基于单道激光熔覆的钛基复合材料快速成形试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了增强钛合金表面的耐磨性,按照复合材料的发展趋势,本实验采用TC4(Ti-6A1-4V)粉和B4C粉/C+B粉混合粉作为钛合金表面激光熔覆材料,选用TC4合金作为基体材料,制备原位生成TiC和TiBx复合耐磨涂层,并进行激光快速成形钛基复合材料的探索性试验研究。
     本文主要以90%TC4+10%B4C(wt.%)粉末为原料,通过预置粉末法制备了单道熔覆层、多道搭接涂层;在此基础上,自行设计激光同步同轴送粉的分粉器、送粉头等装置,通过同步送粉激光熔覆工艺制备了单道熔覆层和单道三层熔覆层(激光快速成形单壁式板材试验样品),应用XRD、金相显微镜、SEM、TEM、EPMA、显微硬度测量仪、磨损试验机等多种分析手段对所制备的多种熔覆层的微观结构和性能进行了研究。
     通过一系列实验研究得到预置粉末法激光熔覆的优化工艺参数为:离焦量15mm,激光脉冲电流150A,激光扫描速度3.0mm/s。同步送粉法激光熔覆的优化工艺参数为:离焦量为20mm,激光脉冲电流250A,激光扫描速度为0.3mm/s;相应的送粉参数为:氩气送粉气流量为8L/min,送粉速率为9.97g/min,粉末与激光束交点略高于试样表面。
     试验结果表明:在优化参数下,各激光熔覆层均含有两种以上大量原位生成的陶瓷增强相,并且TC4粉末经激光扫描形成基底黏结相。其中,预置90%TC4+10%B4C (wt.%)粉末的单道激光熔覆层原位生成的增强相为TiC(枝晶状或弥散点)和TiB(针状),多道搭接涂层中还有少量的TiB2生成。多道搭接涂层的平均显微硬度(HV650)较基体(HV320)提高了一倍,其磨损失重量为0.0021g远低于基材TC4的磨损失重量(0.0077g),耐磨性较基体提高了三倍以上。通过热震试验表明基体与涂层之间结合牢固。相同配比的粉料以同步送粉法激光熔覆制得的涂层原位生成的主要增强相为TiB2,TiB。同时生成了少量TiC还有些未反应的B4C,其中TiB2显示为长棒状,及少量六棱柱状,TiB为细长棒状或细小针状。
     采用优化工艺参数通过同轴送粉成功制备TC4/(TiBx+TiC)激光快速成形钛基复合材料单壁板材试验样品,并对其显微组织进行了初步研究。
To develop the wear resistance of the surface of titanium alloys, according to the tendency of the development of composite materials, TC4 powder together with B4C or C/B powder mixture was used as the laser cladding materials on the surface of TC4 titanium alloy substrates. Wear resistant composite coatings were prepared in-situ. The experimental study of direct laser fabrication of titanium matrix composites was also carried out.
     In this experiment, mix powder with the ratio of 90%TC4+10%B4C (wt.%) was first prepasted on TC4 substrates, on which single and multi-path layers were prepared with laser cladding technology. Based on the results from the laser cladding of prepasted layers, a powder feed head of the synchronized coaxial powder feed laser cladding system was designed by ourselves though which single-path layers and a direct laser fabricated thin wall specimens were prepared. Microstructure and components of the cladding layers were characterized using OM, SEM,TEM, EPMA and XRD. The microhardness of all the specimens and the wear resistant properties of multi-path coatings produced by laser cladding prepasted layers were measured.
     Optimized processing parameters were obtained though a series of experiments. The optimized laser processing parameters for pre-pasted single-path laser cladding layers were as follow:defocusing distantce of 15mm, laser pulsed current of 150A, laser scanning speed of 3.0mm/s. The optimized parameters of synchronized powder feed laser cladding were as follow:defocusing distance of 20mm, laser pulsed current of 250A, laser scanning speed of 0.3mm/s; the relevant.powder feed parameters:Ar gas powder feed flow rate of 8L/min, powder feed rate of 9.97g/min.
