高铬铸铁凝固过程中碳化物形成机制及形态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过改变化学成分和工艺条件研究了高铬白口铸铁凝固过程中碳化物形核长大的热力学与动力学条件变化及其对随后碳化物生长形态的影响,以期揭示高铬白口铸铁凝固过程中碳化物的形成机制和形态控制机理,为获得良好力学性能的新型高铬白口铸铁奠定理论基础。研究结果表明:
     化学成分对碳化物形态有重要影响:硅对碳化物形态的影响具有二重性:一方面硅增加碳的活性,促进碳的扩散,硅量的增加,使得初生碳化物易于粗大化;另一方面,硅与碳之间的排斥作用,导致碳原子在微区富集,使共晶碳化物的形核率增加,同时随着凝固的进行,共晶碳化物四周区域温度的降低以及硅含量的增加,碳、铬元素扩散到碳化物的生长界面受到限制,相应阻碍了碳化物的生长,从而细化了共晶碳化物;钒钛微合金化不仅能增加异质形核核心,而且熔液中溶解的钛还能抑制碳的扩散,阻碍碳化物的长大,使碳化物细化、球化,对力学性能改善有利;当铬(碳)量一定时,随着碳(铬)量的增加,碳化物数量增加,硬度增加而冲击韧性降低,特别是碳量的增加更能使碳化物形态和性能恶化。
     在过共晶高铬白口铸铁凝固过程中,通过改变其熔炼和冷却条件的方式来改变碳化物的形核和生长机制,可达到改善其形态的目的:当过热为1600℃时,实现了熔液净化,促进热力学过冷,使碳化物细化;当冷速较大时,碳化物形核率增加,且Fe、C、Cr等原子难以扩散到碳化物生长界面,从而抑制其长大,同时整体组织更为均匀。
     变质处理可有效的改善凝固过程中碳化物的生长形态。加铝镁合金复合变质,能促使碳化物生长界面形成富镁吸附薄膜,该薄膜的形成能有效的阻碍熔体中的Fe、C、Cr等原子的向碳化物生长界面扩散,从而抑制碳化物的长大,使碳化物细小、圆整且弥散分布,使其硬度HRC高达61时冲击韧性α_k提高到14.6J/cm~2。
By means of altering chemical compositions and technology effects of nucleating and growing thermodynamic and kinetic conditions on morphology and distribution of carbides in high chromium white cast irons have been studied, expecting to discover the freezing mechanism and morphological characteristics of carbides, aiming to establish the theory foundations for the high chromium white cast irons with better mechanical performance. The results have been shown that:
    Chemical compositions have significant effects on the carbide morphology. The effects of silicon on carbides morphology have duality: on the one hand, silicon enhances the activity of carbon and accelerate its diffusion. Thus, the primary carbides morphology deteriorates with the increase of the silicon content; on the other hand, the carbon atoms enrich in micro-zone due to the exclusion between silicon and carbon atoms, which causes the increase of the nucleation rate of eutectic carbides. However, with the temperature reduction and the increase of silicon amount around eutectic carbides, the diffusion of carbon and silicon to the growing interface of carbides is restricted, and the growth of carbides is hindered correspondingly, thereby refining eutectic carbides; vanadium and titanium Micro-alloying can increase the heterogeneous nucleation cores, and the solvent titanium holds down the carbon diffusion, thereby hindering the growth of carbides, which is favorable to mechanical properties. When the amount of chromium (carbon) keeps constant, as the amount of carbon (chromium) increases, the amount of carbides increases whereas the impact toughness decreases, especially the increase of carbon amount.
    During the solidification of hypereutectic high chromium white irons, the nucleation and growth mechanism of carbides are changed by varying the melting and cooling conditions, aiming to improve its morphology. The superheating to 1600℃ can purify the molten metal and promote thermodynamic supercooling, leading to the refinement of carbides; When the cooling rate become larger, the nucleation rate increases, however, it is difficult for Fe, C and Cr atoms to diffuse to the growing interface of carbides, thereby restraining the growth of carbides and at the same time the whole microstructure becomes more uniform.
