激光熔覆原位反应生成TiC-VC增强铁基熔覆层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冶金、矿山、发电等行业中,存在严重的设备磨损问题,造成设备过早地损坏,消耗浪费了大量的能源、材料、人力等。在易磨损部件表面熔覆具有高硬度、高耐磨性的涂层成为这些领域修复部件、提高零件使用寿命的重要途径。本文将钛铁、钒铁、石墨等组分按一定比例混合均匀后预置在普通碳钢表面上,采用激光熔覆的方法,制备出原位合成TiC-VC增强的铁基熔覆层。采用透射电镜、电子探针、X射线衍射仪等测试手段及耐磨性试验,对熔覆层的微观组织结构和磨损性能进行了系统分析,讨论了合金粉末中钛铁、钒铁、石墨等的加入量对熔覆层组织及硬度的影响,并对熔覆层的耐磨机制进行了分析。
     钛铁、钒铁及石墨等组分配制的合金粉末,在激光的作用下,发生化学冶金反应,原位生成TiC-VC弥散分布的硬质相增强铁基熔覆层。
     本文研究了预置涂层厚度、激光熔覆功率、扫描速度、光斑直径以及多道熔覆时的搭接率等对熔覆层的成形和耐磨性能的影响。试验结果指出,当预置涂层厚度为1.5mm,熔覆用功率为2.2kW,扫描速度为300mm/min,光斑直径3mm,熔覆过程采用氩气进行保护,氩气流量为20L/min时,熔覆后可以得到表面较为平整且没有裂纹和气孔,与母材呈冶金结合的单道熔覆层;多道熔覆时,当搭接率在30%~40%左右时,可以得到成形较好的大面积的熔覆层。
     熔覆用合金粉木中的组分及含量影响着熔覆层中原位反应生成TiC、VC的数量、尺寸、分布及熔覆层的耐磨性能等。当组分中Ti:V:C的摩尔比在1:1.8:3.36时,熔覆层中生成了大量的树枝状分布的TiC-VC复合颗粒增强铁基基体,在相同的磨损条件下,磨损体积约为普通碳钢的1/22。
There are serious equipment wearing problems during the field of metallurgy, mining and power station. The wearing problem causes the equipments premature failure and wastes vast scale of energy, materials, human powers and so on. The method of developing high hardness and wear resistant coatings on the surface of equipments is a important way to repair and prolong the equipments' life. Using the 5kW CO_2 laser, in-situ synthesis TiC-VC particles reinforced Fe-based alloy composite coating has been prepared by using laser cladding with preplaced ferrotitanium, ferrovanadium and graphite. The microstructure and wear properties of the composite coatings were investigated by transmission electron microscopy (TEM), electron probe microanalyzer (EPMA), X-ray diffractometer (XRD) and skimming wear machine. The effect of the amount of Fe-Ti,Fe-V and C on the microstructure and properties were also studied.
     The results showed that TiC-VC carbides could be directly formed by metallurgy reaction among Fe-Ti,Fe-V and graphite during the progress of laser cladding. Those carbides were dispersively distributed in the hardfacing metal.
     Cladding parameters affected the formation and wear-resisting property of coating. By testing and comparing, we selected the proper cladding parameters as following: the thickness of the preseted coating was 1.2mm, the laser cladding power was 2.2kW, the laser scanning speed was 300mm/min, the laser spot diameter was 3mm, argon shield was selected and the argon flow rate was 20L/min, the lap rate was 30%-40%.
     The microstructure and wear properties were affected obviously by the amount of Fe-Ti,Fe-V and graphite. The layer containing large quantity and evenly distribution carbides could be obtained when the mol ratio of Ti:V:C was selected as 1:1.8:3.36. During the same wearing condition, the wear capacity of the matrix metal was about 22 times than the cladding layer reinforced by TiC-VC particles.
引文
1.赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2002.
    2.V ander Voort,George F.Metallography,principles and practice[M].New York:McGraw-Hill,1984.
    3.钟群鹏,田永江.失效分析基础知识[M].北京:机械工业出版社,1990.
    4.徐滨士,宋韶华.表面工程的理论与技术[M].北京:国防工业出版社,1999.
    5.孙希泰等编著.材料表面强化技术[M].北京:化学工业出版社,2005.
    6.刘新文.不锈钢轴的激光合金化提高耐磨性的研究[D].浙江工业大学硕士论文,2004.
    7.谭昌瑶,王钧石.实用表面工程技术[M].北京:新时代出版社,1998.
    8.李智,马椿喻,刘相华等.激光表面合金化工艺进展[J].材料科学与工程,1999,17(2):81-84.
