粉末冶金反应合成碳化钒颗粒增强铁基复合材料制备工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过合理的成分设计和工艺参数的优化,利用粉末冶金技术,采用原位合成的方法,制备了碳化钒颗粒增强铁基复合材料。利用粒度分析仪、光学显微镜和扫描电子显微镜研究了球磨工艺参数、碳钒比对试样烧结致密化的影响;利用X射线衍射仪和DTA研究了Fe-V-C三元系碳化反应σ相分解机理以及碳化反应过程;借助于能谱仪、SEM以及XRD对复合材料的显微组织进行了分析。
     工艺性研究表明:(1)球磨24小时的合金粉要比球磨36小时的合金粉表现出更小的平均粒径和颗粒均匀程度。这是由于球磨36小时正处于脆性-延性球磨的第二阶段,颗粒之间发生了冷焊所导致的。(2)球磨时间为36小时的试样的体积收缩要明显高于球磨时间为24小时试样,并且在比较低的温度下就达到了最大体积收缩。(3)高的碳钒比有助于粉末压坯更快的达到最大体积收缩,但同时也更容易在试样内部形成过多的孔洞。(4)球磨时间长(36h)的粉末压坯烧结后相对于球磨时间较短(24h)的粉末表现出较高和较均匀的密度。
     Fe-V-C三元系碳化反应中由于V与C强的亲和力,使得在烧结温度远远低于1252oC时,钒铁中的σ相已经开始转变为钒在α-Fe中的固溶体(α-Fe,V),V与石墨发生了碳化反应,生成了V8C7。经700oC烧结后其相组成主要由碳化反应生成的V8C7和α-Fe以及没有反应的石墨和σ-(FeV)相组成。随着烧结温度的提高,V8C7的相对衍射强度显著增加,α-Fe的相对衍射强度先有微弱降低随后逐渐升高,石墨和σ-(FeV)相的相对衍射强度则急剧降低。在800 oC时候石墨的衍射峰已经消失,在850oC时候σ-(FeV)分解完毕,反应生成相
With the correct compound designing and the optimization of processing parameter selection, a kind of vanadium carbide reinforced metallic matrix composite is produced in situ by powder metallurgical technology. The effect of milling technological parameter and carbon/vanadium ratio to the densification was studied using particle-size analyzer, optical microscope and scanning electronic microscope (SEM); Decomposition mechanism ofσphase in Fe-V-C ternary system is investigated by means of X-ray diffraction (XRD) and DTA (differential thermal analysis); Microstructure of the composite is analyzed with help of scanning electronic microscope (SEM), electronic probe microanalysis (EPMA) and XRD.
     Ball milling processing to the densification of sample is indicated as follow(1)powdered alloy with milling 24 hours shows smaller of the average particle size compared with the milling 36 hours and has more even particle distribution due to the particles happen cold weld each other when grinds 36 hours which belongs to the second stages of mechanical alloying(.2)the grinder 36 hours’samples which obtain the maximum volumetric shrinkage at a relative lower temperature have bigger volumetric shrinkage compared with the grinder 24 hours’samples.(3)the higher carbon/vanadium ratio is usually help to the sample obtaining maximum volumetric shrinkage the earlier.(4)the longer of the milling time of the powdered alloy, the
引文
[1] 桂满昌,王殿斌,张洪.颗粒增强铝基复合材料在汽车上的应用.机械工程材料[J].1996,20(5):30-33
    [3] Engineering Materials Handbook, Vol. l,Composites. ASM International, Metals Park,OH,1995
    [4] Materials Properties Handbook, Titanium Alloys, ASM International, Metals Park,OH,1994
    [5] High Temperature Ordered Intermetallic Alloys.Liu C T, Taub A I, Stoloff N S,etal, ed. MRS Pittsburgh, 1989:133
    [6] Intermetallic Matrix Composites.Miracle D B,Anton D L, Graves J A,ed. MRS Pittsburgh,1993:273
    [7] Metals Handbook Vo1.2 Tenth Edition.ASM International. Metals Park OH , 1989
    [8] 吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1):78
    [9] 张静,潘复生,陈万志.铁基复合材料的现状与发展[J].材料导报,1995, 1:67
    [10] 鲁云,朱世杰等.先进复合材料.机械工业出版社,2004:68.