    Modification can effectively improve the carbide morphology of hypereutectic high chromium cast irons. The addition of magnesium and aluminum compound modification can promote to form a rich magnesium adsorbed film at the carbides growing interface. The film can effectively prevent the Fe, C and Cr atoms diffusing to the interface, which restrains the growth of carbides, and the carbides become fine, spheroidized and dispersed. The macrohardness can reach HRC 61 and α_k increases to 14.6 J/cm~2.
引文
[1] 李卫.耐磨钢铁件的市场与生产[J].铸造,2004,53(12):958-962.
    [2] 符寒光.铸造金属耐磨材料研究的进展[J].中国铸造装备与技术.2006,6:2-6.
    [3] 张嗣伟.摩擦学科学与工程的进展与展望[R].北京:摩擦学科学与工程前沿研讨会主题报告.2004,12.
    [4] 陈璟琚,余自甦,许光奎,卿上胜,黄兴建,贺同正.合金高铬铸铁及其应用[M].北京:冶金工业出版社,1999:11-12.
    [5] 工程材料卷/机械工程手册/电机工程手册编辑委员会.机械工程手册[M].第二版.北京:机械工业出版社,1996.4-6.
    [6] Buytoz, Soner. Microstruetural properties of M_7C_3 eutectic carbides in a Fe-Cr-C alloy[J]. Materials Letters, 2006(3):605-608.
    [7] Powell G L F. Morphology of Eutectic M_3C and M_7C_3 in White Iron Casting[J]. Metals Forum, 1980, 3(1):37-46.
    [8] 陆文化,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,1996:121-126.
    [9] 李秋书,闫志杰.高铬白口铸铁抗磨特性的对比研究[J].中国铸造装备与技术,2001,(3):26-28.
    [10] Jackson R S. The Austenite Liquius Surface and Construtional Diagram for the Fe-Cr-C Metastable System[J]. Iron Steel Inst, 1970(208): 163.
    [11] 周继扬.铸铁彩色金相学[M].北京:机械工业出版社,2002(9):208.
    [12] Wu H-Q, Sasaguri N, Matsubara Y, Hashimoto M. Solidification of Multi- alloyed White Cast Iron:Type and Morphology of Carbides[J]. AFS Transactions, 1996(104): 103-108.
    [13] 张进孝.复合变质高铬铸铁[J].长安大学学报(自然科学版),2002, 22(4):82-84.
    [14] 栾景飞,周振丰.共晶碳化物团球化对铸铁激光熔敷层抗裂性的影响[J].材料科学与工艺,2002,10(1):41-44.
    [15] 马壮,赵越超.中铬白口铸铁磨球的孕育处理[J].煤炭科学技术,2001,29(6):25-27.
    [16] Westgren A De. Trigonala krom-ch mangankarbidemas kristalbyggnad och sammansattning[J]. Jernkont. Ann, 1935, 119(2): 231-238.
    [17] Eckstrom H C, Adcock W A.A new carbide in hydrocarbon synthesis catalysts[J]. J Am Chem Soc, 1950, 72(6):1042-1049.
    [18] Benz R, Elliott J F, Chipman J. Thermodynamics of carbides in the system Fe_2Cr_2C[J]. Metal.trans, 1974, 5A(5):2235-2243.
    [19] Woodyatt L R, Krauss G. Iron-chromium-carbon system at 870℃[J]. Metal. trans, 1976, 7A(3) :983-991.
    [20] Morniroli P J P, Gabtois M. Etude microstructurale de carbures M_7C_3[J]. Appl. Cryst., 1983, 16(1):1-7.
    [21] Norman T E, Solomon A, Doane D V. Martensitic white irons for abrasionresistant castings[J]. AFS Trans., 1959, 67:242-256.
    [22] Maratray F. Choice of appropriate compositions for chromium-molybdenum white irons[J]. AFS Trans., 1971, 79: 121-124.
    [23] Durman R W. Basic metallurgical concepts and the mechanical testing of abrasion-resistant alloys[J]. Foundry Trade Journal, 1973(5): 645-651.
    [24] Arpener S D, Carpenter D. X-ray diffraction study of M_7C_3 carbide within a high chromium white iron[J]. Materials Letters, 2003, 57(17):4456-4459.
    [25] 张明星,Kclly P M.用菊池衍射测定M_7C_3碳化物与奥氏体间的位向关系[J].金属热处理学报,2000,21(2):50-56.
