冶金热轧辊材料的激光表面合金化与直接沉积成型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冶金轧辊是使金属产生塑性变形的工具,是决定轧机效率和轧材质量的重要大型消耗性部件。其质量和使用寿命,直接关系到轧制生产的效率、产品质量、生产成本及钢材品种结构。因此,提高轧辊耐磨性、延长轧辊的使用寿命对降低辊耗至关重要。
     除了改进轧辊制造技术和优化轧辊材质外,近年来,钢铁公司广泛采用感应加热淬火、堆焊、热喷焊、热喷涂等方法提高轧辊表面耐磨性,但制备的耐磨涂层存在一定的不足。激光表面合金化和激光直接金属沉积作为一种新兴的表面技术,最大优点是可以制备致密的冶金结合涂层,从而改善基体的耐磨性。本文旨在利用激光合金化和激光直接金属沉积技术在轧辊表面制备具有冶金结合界面、组织致密和耐磨性能优良的涂层,为利用激光合金化技术修复和强化轧辊表面,利用直接金属沉积技术制备轧辊工作层提供有效的理论指导,并为其今后发展应用提供一定的技术支持。
     本文以高镍铬无限冷硬铸铁、球墨铸铁和70MnV铸钢热轧辊作为研究对象,探索利用激光表面合金化技术对其表面进行强化处理的可行性;以1018低碳钢为基体,探索采用激光直接金属沉积的方法沉积热轧辊工作层材料的可行性。通过激光工艺参数的优化,制备出具有良好冶金结合的耐磨涂层。利用光学显微镜(OM)、附带能谱仪(EDAX)的扫描电镜(SEM)、X-射线衍射仪(XRD)、表面光度仪、显微硬度计以及常温和高温摩擦磨损试验机等测试分析设备,对所制备涂层的微观组织、成分、裂纹分布及扩展、相组成、硬度和磨损行为进行了系统的研究。
     采用高功率CO_2激光器对预涂C-B-W-Cr粉末的高镍铬无限冷硬铸铁轧辊进行激光表面合金化处理。结果表明,合金化层与基体形成了冶金结合,部分区域存在裂纹。在激光功率、光斑直径、搭接率一定的条件下,合金化层厚度随扫描速度变化不大;裂纹率随扫描速度增加而增加;合金化层硬度随扫描速度的增加先增加后降低。当激光功率为7.2kW,光斑直径为0.8~3mm,搭接率为33.3%时,最佳扫描速度为11m/min。此时,合金化层平均厚度为0.29mm,平均显微硬度为1001HV_(0.05),是基体材料(656HV)的1.53倍。
     球墨铸铁轧辊表面激光合金化C-B-W-Cr后,得到和基体呈冶金结合的合金化层;合金化层厚度为0.33~0.37mm;随着激光比能量的增加,气孔数减少、裂纹率降低,合金化层硬度提高;优化工艺参数为:激光功率4kW、扫描速度4m/min、光斑直径1.5mm、搭接率33.3%;此时得到的激光合金化层的厚度为0.37mm,平均硬度为1201HV_(0.05),是基体(500HV_(0.05))的2.4倍;合金化层组织为先共晶碳化物+枝晶间分布的细小片层状莱氏体(M+A_R+Fe_3C);500℃空气中磨损实验结果表明,合金化层耐磨性是球墨铸铁基体的1.6倍;合金化层的磨损机制是粘着磨损、磨粒磨损和氧化磨损的混合磨损。
     在70MnV铸钢轧辊上进行激光表面合金化NiCr-Cr_3C_2粉末得到与基体呈冶金结合的合金化层;合金化层结构致密、无孔洞和裂纹;随着扫描速度的增加,合金化层和热影响区厚度减小,残余奥氏体含量增加,合金化层硬度和耐磨性提高;相组成受扫描速度影响很小,含量稍微变化;当激光功率为4kW、扫描速度为2.2 m/min、光斑直径为1.5mm、搭接率为33.3%时,合金化层具有最高的硬度和耐磨性;合金化层平均厚度和硬度分别为0.48mm和858HV_(0.1);500℃空气中干滑动摩擦磨损904.32m后,合金化层的耐磨性是同条件下基体耐磨性的8.8倍;合金化层耐磨性的提高是细晶强化、固溶强化以及韧性γ-Fe基体、硬质相Cr_7C_3、Fe_3C和马氏体,以及基体和硬质相之间良好的结合等综合作用的结果。