    9.吴一,尹传强,邹正光等.钛铁矿原位合成金属陶瓷复合材料的研究[J].硅酸盐通报,2005,24(3):21-24.
    10.Pei Y.T.,Ocelik V.,De Hosson J.Th.M.Interfacial adhesion of laser clad functionally graded materials[J].Materials Science and Engineering A,2003,342(1-2):192-200.
    11.Chen Y.and Wang H.M.Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating[J].Materials Letters,2003,57(5-6):1233-1238.
    12.Wang H.M.,Liu Y.F.Microstructure and wear resistance of laser clad Ti_5Si_3/NiTi_2 intermetallic composite coating on titanium alloy[J].Materials Science and Engineering A,2002,338(1-2):126-132.
    13.Wang Xinhong,Zhang Min,Zou Zengda,et al.Microstructure and properties of laser clad TiC+NiCrBSi+rare earth composite coatings[J].Surface and Coatings Technology,2002,161(2-3):195-199.
    14.Sun R.L.,Mao J.F.,Yang D.Z.Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate[J].Surface and Coatings Technology,2002,155(2-3):203-207.
    15.W.M.Steen,Laser Surface Treatment,Proceedings of the NATO Advanced Study Institute on Laser Processing:Surface Treatment and Film Deposition,Edited by J.Mazumder,O.Conde, R.Villar and W.M.Steen,Kluwer Academic Publishers,1996.
    16.R.Vilar,Laser Alloying and Laser Cladding[J],Mater.Sci.Forum,1999,301:229-252.
    17.孙荣禄,杨贤金.45钢表面激光熔覆NiCrBSi涂层的组织和摩擦磨损性能[J].材料工程,2005,(8):20-23.
    18.赵海云.铁基激光熔覆合金设计及微观组织与性能研究[D].中国科学院力学研究所博士论文,2001.
    19.魏仑.激光熔覆镍基金属陶瓷涂层的研究[D].昆明理工大学硕士论文,2001.
    20.张松,张春华,文效忠等.2Cr13钢表面激光熔覆Co基合金组织及其性能[J].稀有金属材料与工程,2001,30(3):220-223.
    21.何宜柱,斯松华,徐锟等.Cr3C2对激光熔覆钴基合金涂层组织与性能的影响[J].中国激光,2004,31(9):1143-1148.
    22.李明喜,何宜柱,孙国雄.镍基合金表面激光熔覆CoNiCrAlY合金的组织与性能[J].稀有金属,2004,28(2):365-369.
    23.刘芳,刘常升,陶兴启等.结晶器铜板上激光熔覆镍基合金[J].东北大学学报,2006,27(10):1106-1109.
    24.王文丽,晁明举,王东升等.原位生成TaC颗粒增强镍基激光熔覆层[J].中国激光,2007,34(2):277-282.
    25.李春彦,张松,康煜平等.综述激光熔覆材料的若干问题[J].激光杂志,2002,23(3):5-9.
    26.Qian M.,Lim L C,Chen Z D,et al.Parametric Studies of Laser Cladding Processes[J].Journal of Materials Processing Technology,1997,63:590-593.
    27.刘月龙,斯松华.激光熔覆铁基合金涂层研究进展[J].安徽工业大学学报,2005,22(4):348-351.
    28.陈俐,谢长生,胡木林等.激光熔覆用铁基合金工艺性研究[J].焊接技术,2001,30(3):2-4.
    29.关振中.激光加工工艺手册[M].北京:中国计量出版社,1998.
    30.谭文,刘文今,贾俊江.激光熔覆Fe-C-Si-B的研究[J].金属热处理,2000,(1):15-17.
    31.陈华辉,邢建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社,2006.
    32.李荣久.陶瓷—金属复合材料(第2版)[M].北京:冶金工业出版社,2004.
    33.Kitty W.Lee,Yu-Hsia Chen,Yip-Wah Chung,et al.Hardness internal stress and thermal stability of TiB_2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation[J].Surface and Coatings Technology,2004,177-178:591-596.
    34.王红美,蒋斌,徐滨士等.纳米SiO_2颗粒增强镍基复合镀层的组织与微动磨损性能研究[J].摩擦学学报,2005,25(3):289-292.
    35.韩芳.TiC-VC-Mo_2C颗粒增强铁基耐磨堆焊层组织与性能研究[D].山东大学硕士论文,2007.
    36.Sylvaine Hamar-Thibault,Lelia Adnane,Rafika Kesri.Miscibility of binary VC-MC carbides in quaternary Fe-V-M-C alloys[J].Journal of Alloys and Compounds,2001,317:311-314.
