
    33.凡定胜,钨合金白口铸铁衬板的研究和应用[J],湖南冶金.2002,(6):21-24.
    34.蔡安辉 施居俯,中低铬白口铸铁的配制[J],现代铸铁.2002,(4):33-35.
    35.刘根生 王文才,显微激冷对EPC铸造低铬白口铸铁综合性能的影响[J],河北工业大学学报.2001,30(4):14-18.
    36.杨雪梅,低铬白口铸铁的热变形量与组织及力学性能的关系[J],上海金属.2001,23(6):14-17.
    37.张羊换 王贵,稀土对高铬白口铸铁组织转变的影响[J],金属热处理学报.2000,21(3):55-60.
    38.李秋书 闫志杰,高铬白口铸铁抗磨特性的对比研究[J],中国铸造装备与技术.2001,(3):26-28.
    39.苏俊义,铬系抗磨铸铁[M],西安交通大学出版社,1991:56-87.
    40.郝石坚,高铬耐磨铸铁[M],煤炭工业出版社,1993:23-29.
    
    
    41.杨军 符寒光 邹德宁,变质处理钨合金白口铸铁衬板的研究和应用[J],金属矿山.2003(4):28-31.
    42.张进孝,复合变质高铬铸铁[J],长安大学学报(自然科学版).2002,22(4):82-84.
    43.栾景飞 周振丰,共晶碳化物团球化对铸铁激光熔敷层抗裂性的影响[J],材料科学与工艺.2002,10(1):41-44.
    44.马壮 赵越超,中铬白口铸铁磨球的孕育处理[J],煤炭科学技术.2001,29(6):25-27.
    45.马永庆 戴乐阳,高铬铸铁高温马氏体相变与摩擦诱发马氏体相变关系的研究[J],物理测试.2002,(1):13-15.
    46.蒋业华 周荣,控制冷却获得贝氏体/马氏体球墨铸铁的组织转变及耐磨性[J],铸造.1999,(3):20-23.
    47.刘高生 符寒光,提高高铬铸铁衬板强韧性的研究[J],硫磷设计与粉体工程.2000,(6):24-26.
    48.符寒光 赵爱民,提高高铬铸铁件强专心性工艺的研究[J],现代铸铁.1999,(3):48-50.
    49. Chang, Sam Kyu; Kim, Dong Gyu; Choi, Jin Won, Effects of alloying elements and austenite destabilization heat treatment on graphitization of high chromium cast iron[J], ISIJ International, 1992, 32(11):1163-1165.
    50. Ikeda, Minoru: Umeda, Takateru; Tong, China Ping; Suzuki, Toshio; Niwa, Naotaka; Kato, Effect of molybdenum addition on solidification structure, mechanical properties and wear resistivity of high chromium cast irons[J], ISIJ International, 1992, 32(11) :1157-1162.
    51.王振廷 孙昌立,以锰代钼高铬铸铁牙板的研制及应用[J],煤矿机械.2002,(3):38-39.
    52.徐增华,金属耐蚀材料[J],腐蚀与防护.2001,22(1):46-48.
    53.刘金海 王昆军,钼硼铜对铸态高铬铸铁力学性能的影响[J],热加工工艺.1998,(2):9-11.
    54.刘金海 李景仁,铸态马氏体高铬铸铁搅拌机衬板的研究[J],现代铸铁.1997,(4):16-19.
    55.王庆顺 符莉,过冷灰铸铁中铌,钼,镍的作用研究[J],热加工工艺.1999,(3):14-15.
    56.李玉和 文玉庆,在高温下钒对高铬铸铁耐磨性的影响[J],四川冶金.2003,25(1):
    