    [11] 丁义超.四川大学硕士学位论文[M].2003,5:5
    [12] 陈寒元,邹正光,麦立强.TiC复合材料的研究进展[J].粉末冶金工程,2001,No.3:38-44
    [13] 冯可芹.四川大学博士学位论文[M].2005,5;4
    [14] 程秀兰,潘复生.金属基复合材料的反应合成技术[J].材料导报,1995,(5):61-66
    [15] 冯可芹,杨屹等.铁基复合材料的制备技术与展望[J].机械工程材料,2002.26(12): 9-11
    [16] 赵浩峰,韩世平.特种铸造技术在金属基复合材料制造中的应用和发展[J].材料工程,1999.18(2):20-24
    [17] 严有为,魏伯康等.反应铸造工艺及原位颗粒增强金属基复合材料[J].铸造,1997 (11):加 1-加 3
    [18] A.R.E.Singer. The principles of spray rolling of metals[J].Metallurgical material,1970, 4:246-250
    [19] A.G.Leatham,A.Lawley.The Osprey rocess: principles and applications[J], International Journal of Powder Metallurgy, 1993, 29:321-329
    [20] J.W.Kaczmar,K.Pietrzak,et al. The production and application of metal matrix composite materials [J].Journal of Materials Processing Technology,2000, 106:58-67
    [21] 程秀兰,潘复生.金属基复合材料的反应合成技术[J].材料导报,1995,(5):61-66
    [22] 张卫方,韩杰才,杜善义,陶春虎,习年生.SHS/PHIP 制备 TiC-Fe 金属陶瓷的微观组织研究[J].复合材料学报,2001,NO.2:65~69.
    [23] 邹正光,傅正义,袁润章.Ti-C-Fe 体系自蔓延高温合成的反应动力学过程和结构形成过程[J].复合材料学报.1999,NO.3:78~82.
    [24] D.Froidevaux,D.Rossier,N.M.R investigation of the atomic and electronic structure of vanadium and niobium carbides, J. Phys. Chem. Solids, 1967, 28,1197-1209.
    [25] A.W.Henfrey, B.E.F.Fender, A neutron diffraction investigation of V8C7, Acta Crystallogr.1970,B26,1882-1883
    [26] 孙景,郭小南,段积林,董向红,梁福起.添加 VC 的 WC-10%Ni 无磁硬质合金的研究[J].粉末冶金技术,1999,17(2):103-106
    [27] 孙景,魏庆丰,刘俊朋,李宝银,李群英.添加 VC 的 TiB2-Fe-Mo硬质合金天津大学学报[J].2004,37(4),349-352.
    [28] S.R.Tittagala,P.R.Beeley, et al. Elvalution of some new cast hot-work die steels using simulation wear test[J]. Metals Technology, 1983, 10(7):257-263 [29」刘海峰,刘耀辉等.原位合成 VC 颗粒增强钢基复合材料组织及其形成机理[J].复合材料学报,2001,18(4): 58-63
    [30] Yisan Wang,Wen Huang, et al. In situ production of Fe-VC and Fe-TiC surface composites by cast-sintering[J].Composites Pare A,2001,32:281-286
    [31] 王一三,张欣苑等.液态反应生成 Fe-VC 表面复合材料的组织与耐磨性能[J].复合材料学报.2000,17(1):71-75
    [32] Yisan Wang,Fengchun Li, et al. Structure and wear-resistance of an Fe-VC surface composite produced in situ[J].Materials and Design.1999,20: 19-22
    [33] 丁义超,王一三等.V8C7-Fe 基表面复合材料的铸造烧结过程和耐磨性研究[J].热加工工艺,2003,(2):7-11
    [34] Yisan Wang,Zhiping Sun,et al.In-situ production of VC-Si02-Fe surface composite by cast-sintering[J].Materials and Design,2004,25:69-72
    [35] Mei Z ,Y W Yan,Cui K .Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites[J].Materials Letters.2003,7,57(21):3175-3181
    [36] R K Galgali,H S Ray,A K Chakrabarti.Wear charactersties of TiC reinforced cast iron composites[J].Materials Science and Technology.1998,9(14): 1189-1193
    [37] 严有为,魏伯康,傅正义等.Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程研究[J].金属学报.1999,35(9):9O9
    [38] 严有为,魏伯康,傅正义等.原位TiC颗粒增强铁基复合材料及其组织形成机理[J].金属学报.1999,35(10):1117
    [39] 严有为,魏伯康,傅正义等.原位TiC/Fe复合材料组织中的有害相及其防止措施[J].复合材料学报.2000,17(3):55
    [40] 严有为,魏伯康,傅正义等.TiC颗粒含量及尺寸对原位合成TiCp/Fe复合材料耐磨性的影响[J].摩擦学学报.1999,l9(3):193
    [41] 严有为,魏伯康,傅正义等.淬火组织对原位TiCp/Fe复合材料组织及耐磨性的影响[J].摩擦学学报.2000,20(1):6
    [42] 段汉桥,魏伯康,林汉同等.热处理对TiCp/Fe复合材料组织和性能的影响[J].特种铸造及有色合金.2001,2:5
    [43] 邹正光,傅正义,袁润章.自蔓延高温合成TiC复合添加剂增强铁基粉末冶金材料[J].中国有色金属学报.2001,11(3):408
    [44] 邹正光,傅正义,袁润章.Ti-C-xFe体系自蔓延高温合成及机理[J].材料研究学报.2000,14(3):531
    [45] 潘卫东,任英磊,邱克强等.原位复合TiC和(TiW)C增强Fe基复合材料[J].东北大学学报(自然科学版).2003,24(4):377
    [46] New material world. (1)1990:6
    [47] Werkstoff&Korrosion.40(3),1989:735
    [48] 蒋业华.颗粒体积分散对WC/铁基表面复合材料冲蚀磨损性能的影响[J].铸造.2002,51(7):1428-1430
    [49] 尤显卿,郑玉春,朱晓勇等.电冶熔铸WC-Co/钢复合材料组织和性能的研究[J].中国稀土学报2003.12(21):133-135
    [50] 祁小群,李秀兵.WC颗粒增强高铬铸铁基表面复合材料喷射口衬板的研制[J].铸造技术.2002,23(5):282-284
    [51] 尤显卿.钢结硬质合金硬质相种类与含量选择[J].硬质合金,No.2:39-43
    [52] 李力军,杨瑞林.新型铸造WC颗粒复合耐磨材料的研究[J].硬质合金[J].1998,15(4):208-212.
