激光照射下SiC晶须原位生长的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光作为一种热源,由于其具有的瞬态非平衡能量输出机制以及作用在材料时的超快加热效应,近几年在纳米材料的制备中已有所应用。当激光照射材料时,在激光作用的三维空间内,激光能量呈现出一定的梯度分布,为材料的合成提供了条件。
     本文以激光为热源,以SiC纳米颗粒材料为前驱体,进行了激光照射下SiC纳米颗粒原位生长晶须的试验,探索SiC晶须在激光照射下稳定生长的条件及其生长过程。所完成的工作主要有:
     1.研究SiC晶须的生长阶段,分析激光照射原位生成晶须的机理和传质机制。
     2.从晶体生长动力学角度对晶须生长的过程进行分析,同时分析了二次成核的生长部位及方向。
     3.采用被照射表面与光斑垂直的方式进行SiC纳米颗粒激光照射试验。对样品进行扫描电镜分析,探索晶须稳定生长的条件。
     4.针对采用不同粘结剂样品生成的晶须,分析激光能量密度对晶须形貌和数量的影响。
Laser, as a kind of heat resource, had been used to synthesize nano- materials in the past years because of its instant nonequilibrium output of energy and its speedy heating capability. Because the energy density of laser taken on the gradient distribution in the three dimensional space, so that the abundant conditions to synthesize materials can be created.
     In-situ growth of SiC nano-whiskers by direct laser irradiation on SiC nano-particles was investigated in this paper. Steady growth conditions and growth process of SiC whiskers by laser irradiation were researched. The main work accomplished and conclusions got are presented as follows:
     1. Growth stage of SiC whisker was studied. The mechanism and mass transfer mechanism of in-situ growth of SiC whisker by laser irradiation were analyzed.
     2. Growth process of whisker was analyzed in terms of crystal growth kinetics. And the growth location and direction of secondary nucleation were researched.
     3. The experiment of laser irradiation was made out with the method that the laser and irradiating surface are upright. The microstructures of the sample prepared by laser irradiation were studied in detail with scanning electron microscopy. The stable growth conditions of whisker were studied.
     4. According to whisker in samples with different blinders, the effect of laser energy density on SiC whisker morphologies and quantities was analyzed.
引文
[1]李武.无机晶须.北京,化学工业出版社,2005
    [2] Sumio lijima. Helical microtubules of graphitic carbon. Nature, 1991, 354(7):56~58
    [3] G. W. Meng, L. D. Zhang, Y. Qin,et al. Synthesis ofβ-SiC nanowires with SiO2 wrappers. Nanostructured Materials, 1999, 12:1003~1006
    [4] Hyung Suk Ahn, Doo Jin Choi. Fabrication of silicon carbide whiskers and whisker-containing composite coatings without using a metallic catalyst. Surface and Coatings Technology, 2002, 154: 2762~81
    [5] W. W. Eric, E. S. Paul, M. L. Charles. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science, 1997, 27: 1971~1974
    [6] Y. H. Gao, Y. Bando, K. Kurashima. SiC nanorods prepared from SiO and activated carbon. Mater Sci, 2002, 37: 2023~2029
    [7] J. V. Milewski, F. D. Gac. Growth of beta-silicon carbide whiskers by the VLS process. Mater Sci, 1985, 20: 1160~1166
    [8] Shin ichi Honda, Yang Gyu Baek, Takashi Ikuno, et al. SiC nanofibers grown by high power microwave plasma chemical vapor deposition. Applied Surface Science, 2003, 21: 378~382
    [9]刘玲,亢茂青,王心葵. SiC晶须表面化学与力学性能的研究.兵器材料科学与工程,2000,23(5):59~64
    [10]王启宝,曾鸣,郭梦熊. SiC晶须的特性及其合成与应用发展现状.化工新型材料,1997,5:8~13
    [11]白春根,夏非.用稻壳制备SiC晶须.材料科学进展. 1989, 3(2):165~168
    [12] wang qibao, et al. Study on growth teehnology and mecahanism ofβ-SiC whisker synthesized from rice hulls[J], 1998, 17(3): 23
    [13] Krishnarao R V. Effeet of eobalt catalyst on the form-ation of SIC from rice husk siliea一carbon black Mixture[J]. Matersei, 1995, 30: 3645
    [14] Milewski J V, Gac F D, et al. Growth of SIC Whiskers in the System Si02-C-H2 Nueleated by Iroon[J]. MaterialsSei, 1985, 20:1160
    [15] OhSe-Jung, et al. Synthesis ofβ-SiC whiskers by the earbothermal reduetion of kaolin.[J]. Yoop Hakhoeehi, 1998, 35(12):1249
    [16] Han Minfang, et al. Study on silicon earbide whiskersprepared from solid raw materials[J]. Cailiao Kexue YuGongeheng, 1997, 15(4):64