    17-25.
    57.甘宅平,热处理制度对高铬铸铁组织和硬度的影响[J],武钢技术.2001,39(4):30-33.
    58.马壮 赵越超 热处理温度对高铬铸铁组织及耐磨性的影响[J],煤炭学报.2001,26(2):191-194.
    59.袁锡爵,高铬铸铁的亚临界处理[J],现代铸铁,1987,2:40-42.
    60 徐志明,尹志新,高铬铸铁铸态奥氏体的亚临界热处理的研究[J],金属热处理,1993,4:10-15.
    61 张彪,郭建瑞,张彬,含锰4%的高铬铸铁的亚临界淬火[J],太原重型机械学院学报,1993,14(3):74-79.
    62 徐志明,杨月君,尹志新,Cr12Mo2Cu高耐磨铸铁的热处理工艺研究[J],金属热处理,1995:11-38.
    63 杜家林,高铬铸铁的热处理新工艺[J],金属热处理,1996,11:33-34.
    64 Sare I.R., Arnold B.K., Influence of heat treatment on the high-stress abrasion resistance and fracture toughness of alloy white cast iron[J], Metallurgical and Materials Transactions, 1995,26A: 1785-1793.
    65 章守华主编,合金钢[M],冶金工业出版社,1981:40
    66.姚三九 王兆昌,残余奥氏体对中锰白铸铁力学性能和抗磨性的影响[J],钢铁研究学报.2000,12(6):42-45.
    67 段汉桥,锰对高铬铸铁凝固过程和组织的影响[J],热加工工艺,2001,3:23—25
    68 彭晓春,锰对铸态奥氏体高铬铸件基体组织的影响[J],铸造技术,1995,6:37—39.
    69 吴培英,金属材料学[M],北京工业学院,国防工业出版社,1981:84.
    70 佟庆平、铃木俊夫,梅田高照,铸物,1990,62(2):130.
    71 田村朗,尾崎宏宪,铸造工学,1996,68(12):130.
    72 M. Radulovie, M. Fiset, K. peev, The influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons [J], Journal of Material Science, 1994 (29):5085-5094.
    73 C.R. Loper, H.K. Baik, AFSTrans. 1989,91:1001-1005.
    74 M. Radulovie, M. Fiset, K. peev, [J], Material. Sci and Technol. 1994(10):1057.
    75 黄四亮,高铬白口铸铁(10%-28%Cr)热处理工艺研究与探讨[J],铸造技术,2000(6):43-46.
    
    
    76 王文才,刘根生,矿山用屈氏体高铬铸铁磨球[J],铸造,1991(10):27-30.
    77 C.P. Tabrett, I.R. Sare, Effect of heat treatment on the abrasion resistance of alloy white irons[J], Wear, 1997(10) :27-34.
    78 朴东学,周桂田.改善高铬铸铁件使用性能的新工艺[J].铸造,1994,(2):20-24.
    79 叶以富,陈宗民.磨球研究与应用现状[J].铸造.1996(9):41-45.
    80.卢书媛 丁厚福,,几种新型耐磨材料[J],国外金属热处理.2002,23(5):6-8.
    81.冶金工业部钢铁研究院主编,合金钢手册[M],冶金工业出版社:50-59.
    82.徐祖耀,马氏体相变与马氏体[M].北京:科学出版社,1981:88—89.
    83.王均、孙志平、沈保罗等,一种高铬铸铁的亚临界处理的硬化动力学研究[J],铸造,2003.11:
    84. Yoo, J.Y.; Choo, W.Y.; Park, T.W.; Kim, Y.W, Microstructures and age hardening characteristics of direct quenched Cu bearing HSLA steel[J], ISIJ International, 1995, 35(8):1034-1040.
    85. Mintz, B; Skoufari-Zhemistou, An examination of structure/property relationships of an age-hardenable Cu containing steel[C], International Symposium on Steel for Fabricated Structures, 1999:50-58.
    86.彭治龙、王永恒,含钒高铬铸铁的研究[J],热加工工艺,1991(2):44-46.
    87.王玉玮、石雯,钒在高铬铸铁中的作用[J],铸造,1989,5:9-12.
    88. Gunduz, S.; Cochrane, R.C., Effect of dynamic strain aging on mechanical properties of vanadium microalloyed steel[J], Materials Science and Technology, 2003,19 (4): 422-428.
    89. Prikryl, M., Kroupa, A.; Weatherly, G.C.; Subramanian, S.V. Precipitation behavior in a medium carbon, Ti-V-N microalloyed steel[J], Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27A(5) : 1149-1165.
    90. Paulin P, Cutting Tool Engineering, 1992. (5);44.
    91. Borron R F, Heating Treating, 1974, (6):12.
    92.尹廷国.[J].金属热处理,1996.(8):27-30.
    93.李士燕、刘秀芝、陈长风等,孪晶马氏体深冷分解产物的组织结构分析[J],机械工程材料,2000,24(4):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700