同轴送丝激光熔覆工艺研究及薄壁墙成形堆积
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆技术是先进制造技术的一个重要研究方向,在一些金属部件的制造中也得到了广泛应用,然而激光熔覆快速成形特别是同轴送丝成形的发展较慢。由于激光熔覆快速成形件质量与送丝激光熔覆层的几何冶金特征关系密切。因此建立同轴送丝激光熔覆层几何特征的数学模型非常必要。
     本文主要针对光内同轴送丝激光熔覆层几何特征进行研究。分析同轴送丝激光熔覆过程中的能量转化和环形激光束的能量分布,在此基础上分析激光与金属丝材的相互作用,根据能量守恒和能量平衡关系建立熔覆层横截面的数学模型。假设熔覆层横截面轮廓为圆弧状,建立熔覆层横截面几何特征与熔覆工艺参数(激光功率、扫描速度、送丝速度)之间的数学模型,同时建立了熔覆层宽度关于熔覆工艺参数的回归数学模型。通过对熔覆层几何特征的数学模型进行仿真,分析各工艺参数对其的影响后发现熔覆层宽度受激光功率的影响最大,并随着激光功率的增大而增大;熔覆层高度起初
     随扫描速度的增大而增大,当达到一定扫描速度时,又随扫描速度的增大而减小;同样激光功率对熔覆层高度影响较大;熔覆层高度与激光功率和送丝速度大小呈正比,与扫描速度呈反比;送丝速度对熔覆层高度的影响甚微。将试验结果与建模预测值进行了对比分析,发现熔覆层几何特征的模拟值与试验值之间的误差较小,并且实际检测的参数值与理论计算的数据反映了相同的规律性。
     可以证明该模型的可靠性。基于熔覆层几何特征关于工艺参数的数学模型建立,进行了薄壁墙的堆积。通过对模型的计算,选择了最优的参数进行首层堆积,多层堆积时通过测出每层熔池的温
     度,运用模型计算出此层所需的激光功率。为保证每层层高的一致,本课题组选用了CCD在线监测系统,保证了壁厚的均匀性和形貌的光滑完整。体现了本模型的可行性。
As one of the research direction of the advanced manufacturing technology, laser cladding has been applied in some metal parts manufacturing. However, the development of laser cladding rapid prototyping is slowly. Because of the quality of forming parts which made by laser cladding rapid prototyping technology is close related to the geometrical characteristics of laser cladding layer. So it's necessary to build a mathematic model of the geometric feature of cladding layer.
     It's mainly aimed at study the cladding layer's geometric feature of coaxial inside-beam laser cladding by wire. By analyzing the energy conversion and energy distribution of laser beam in a circle in the cladding process. Based on the above, analyse the interaction between laser and metal wire, then according to the onservation of energy and balance the relationship set up the mathematic model of the cladding layer cross sectional area. Assume that the cladding layer of cross section contour is arc shape, building the mathematical model which related to geometry characteristics of cladding layer cross section and the cladding process parameters (laser power, scanning velocity and wire feed speed). And width model of the cladding layer about the cladding process parameters was established by regression mathematical model.
     Through simulating the mathematical model of the geometric feature of the cladding layer and analyzing the influence of various process parameters on the cladding layer Consider that laser power has the biggest influence on cladding layer width and increases with the increase of laser power. Cladding layer height increases with the increase of scanning speed, when reach certain scanning velocity, however, decreases with the increase of scanning speed. Also laser power had a greater influence on the cladding layer height, and cladding layer height is proportional to the laser power and the speed of wire feeding, and is inversely proportional to the scanning speed. Wire feeding speed has little effect on cladding layer height.
     Contrast the predicted value with experimental results, found that the error is minor, and reflects the same regularity. So it's enough to prove the reliability of the model.
     Based on the model about cladding layer geometric feature. Through calculation of the model, select the optimal parameters of the first layer. With the model to calculated the require power of this layer through measured the temperature of the molten pool. In order to ensure the consistent of each layer height, choosing the CCD online monitoring system. Then single beads wall is accumulated, ensure the uniformity of wall thickness and smooth and full of the shape. To further illustrate the feasibility of the model.