    [53] 游兴河.WC在WC/钢基复合材料中的溶解行为[J].复合材料学报.1994,11(1):29-35
    [54] 许大庆.铁基颗粒复合材料的组织与抗冲蚀性能[J].特种铸造及有色合.1998,(6):8-1O.
    [55] 许斌.改善碳化钨颗粒与高铬铸铁界面结合的效果与机理[J].热加工工艺.2002,(1):9-11
    [56] 徐波,丁厚福.SiC颗粒增强铁基复合材料的现状及展望[J].合肥工业大学学报(自然科学版).2002,25(1):19-22
    [57] Pan Yi,Gao Ming Xia ,Oliveira Filipe J.Infiltration of SiC performs with iron melts:Microstructures and properties[J].Materials Science and Engineering ,A,2003.10.25,359,(1-2):343-349.
    [58] 刘进平,王玉玮,施延藻.SiC/铸铁基复合材料结合界面[J].东北工业学报.1991,12(6):597-602
    [59] W M Tang,Z X Zheng, H F Ding ,et al. Control of the interface reaction between silicon carbide and iron [J].Materials Chemistry and Physics,2003.4.29,80,(1):360-365
    [60] Oskarsson R,et aL .12 th International Plansee Seminar 89.Proceedings: 531-539
    [61] Farooq T. et aL.Powder Meta1lurgy 1nternational .22(4),1990:12-16
    [62] 坂口茂也.粉体与粉末治金. 36(8),1989:908—912.
    [63] 王惜宝,梁勇.Fe-Ti- B 激光熔敷层中TiB2晶须的原位合成[J].金属学报.2003, 39(2):193-198
    [64] 余波,徐林,赵芳欣等.原位[TiB2(P) +TiC(P)]复合材料的制备和微结构[J].铸造,2003, 52(8):552
    [65] P.基费尔,施华尔茨柯普著.王少刚等译.硬质合金[M].北京:中国工业出版社.1963,9
    [66] 孙志平.四川硕士学位论文[M].2002,5
    [67] 黄培云.粉末冶金原理[M].冶金工业出版社.1982,11:306
    [68] C.Suryanarayana.Mechanical alloying and milling [J].Progress in Materials Science,2001,46:23
    [69] R.P.Seeling and J.Wulff.,The pressing operation in the fabrication of articles by powder metallurgy.,Trans. AIME. 1964,166;492-504
    [70] 黄伯云.粉末冶金标准手册(下册)检验标准[M].湖南,中南大学出版社.2001:476
    [71] Benjamin JS.Metal Powder Rep 1990,45:122-127
    [72] Gilman PS, Benjamin JS. Annu Rev Mater Sci 1983;13:279-300
    [73] C.Suryanarayana.Mechanical alloying and milling [J].Progress in Materials Science,2001,46:3-5,20
    [74] 王永国,曹元,李兆前等.硬质敷层材料的液相烧结工艺研究[J].材料科学与工艺.2002,Vol.10 No.3:249
    [75] 程凤军,王一三,赖丽等.原位生成超细颗粒增强铁基复合材料[J].钢铁钒钛.2005, Vol.26 No.2:60
    [76] 邹正光.TiC/Fe 复合材料的自蔓延高温合成工艺及应用[M].冶金工业出版社.2002,12
    [77] 郑勇,赵兴中,胡振华等,Ti(C,N)基金属陶瓷烧结过程中的相变。硬质合金,1995,Vol.12 No.4
    [78] 石建国,王一三,王静等,固相反应原位生成碳化钒颗粒增强铁基复合材料[J].热加工工艺.2006,5
    [79] Suryanarayana C, Norton MG. X-ray diffraction: a practical approach.New York,NY:Plenum,1998
    [80] Lonnberg B.J Mater Sci .1994,29:3224-30
    [81] Aymard L,Dehahaye-Vidal A,Portemer F,Disma F.J Alloys and Compounds 1996;238:116-27.
    [82] 李荣久.陶瓷-金属复合材料[M].冶金工业出版社,2004,3;234-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700