    [26] Powell G L F. Solidification of Undercooled Bulk Melts of Fe-Cr-C, Co-Cr-C and Ag Ge Alloys of Near-eutectic Composition[J]. Materials Transactions, 1990, 31(2): 110-117.
    [27] Powell G L F, Carlson R A, Randle V. The Morphology and Microtexture of M_7C_3 Carbides in Fe-Cr-C and Fe-Cr-C-Si Alloys of near eutectic Composition[J]. Journal of Materials Science, 1994 (29): 1889-4896.
    [28] Ohide T, Ohira G. Solidification of High Chromium Alloyed Cast Iron[J]. The British Foundryman, 1983(1): 7-14.
    [29] Matsubara Y Ogik, Matsuda K. Eutectic Solidification of high chromium Cast Iron-Eutectic Structures and their Quantitative Analysis[J]. AFS Transactions, 1981 (89): 183-196.
    [30] Ogik, Matsubara Y, Matsuda K. Eutectic Solidification of high chromium Cast Iron-Mechanism of Euteetic Growth[J]. AFS Transactions, 1981 (89): 197-204.
    [31] Maratray F, Usseglio-Nanot R. Factors Affecting the Structure of Chromium and Chromium-Molybdenum White Irons[R], Climax Molybdenum, 1971.
    [32] K.Ogi, Y.Matsubara, K.Matsuda. Eutectic Solidification of High Chromium Cast Iron-Mechanism of Eutectic Growth[J]. AFS Transactions, 1981 : 197-204.
    [33] 周庆德,饶启昌,苏俊义.铬系抗磨铸铁[C].西安:西安交通大学出版 社,1986:79-86.
    [34] Royer A, Schissler J, Camelin P, Vasseur S, Savema J. Relations between microstructure and wear resistant of white cast irons(28%Cr) for the low speed trasport of abrasive materials[C]. Wear of Materials.International Conference on Wear of Materials. 1985: 634-644.
    [35] 马永庆,戴乐阳.高铬铸铁高温马氏体相变与摩擦诱发马氏体相变关系的研究[J].物理测试,2002(1):13-15.
    [36] 蒋业华,周荣.控制冷却获得贝氏体/马氏体球墨铸铁的组织转变及耐磨性[J].铸造,1999(3):20-23.
    [37] Laird Ⅱ G. Microstructures of Ni-Hard Ⅰ.Ni-HardⅣ and High-Cr-C white cast irons[J]. AFS Trans., 1991 (99) : 339-357.
    [38] Eiselsten L E and Shery O D. Structure and wear performance of rapidly solidified white cast iron powers[J]. Mater Sci., 1983, 18(2):483-492.
    [39] Shean K H W, Hemanth J, Sharma S C. The rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature[J]. Wear, 1996, 192(1): 134-140.
    [40] Llewellya R J, Yicka S K, Dolmanb K F. Scouring erosion resistance of metallic materials used in slurry pump service[J]. Wear, 2004, 256(3): 592-599.
    [41] 耿浩然,叶以富.铸铁合金的遗传效应及其利用[J].钢铁研究学报,1996,8(4):37-41.
    [42] 皇志富,黄卫东,张安峰,邢建东.半固态过共晶高铬铸铁的冲击及磨损性研究[J].西安交通大学学报,2005,39(7):775-778.
    [43] 孙逊.高铬铸铁可锻性及锻后机械性能.机械工程学报,1990.26(2).19-25.
    [44] 刑书明.白口铁热变形时碳化物破碎行为的研究.钢铁,1995(2).58-60.
    [45] Fiset M, Peev K, Radulovic M. Influence of niobium on fracture toughness and abrasion resistance in high-chromium white cast irons[J]. Journal of Materials Science Letters. 1993 (5): 615-617.
    [46] Radulovic M, Fiset M, Peev K. Influence of vanadium on fracture toughness and abrasion resistance in high chromium white cast irons[J]. Journal of Materials Science. 1994(10): 5085-5094.
    [47] Tan Y. Y, Xu X. P. Effect of multi-element low alloys on the structure and properties of high Cr-Mn white cast iron[J]. Journal of Nanjing University of Science and Technology. 2001(4):160-164.
    [48] 许利民,王秀梅,孙剑波.微合金化多元高铬铸铁球磨的研制[J].中国铸造装备与技术,2005(6):23-25.