引文
[1].丁阳喜,王炳.T10钢表面激光熔覆Ni/WC合金工艺研究[J].热加工工艺.2010,39(6):105—107
    [2].余淑荣,樊丁.激光加工技术及发展现状[A].能源工程焊接国际论坛论文集.[C].北京:机械工业出版社,2005.394—398
    [3].姚建华.激光表面改性技术及其应用[M].北京:国防工业出版社.2012.1
    [4].杨宁,杨帆.激光熔覆技术的发展现状及应用[J].材料热处理技术.2010.4(8):118-120
    [5].姚建华,张伟.激光熔覆制备纳米结构涂层的研究进展[J].激光与光电子学进展.2006,43(4):8-11
    [6].陈浩,潘春旭,潘邻等.激光熔覆耐磨涂层的研究进展[J].金属热处理,2002.27,(9):5-10
    [7].钟敏霖,刘文今.Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J].中国激光,2002,29(11):1O31-1036
    [8].马壮,谷琳,李智超.热化学反应法制备A1:O基陶瓷涂层及耐磨性能研究[J].热加工Y-Z,2010,39(6):83.85
    [9].杨胶溪,左铁钏,王喜兵,等.9Cr2Mo冷轧辊激光宽带熔覆修复强化[J].应用激光,2008,28(1):1-5
    [10].董世运,马运哲,徐滨士等.激光熔覆材料研究现状.材料导报,2006(6):5-10
    [11].刘常乐.载气式激光熔覆送粉器的研制[D].天津工业大学,2003.2
    [12].林文松,张光钧,王慧萍等.激光熔覆技术的研究进展[J].热处理技术与装备.2008,29(2):1-7
    [13].李洪远,激光光内同轴送丝熔覆快速制造技术研究[D].苏州:苏州大学.2012
    [14].曹国凤.激光加工技术[M].北京:北京科学技术出版社,2007.1.
    [15].蔡齐飞,石世宏,李春生,刘嘉.激光熔覆快速成型光内送粉方式的研究[J].苏州大学学报(工科版),2009,29(2):43-45
    [16].刘喜明,宋永伦.送粉式激光熔覆获得最佳熔覆层的必要条件及影响因素[J].中国 激光,1999.A26(54):70-476
    [17].王晨.基于光内送粉激光熔覆扭曲薄壁件的成形研究[D].苏州大学,2012,5.
    [18].狄科云.激光熔覆快速成形光内同轴送粉斜壁堆积的初步研究[D].苏州大学,2008.3
    [19].蔡齐飞.激光快速成型光内送粉回转体堆积研究[D].苏州大学,2010.4
    [20].肖军艳.环形激光光内送粉熔池特征与熔层性能[D].苏州大学,2009.5
    [21].石皋莲,变占空比中空激光光内送粉熔覆熔池温度场研究[D].苏州:苏州大学.2010
    [22].黄凤晓、江中浩,张健.激光熔覆工艺参数对单道熔覆层宏观尺寸的影响.热加工工艺[J],2010,39(18):119-121
    [23].熊征、曾晓雁,低阶模C02激光熔覆层形貌和质量的控制.华中科技大学学报[J],2007,35(I):147-149
    [24].张庆茂,王忠东,刘喜明,等.工艺参数对送粉激光熔覆层几何形貌的影响[J].焊接学报,2000,21(2):43-46
    [25].Lalas C., Tsirbas K., Salonitis K.,et al. An analytical model of the laser clad geometry[J]. International Journal of Advanced Manufacturing Technology,2007,32(1):34-41
    [26].Tabernero,A.Lamikiz,S.Martinez,E.Ukar and L.N.Lopez de Lacalle. Geometric Modelling of Added Layers by Coaxial Laser Cladding [J].Physics.Procedia.39(2012)913-920
    [27]. Toyserkani E, Khajepour A and Corbin S2003Three-dimensional finite element modeling of laser cladding by powder injection:Effects of powder feedrate and travel speed on the process J. Laser Appl.15153-60
    [28]. Toyserkani E, Khajepour A and Corbin S20043-D finite element modeling of laser cladding by powder injection Effects of laser pulse shaping on the process Opt. LasersEng.41849-67
    [29].刘继常,李力均,谢小柱,等.激光熔覆的金属带横截面轮廓的形成过程分析[J].材料科学与工艺,2008,16(3):297-300
    [30].张庆茂,刘文今,杨森,等.送粉式激光熔覆层横截面面积的分析模型[J].材料热处理学报,2001,22(4):65-69
    [31].张庆茂,刘喜明,孙宁,等.送粉式激光熔覆熔池深度的分析模型及其影响因素[J].焊接学报,2000,21(4):42-45