     Experimental results show that two and more kinds of ceramic reinforcements were in-situ formatted in the matrix of TC4 (Ti-6A1-4V). TiB and TiC ceramic were formed evenly with the morphology of needle, tiny dendrites and disperse particles in the single-path specimens and a small amount of TiB2 in the muitl-path prepasted laser cladding specimens.The average microhardness of the multi-path layer was 650 HV which is twice of that of the substrate (320HV). The wear weight loss is 0.0021g which is far lower than that of the substrate (0.0077g) as well. The wear resistant properties increased over 3 times. Strong connects between coatings and the substrates were also formed according to the thermal shock experiemnt results.
     The single-path layers of the raw materials with same component ratio were formed by synchronized coaxial powder feed laser cladding system as well. The main ceramic reinforcements were TiB2 (hexagonal prism and rodlike) TiB (needlelike) a small amount of TiC (disperse particles) and some un-reacted B4C.
     A Ti-6A1-4V/ (TiBx+TiC) thin wall specimen was successfully prepared using the optimized processing parameters of the synchronized coaxial powder feed laser cladding. Primary study on its microstructure was also carried out.
引文
[1]张炯法,李杰,郭新柱.激光技术的工业应用与发展前景[J],煤矿机械,2004,8,1-2.
    [2]蔡利芳,张永忠,石力开.钛合金表面激光熔覆材料研究进展[J],钛工业进展,2006,23(1):1-5.
    [3]夏明星,胡锐,李金山等.自生TiC颗粒增强钛基复合材料的研究进展[J],材料导报,2007,21(8):424-427.
    [4]蔡利芳,张永忠,席明哲等.钛合金表面激光原位合成TiB+TiB2/Ti复合材料涂层[J],特种铸造及有色合金年度专刊,2006,284-286.
    [5]张维平,赵玉兰,李廷举.钛合金表面激光熔覆的进展[J],表面技术,2007,36(5),68-70.
    [6]秦学民.钛合金表面激光熔覆耐磨涂层新技术[J],油气田地面工程,2004,23(4),54.
    [7]王学让.激光快速成型技术的应用研究[J],河南机电高等专科学校学报,2001,9(1),11-13.
    [8]孟庆武,耿林,范小红.钛合金表面激光熔覆涂层工艺[J],航空制造技术,2005,7,80-82.
    [9]陈静,杨海欧,杨健等.高温合金与钛合金的激光快速成形工艺研究[J],航空材料学报,2003,23,100-103.
    [10]张二林,金云学,曾松岩等.碳含量对自生TiCp增强钛基复合材料组织的影响[J],材料工程,2000,6:7-12.
    [11]黄瑜,汤慧萍,陈静等.不同形貌钛及钛合金粉末激光快速成形的研究[J],应用激光,2005,25(2),81-83.
    [12]李安敏,许伯藩.激光熔覆碳化物/金属基复合涂层裂纹的产生与控制[J],材料导报,2002,16(8),27-29.
    [13]赵亚凡,陈传忠.激光熔覆金属陶瓷涂层开裂的机理及防止措施[J],激光技术,2006,30(1),16-22.
    [14]王华明.航空高性能金属结构件激光快速成形研究进展[J],航空制造技术,2005,12,26-28.
    [15]管延锦,孙胜,.航空高性能金属结构件激光快速成形研究进展[J],航空制造技术,2005,12,26-28.
    [16]杨建,黄卫东,陈静,杨海欧.TC4钛合金激光快速成形力学性能[J],航空制造技术,2007,5,73-76.
    [17]张永忠,石力开,章萍芝等.基于金属粉末的激光快速成型技术新进展[J],稀有金属材料与工程,2000,29(6),361-365.