    [49] Bratberg J, Frisk K. An experimental and theoretical analysis of the phase equilibria in the Fe-Cr-V-C system[J]. Metallurgical and Materials Transactions, 2004, 35A(12): 3469-3478.
    [50] Wiengmoona A, Chairuangsrib T, Brownc A, Brydsonc R, Edmondsc D V, Pearced J T H. Microstructural and crystallographical study of carbides in 30wt.% Cr cast irons[J]. Acta Materialia, 2005, 53(12):4143-4154.
    [51] 张承甫,龚建森,黄杏蓉.液态金属的净化与变质[M].上海:上海科学技术出版社,1989:165-222.
    [52] 张景辉.应用键参数选择变质剂及其在高铬铸铁上应用的试验研究[J].铸造,1989(11):7-11.
    [53] Qin Zirui,Nie Liwen. Effect of RE-Mg alloy modification on high cast iron [J]. ShiYouJiXie, 1998, 26(8) :20-23.
    [54] 杨庆祥,赵亚坤.稀土对高铬铸铁碳化物形态及相变动力学的影响[J].中国稀土学报,1998(2):71-74.
    [55] Bedolla-Jacuinde A, Aguilar S. L, Hemandez B. Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths and bismuth:Ⅰ. Effect on microstructure[J]. Journal of Materials Engineering and Performance, 2005, 14(2): 149-157.
    [56] Peev K, Radulovic M, Fiset M. Modification of Fe-Cr-C alloys using mischmetal[J]. Journal of Materials Science Letters, 1994(1):112-114.
    [57] Han Fusheng, Wang Zhaochang. Modifying high Cr-Mn cast iron with boron and rare earth-Si alloy[J]. Materials Science & Technology. 1989, 5(9):918-924.
    [58] 阴世河,姜炳焕.变质处理改善Cr26白口铸铁性能的研究.铸造,1987(7):17-20.
    [59] 艾忠诚,白云波,周国宽,丛家瑞.稀土变质提高离心复合铸铁轧辊使用寿命的研究[J].铸造,1999(11):17-20.
    [60] 于新泉,关绍康,王利国,甘宅平,钏相昭.变质处理对复合轧辊用高速钢组织和性能的影响[J].钢铁研究学报,2003(1):46-51.
    [61] 韩育成,唐荣级.高碳锰铬钢悬浮铸造的研究[J].铸造,1987,(3):7-10.
    [62] 李秋书,刘卯生,悬浮铸造对高铬白口铸铁组织和性能的影响[J].太原重型机械学院学报,2002,23(1):56-59.
    [63] 陈墨耕,耐磨铸铁[M].黑龙江:哈尔滨工业大学出版社,1990:92.
    [64] YUZS. Research on the Application of Rare Earth in Iron and Steel in Recent Years[J]. Journal of Rare Earths, 1990, 8(2):139.
    [65] 张立波,陈迪林.铸造抗磨材料的发展状况与趋势[J].现代铸 造,1999(3):12-15.
    [66] Yang Q X, Liao B, Liu J H. Effect of Hare Earth Elements on Austenite Growth Dynamics of Steel 60CrMnMo[J]. Journal of Rare Earths, 1998, 16(3): 274.
    [67] Liming Lu, Hiroshi Soda, Alexander Mclean. Merostructure and mechanical properties of Fe-Cr-C eutectic composites[J]. Materials Science and Engineering, 2003 (A347) :214-222.
    [68] 周继扬.铸铁彩色金相学[M].北京:机械工业出版社,2002(9):188-190.
    [69] Llewellyna R J, Yicka S K, Dolmanb K F. Scouring erosion resistance of metallic materials used in slurry pump service[J]. Wear, 2004, 256(4): 592-599.
    [70] 郝石坚.高铬耐磨铸铁[M].北京:煤炭工业出版社,1993:203.
    [71] 王玉玮.钒在高铬铸铁中的应用[J].铸造.1989(5):9.
    [72] 丁跃华,杨晓源,普靖中,朱红波,李新生.碳饱和熔铁中钛溶解度的试验研究[J].昆明理工大学学报(理工版).2005,30(5):20-24.
    [73] 程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社,1990(11):5-7.
    [74] 储双杰,吴人洁.凝固速度对金属基复合材料组织和力学性能的影响[J].稀有金属,1997,21(1):58-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700