     利用激光直接金属沉积的方法,在1018低碳钢基体上分别沉积了Co-285高温合金粉末、Co-285+30wt%WC混合粉末和(Co-285+30wt%WC)+0.8wt%Y混合粉末。
     当沉积粉末为Co-285高温合金粉末时,优化工艺参数为:激光功率为0.8kW,光斑直径为0.5mm,搭接率50%,粉末质量流率为8.6g/min,扫描速度为0.375m/min。优化工艺参数下涂层的硬度为420HV_(0.5)。涂层中出现了α-Co固溶体,Cr_(23)C_6和Co_3W。激光直接金属沉积制得的大面积无裂纹沉积层,在室温下空气中与Al_2O_3刚玉球磨损60min后,涂层体积损失为1.4mm~3,磨损机制为粘着磨损、塑性变形、磨料磨损和氧化磨损。
     当沉积粉末为Co-285+30wt%WC和Co-285+30wt%WC+Y时,优化工艺参数为:激光功率为1kW,光斑直径为0.5mm,粉末质量流率为8.5g/min,搭接率为50%,扫描速度为0.3m/min。优化工艺参数下沉积层中未熔WC除外的基体的平均硬度为751HV_(0.5),是Co-285涂层(420 HV_(0.5))的1.83倍。Co-285+30wt%WC涂层中出现了WC,NiCoCr固溶体,W_2C,CoC_x,Cr_3C_2和Cr_(23)C_6相。Co-285+30wt%WC+Y涂层中存在WC、NiCoCr固溶体、W_2C、CoC_x、Cr_7C_3、Cr_(23)C_6和Co_6W_6C。在和Co-285涂层相同的磨损实验条件下,Co-285+WC和Co-285+WC+Y沉积层的磨损体积分别为0.18mm~3和0.17mm~3,Co-285沉积层磨损体积分别为它们的7.8倍和8.2倍。对Co-285+30wt%WC沉积层进行激光重熔,重熔层组织更加均匀,无显微缺陷,WC溶解更加充分,重熔层硬度平均硬度由重熔前的770 HV_(0.5)提高至963HV_(0.5);可见,激光重熔对改善沉积层综合性能有益;添加的0.8wt%Y降低了Co-285+30wt%WC沉积层的残余应力、裂纹和气孔率、硬度;增加了Co-285+WC沉积层的韧性;稍微增加了Co-285+30wt%WC沉积层的耐磨性;并未改变其磨损机制。
     利用激光表面纳米陶瓷合金化技术可显著提高球墨铸铁和铸钢轧辊表面的磨损抗力,尤其对碳和合金含量低的轧辊强化效果更加明显。利用激光辅助直接金属沉积技术得到的Co-285沉积层致密、沉积性能很好,但是其硬度和耐磨性有待进一步提高;添加WC显著增加了Co-285沉积层的耐磨性;激光重熔提高了Co-285+WC沉积层显微组织的分布均匀性和显微硬度;添加Y明显降低了Co-285+WC沉积层的裂纹率,稍微降低了其显微硬度,提高了Co-285+WC沉积层的耐磨性。
Rolls are the main consumptive parts which can deform the metals and determine the efficiency of the rolling mills and the quality of the mill bars. The quality and lives of them have an important effect on the efficiency of rolling production, product quality and manufacturing costs. How to improve the wear resistance and elongate the service life of rolls matters a lot in reducing the consumption of rolls.