    [18]席明哲,张永忠,石力开等.激光快速成形316L不锈钢/镍基合金/Ti6A14V梯度材料[J],金属学报,2008,44(7),826-830.
    [19]张永忠,石力开,章萍芝等.激光快速成形镍基高温合金研究[J],航空材料学报,2002,22(1):22-25.
    [20]程晶,张永忠,高士友等Al/SiC复合材料激光快速成形的研究[J],航空材料学报,2002,26(3):179-182.
    [21]邱明国,张绍祥,谭立文等.应用激光快速成形分层实体制造方法复制颞骨[J],第三军医大学学报,2002,24(8):910-912.
    [22]吴江,姚月玲,高勃.应用激光快速成形分层实体制造方法复制颞骨[D],第三军医大学学报,2008.
    [23]胡静,月玲,高勃.应用激光快速成形分层实体制造方法复制颞骨[D],第三军医大学学报,2008.
    [24]孙荣禄,郭立新,董尚利等.钛合金表面激光熔覆NiCrBSi(Ti)-TiC涂层[J],激光技术,2001,25(5):343-346.
    [25]张二林,金云学,曾松岩等.碳含量对自生TiCp增强钛基复合材料组织的影响[J],材料工程,2000,6:7-12.
    [26]吴全兴摘译Ti-V-Al系钛合金的组织控制及其新合金的发展[J],稀有金属快报,2007,26(9),43-44.
    [27]孟庆武,金晓鸥,耿林等.钛合金表面三种预涂材料的激光熔覆研究[J],材料科学与工艺,2006,14(3):233-235.
    [28]张丽华,金云学,郭宇航.原位生成TiCp增强钛基复合材料的高温氧化[J],江苏科技大学学报(自然科学版),2001,21(2),80-84.
    [29]王悔改,张永振,王非等.铝含量对颗粒增强钛基复合材料氧化行为的影响[J],航空材料学报,2008,28(2),60-64.
    [30]高士友,张永忠,石力开等.激光快速成型TC4钛合金的力学性能[J],稀有金属,2004,28(1),29-33.
    [31]许勤,张坚.激光快速成型技术研究现状与发展[J],九江学院学报(自然科学版程),2005,1,8-10.
    [32]武万良,黄文荣,杨德庄等Ti6A14V激光熔覆材料合金体系与熔覆工艺研究[J], 新技术新工艺,2003,9,41-43.
    [33]张维平,刘硕.激光熔覆原位生成TiB2热力学及动力学分析[J],材料科学与工程学报,2004,22(5),701-704.
    [34]武万良,李学伟,刘万辉等.TiC增强钛基复合材料激光熔覆层显微组织及形成机理[J],稀有金属材料与工程,2006,35(9),1363-1366.
    [35]梁亚静,石利开等.激光熔覆沉积制备原位增强相钛基复合材料[J],有色金属,2008,60(1),25-28.
    [36]张松,张春华,康煜平等.钛合金表面激光熔覆原位生成TiC增强复合涂层[J],中国有色金属学报,2001,11(6),1026-1030.
    [37]廖乃镘,张先菊,李伟等.激光熔覆原位合成TiC/Ti复合材料试验研究[J],HotWorking Technology,2005,2:24-26.
    [38]李养良,徐明晗,彭西峰.多道搭接钛合金激光熔覆层组织与耐磨性研究[J],应用激光,2007,27(4),305-309.
    [39]Sun R.L., Mao J.F., Yang D.Z. Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titaniumalloy substrate[J], Surface and Coatings Technology,2002,155,203-207.
    [40]Edson Costa Santos, Masanari Shiomi, Kozo Osakada, Tahar Laoui. Rapidmanufacturing of metal components by laser forming[J], Machine Tools & Manufacture,2006,46, 1459-1468.
    [41]Miranda R.M., Lopes G., Quintino L., Rodrigues J.P., Williams S.. Rapid prototyping with high power fiber lasers[J], Materials and Design,2008,29,2072-2075.