    37.王笑天主编.金属材料学[M].北京:机械工业出版社,1987.
    38.张元彬.冷焊态高碳合金钢型熔敷金属无孪晶强化及增韧[D].山东大学论文,2003.
    39.索进平,冯涤.WC颗粒在堆焊过程中溶解机理的研究[J].功能材料,2003,34(2):221-223.
    40.杨尚磊,吕学勤,邹增大等.含内生硬质碳化物颗粒的金属堆焊层的抗磨性能及磨损机理[J].摩擦学学报,2004,24(6):508-511.
    41.杨尚磊,邹增大,曲仕尧等.抗裂性耐磨性兼具的堆焊焊条的研究[J].焊接设备与材料,2000,29(1):24-25.
    42.张锦英,马明星,刘文今.钒、钛对激光熔覆铁基原位生成颗粒增强复合涂层组织的影响[J].金属热处理,2003,28(8):1-4.
    43.宋思利.钨极氩弧原位合成TiC增强铁基熔覆层的研究[D].山东大学博士论文,2007.
    44.邹增大,王新洪,杨尚磊等.TiC-VC耐磨堆焊焊条[J].材料科学与工艺,2001,9(4):397-401.
    45.王新洪,邹增大,宋思利等.TiC-VC免预热耐磨堆焊焊条[J].焊接学报,2002,23(4):31-34.
    46.宋思利,王新洪,邹增大等.TiC增强铁基堆焊层组织与性能的研究[J].山东大学学报,2004,34(2):1-5.
    47.刘长松.Fe在反应火焰喷涂TiC-Fe涂层过程中的作用[J].材料工程,2001,(10):35-38.
    48.Willis P E,Wilham N J,Kerr A.Ambient temperature formation of an alumina-titanium carbide[J].Journal of the European Ceramic Society,1998,18(6):701-708.
    49.Brown I W M,Owers W R.Fabrication,microstructure and properties of Fe-TiC ceramic-metal composites[J].Current Applied Physics,2004,4(2-4):171-174.
    50.熊容廷,段汉桥,严有为等.原位合成颗粒增强铁基复合材料的研究进展[J].现代铸铁,2004,(3):22-26.
    51.邱小林.激光熔覆TiC金属基陶瓷涂层的研究[J].材料热处理,2006,35(10):19-22.
    52.杜宝帅,李清明,王新洪等.激光熔覆原位自生TiC-VC颗粒增强Fe基金属陶瓷涂层[J].焊接学报,2007,28(4):65-68.
    53.杨森,钟敏霖.激光熔覆制备原位自生TiC颗粒强化Ni基合金复合涂层的研究[J].航空材料学报,2002,22(1):26-30.
    54.武晓雷,陈光南.原位TiC/金属基激光熔覆涂层的微结构特征[J].金属热处理学报,1998,19(4):1-8.
    55.倪火炬.铁基合金的激光熔覆[D].武汉理工大学硕士论文,2001.
    56.应力霞.激光合金化自润滑复合材料涂层的研究[D].哈尔滨工业大学硕士论文,2002.
    57.L.Lu,J.Y.H.Fuh,Z.D.Chen,C.C.Leong,et al.In situ formation of TiC composite using selective laser melting[J].Materials Research Bulletin,2000,35:1555-1561.
    58.Yisan Wang,Zhiping Sun,Yichao Ding,Fengchun Li.In situ production of VC-SiO_2-Fe surface composite by cast-sintering[J].Materials and Design,2004,25(1):69-72.
    59.梁连科.金属钒(V)、碳化钒(VC)和氮化钒(VN)制备过程的热力学分析[J].钢铁钒钛,1999,20(3):43-46.
    60.A.Agarwal and N.B.Dahotre,Pulsed electrode surfacing of steel with TiC coating:microstructure and wear properties[J].Journal of Materials Engineering and Performance,1999,8(4):479-486.
    61.Y.W.Yan,B.K.Wei,Z.Y.Fu,H.T.Lin et al.In situ TiC particulates reinforced ferrous matrix composite and its microstructure forming mechanism[J].Acta Metallurgica Sinica,1999,35(10):1117-1120.
    62.国外硬质合金编写组.国外硬质合金[M].北京:冶金工业出版社,1976.
    63.[日]长崎诚三,平林真编著.二元合金状态图集[M].北京:冶金工业出版社,2004.
    64.王新洪,邹增大,曲仕尧.表面熔融凝固强化技术—热喷涂与堆焊技术[M].北京:化学工业出版社,2005.
    65.郑勇.混粉方法对Ti(C、N)基金属陶瓷性能的影响[J].硬质合金,1997,14(1):17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700