    [32]. J.Paulo Davim, Carlos Oliveira, A..Cardoso. Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA)[J]. Materials and Design,2008,29(2):554-557
    [33]. Godfrey C. Onwubolu, J.Paulo Davim, Carlos Oliveira, et al. Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J]. Optics&Laser
    [34].姜淑娟,刘伟军,南亮亮.基于神经网络的激光熔覆高度预测[J].机械工程学报,2009,45(3):269-274
    [35]. Chen Jing, TanHua,Yang Haiou et al..Evolution of molten pool shap in the process of laser rapid forming[J].Chinese J.Lasers,2007,34(3);442-446
    [36].杨国家.激光熔覆光内同轴送丝工艺研究[D].苏州:苏州大学.2008
    [37].刘嘉,石世宏,李春生,蔡齐飞.激光熔覆快速成型中环形激光束的能量分布[J].苏州大学学报2010,30(3):18-2
    [38].El Cheikh, H., Courant, B., Samuel, B., Hascoet, J.Y., Guillen, R.,2012. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Optics and Lasers in Engineering50,413-422
    [39].张庆茂,刘文今,钟敏霖,等.送粉激光熔覆熔池深度解析模型的误差分析[J].金属热处理,2003,28(4):11-15
    [40].徐庆红,郭伟,田锡唐,激光扫描速度对激光熔覆宏观质量的影响规律[J],航天工艺,1994,(4):1-4
    [41].STEENWM, WEERASINGHEVM, MONSON P. Some aspects of the formation of laser clad tracks [J]. SPIE,1986,650:226-234
    [42].张维哲,304不锈钢薄板激光焊接技术研究[D].大连:大连理工大学.2009
    [43].刘建强,韩国明.304不锈钢激光焊接的建模与仿真[D].天津:天津大学,2004
    [44].高燕,韩国明.不锈钢激光焊接热源及过程的模拟与仿真[D].天津:天津大学,2006
    [45]. Chen Jing, TanHua,Yang Haiou et al..Evolution of molten pool shap in the process of laser rapid forming[J].Chinese J.Lasers,2007,34(3);442-446
    [46].C.Lalas,K.Tsirbas,K.Salonitis et al.An analytical model of the laser clad geometry[J]. Int J.Adv.Manuf.Technol.2007,32(1-2):34-41
    [47].U.de Oliveira,V.Ocelik,J.Th.M.De Hosson. Analysis of coaxial laser cladding processing conditions [J].Surface&CoatingsTechnology,2005,197(2-3):127-136
    [48].王志坚、董世运、徐滨士等,激光熔覆层几何特征的三维表征方法[J].中国激光,2010,37[2]:581-585
    [49]. Snow D B,Breinan E M,Kear B H.Rapid solidification processing of superalloy using high power lasers//Proceedings Fourch International Superalloys Symposium.Baton Rouge:Alaitors Publishing Div.,1980:189-302
    [50]. SextonLeo. Laser cladding:repairing andmanufacturing metal parts andtools[C]. SPI E,2002,4876:462-469
    [51]. Wang Junjie, Guo Jiusheng, Hong Junet al. The study of scanning pathandpart accuracy inrapidprototyping[J]. China Mechanical Engineering,1997,8(5):54-55
    [52].王军杰,郭九生,洪军等.激光快速成形加工中扫描方式与成形精度的研究与试验[J].中国机械工程,1997,8(5):54-55
    [53].杨红梅.微纳米增强金属基复合涂层激光熔覆工艺及组织性能研究[D].秦皇岛:燕山大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700