    [42]Gaol S.Y., Zhang Y.Z., Shi L.K., Du B.L., Xi M.Z., Ji H.Z.. Research on Laser Direct Deposition Process of Ti-6A1-4V Alloy[J], ACTA Metallurgica Sinica,2007, 3(20),171-180.
    [43]Wang Fude, Mei J., Wu Xinhua. Micro structure study of direct laser fabricated Ti alloys using powder and wire [J], Applied Surface Science,2006,253,1424-1430.
    [44]Wang F., Mei J., Wu Xinhua. Compositionally graded Ti6A14V +TiC made by directlaser fabrication using powder and wire[J], Materials and Design,2007,28, 2040-2046.
    [45]Man H.C.,Zhang S., Cheng F.T.and Yue T.M. Microstructure and formation mechanism of in situ synthesized TiC/Ti surface mmc on Ti-6A1-4V by laser cladding[J], Scripta Mater,2001,44,2801-2807.
    [46]Vamsi Krishna B., Xue Weichang, Susmita Bose, Amit Bandyopadhyay. Functionally graded Co-Cr-Mo coating on Ti-6A1-4V alloy structures[J], Acta Biomaterialia 2008, 4,697-706.
    [47]Wang F., Mei J., Wu Xinhua. Direct laser fabrication of Ti6A14V/TiB[J], Journal of Materials Processing Technology,2008,195,321-326.
    [48]Kooi B.J., Pei Y.T., De Hosson J.Th.M. The evolution of microstructure in a laser clad TiB-Ti composite coating[J], Acta Materialia,2003,51,831-845.
    [49]Li Yuxin, Bai Peikang, Wang Yaomin, Hu Jiandong, Guo Zuoxing. Effect of TiC content on Ni/TiC composites by direct laser fabrication[J], Materials and Design,2008.
    [50]Dutta Majumdar J., Manna I., Ajeet Kumar, Bhargava P., Nath A.K. Direct laser cladding of Co on Ti-6A1-4V with a compositionally graded interface [J], Journal of Materials Processing Technology,2008.
    [51]Pang W., Man H.C., Yue T.M.. Laser surface coating of Mo-WC metal matrix composition Ti6A14V alloy[J], Materials Science and Engineering A,2005,390, 144-153.
    [52]Vreeling J.A., Ocelik V., De Hosson J.T.M. Ti-6A1-4V strengthened by laser melt injection of WCp particles[J], Acta Materialia 2002,50,4913-4924.
    [53]Morsi K., Patel V.V.,Naraghi S., Garay J.E. Processing of titanium-titanium boride dual matrix composites[J], Journal of Materials Processing Technology,2008,196, 236-242.
    [54]Baoshuai Du, Sameer R Paital and Narendra B Dahotre. Phase constituents and microstructure of laser synthesized TiB2-TiC reinforced composite coating on steel[J]. Scripta Materialia,2008,59:1147-1150
    [55]Lu W. J., Zhang D., Wu R. J., H. Mori. Solidification paths and reinforcement morphologies in melt-processed (TiB+TiC)/Ti in situ composites[J]. Metall. Mater. Trans A,2002,33:3055-3066.
    [56]于翔天,王华明.激光熔化沉积(TiB+TiC)/TA15显微组织[J],宇航材料工艺,2007(6):116-119. Yu xiangtian, Wang Huaming. Microstructure of laser melting deposited (TiB+TiC)/TA15 titanium matrix composite bar[J].Aerospace material and technology,2007,6:116-119.
    [57]吕维洁,张小农,张荻等.原位合成TiC和TiB增强钛基复合材料[J],工程材料,1999 (8):9-11. W. J. Lu, X.N. Zhang, D. Zhang, R. J. Wu, Y. J. Bian, P. W. Fang. (TiC+ TiB)/Ti Alloy matrix composites prepared by in situ technique[J].1999 (8) 9-11.
    [58]Liang J,Ph.D Thesis,the University of Birmingham,UK,20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700