    [17]马峻峰,沈君权.碳热还原法制备p一SIC晶须的结晶特征及内部缺陷[J].硅酸盐通报,2993,12(2):33
    [18]戴长虹,等. SiC纳米晶须的制备及TEM观察[R].第十一届全国高技术陶瓷学术年会论文集,材料导报社,2000,10:341
    [19] Tang C C, Fan S S, Dang H Y, etal. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction. Cryst Growth, 2000, 210: 595~599
    [20] Dan Zhou, Supapan Seraphin. Production of silicon carbide whiskers from carbon nanoclusters. Chemical Physics Letters, 1994, 222(3): 233~238
    [21] E. Munoz, A. B. Dalton, S. Collins, et al. Synthesis of SiC nanorods from sheets of single-walled carbon nanotubes. Chemical Physics Letters, 2002, 359: 397~402
    [22] S. Z. Deng, Z. S. Wu, Jun Zhou, etc. Synthesis of silicon carbide nanowires in a catalyst-assisted process. Chemical Physics Letters, 2002, 356: 511~514
    [23] Li Y B, Xie S S, Zhou X P, et al. Large-scale synthesis ofβ-SiC nanorods in the arc-discharge, Cryst Growth, 2001, 223; 125~128
    [24] Li J C, Lee C C, Lee S T, et al. Direct growth ofβ-SiC nanowires from SiOx thin films deposited on SiC(100)substrate. Chemical Physics Letters, 2002, 355: 147~150
    [25]张洪涛,徐重阳.Sol-gel法制备纳米碳化硅晶须的研究.电子元件与材料,2000,19(3):9~10
    [26] Ikeyama, Nobuhide. Manufature of silicon carbide whisker. Kokai Tokkyo koho JP 05, 124~898
    [27] Zhang Y F, Wang N L, He R R, et al. Synthesis of SiC nanorods using floating catalyst. Solid State Commun, 2001, 118: 595~598
    [28] Otoishi Shinjin. Effects of a catalyst on the Formation of SiC Whiskers from Polycabosilane Nickel Ferrite as a catalyst. Bull Chem Soc Jpn, 1999, 72(7): 1607
    [29]王启宝.稻壳合成BETA碳化硅晶须催化作用的研究[D].北京:中国矿业大学北京研究生部, 1995
    [30]凌志达,陈波.第八届全国相图年会论文集. 1995, 39~44
    [31] Tanaka, Minoru, Kawabe, et al. Method of manufacturing crystalline silicon carbide employing acid pretreated rice husks. US Patent, NO 4591492, 1985
    [32] Schramm, Dale E. Birtell, et al. Process for producing silicon carbide whiskers. US Patent, NO 4789536, 1987
    [33]陆英艳,赵剑峰,黄因慧.激光熔覆制备含SiC纳米晶须结构涂层的研究.材料导报,2004,18(3): 36~38
    [34]关芳芳.激光作用下纳米SiC颗粒的原位生长.硕士学位论文.南京航空航天大学研究生院机电学院,2006
    [35]唐陈霞.激光作用下纳米SiC颗粒原位生长晶须的实现.硕士学位论文.南京航空航天大学研究生院机电学院,2007
    [36]唐陈霞,赵剑峰,关芳芳.激光照射SiC纳米颗粒原位生成SiC晶须[J].材料研究学报,2008,(02)
    [37] S. Botti, R. Ciardi, L. Asilyan etc. Carbon nanotubes grown by laser-annealing of SiC nano-particles. Chemical Physics Letters, 2004, 400: 264~267
    [38] F. C. Frank. The influence of dislocation of crystal growth.Far. Soc, 1949, 5:48~54
    [39] Dittmar.W, K.Neuntnna. Wachstums und VerdamPufngsgesehmwdikgeit von nadelofmrlgen Kallunikristallne. Z. Elertoehem, 1960, 64:297~305
    [40] [日]铃木弘茂主编.工程陶瓷.陈世兴译,张太中,孙礼杰,薛文龙校.科学出版社,1989,12
    [41] [美]戴维? W ?里彻新著.现代陶瓷工程:性能,工艺和设计.徐秀芳,宪文译.中国建筑工业出版社,1992,9
    [42]张立德.超微粉体制备与应用技术.中国石化出版社,2001,4
    [43] [英]理查德·J·布鲁克主编.陶瓷工艺,科学出版社,1999,6
    [44]国世驹.粉末烧结理论.北京:冶金工业出版社,1998,3
    [45]戴永年,赵忠.真空冶金.北京:冶金工业出版社,1988,17
    [46] Blakeyl. J. M, K. A. Jaekson. Growth of crystal whiskes, J. Chem. Phys. 1962, 37: 428~430
    [47]陈艺锋. ZnO晶须生长理论及热镀锌渣制备四针状晶须工艺研究[D].中南大学, 2004
    [48] G Z. Shen, Y. S. Bando, C. H. Ye, B. D. Liu, D. Golberg, Nanotechnology, 2006, 17: 3468
    [49] M. W. Zhao, Y Y. Xia, F. Li, et al. Strain energy and electronic structures of silicon carbon nanotubes: Density functional calculations. Physical Review B, 2005, 71(8): 085312
    [50] S. M. Lee, Y H. Lee, Y G Hwang, et al. Stability and electronic structure of GaN nanotubes from density-functional calculations. Physical Review B, 1999, 60(11): 7788
    [51] Y H. Gao, Y Bando, K. Kurashima, activated carbon. J. Mater.Sci. 2002, T. Sato, SiC nanorods prepared from Si0 and activated carbon. J. Mater.Sci. 2002, 37(10): 2023~2029

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700