     In recent years, in addition to the improvement in the manufacture technique and materials of rolls, induction heat quenching, puddle-welding and thermal spraying are widely used to improve the wear resistance of rolls. But there are some drawbacks in the obtained coatings. Laser surface alloying (LSA) and laser-aided direct metal deposition (LADMD) can fabricate dense coatings with a metallurgical bonding with substrates, thus improving the wear resistance of the substrates. The aim of the present work is to use laser techniques to fabricate dense, wear resistant coatings which have a metallurgical bonding with the substrates. It can offer theoretical instructions on repair and strengthening of rolls by LSA, fabrication of new work layers by LADMD and technical support for their further application.
     The substrates for LSA were high-Ni-Cr infinite chilled cast iron rolls, nodular cast iron rolls and 70MnV cast steel rolls. The 1018 mild steel was used as the substrates for the LADMD experiments. High power laser was used to carry the experiment. Coatings with good metallurgical bonding with substrates were fabricated with optimal processing parameters. Optical microscopy (OM), scanning electron microscopy (SEM) attached with energy dispersive x-ray spectrometry (EDX), X-ray diffractometer (XRD), profilometer, microhardness tester and wear tester were used to analyze the microstructure, composition, the distribution and propagation of cracks, phase and wear behavior of the coatings.
     The laser alloying technique was applied to the high-Ni-Cr infinite chilled cast iron roll coated with C-B-W-Cr nano-carbide ceramics. The results revealed that the alloyed layers combined metallurgically with the substrate with a lot of cracks and pores found in part. With conditions that the laser power, spot diameter and overlap ratio remained unchanged, the thickness of the coating changed slightly with varying scanning speed, but the ratio of cracks increased and the hardness of the alloyed layer increased then decreased with the increase of scanning speed. The optimal scanning speed was 11 m/min, when the laser power, beam diameter and overlapping ratio were 7.2kW, 0.8-3mm and 33.3%, respectively. In this case, the average thickness of alloyed layer was 0.29mm with an average microhardness up to 1001HV_(0.05), ie, about 1.53 times as high as that of the substrate of 656HV.
     C-B-W-Cr powders were used as the alloying powders on nodular cast iron rolls. The fabricated layers had metallurgical bonding with the substrates. The thickness of layers was 0.33-0.37mm. The number of pores and cracks went done and the hardness of the layer increased with the increase of the laser specific energy. The optimal processing parameters were: laser power 4kW, laser spot diameter 1.5mm and overlap ratio 33.3%. The thickness of this coating was 0.37mm and the average microhardness was 1201 HV, which was 1.4 times higher than that of the substrate. The layer was composed of proeutectic carbides and ledeburite eutectic which contained martensite, residual austenite and cementite. Wear test results at 500℃in ambient air showed that the wear resistance of the coating was 0.6 times higher than that of the nodular cast iron substrate. The wear mechanism of the layer was the mixture of adhesive wear, abrasive wear and oxidation wear.
     Metallurgical bonding was achieved between the 70MnV cast steel roll substrate and the layer with NiCr-Cr_3C_2 powders by LSA. The layer was dense, pore and crack free. As the scanning speed increased, the thickness of the layer and the HAZ decreased, the content of the retained austenite increased and the hardness and wear resistance of the layer increased. The phases were influenced by the scanning speed with only a little variation in the content. When the laser power is 4kW, scanning speed is 2.2m/min, spot diameter is 1.5mm and overlap ratio is 33.3%, the obtained layer had the highest hardness and wear resistance. In this case, the thickness and hardness of the layer is 0.48mm and 858HV_(0.1), respectively. Wear test at 500℃in ambient air showed that the wear resistance of the layer was 8.8 times of that of the substrate after sliding for 904.32m. The improvement of wear resistance was contributed to the co-effect of the grain refinement, solution strengthening, the toughγ-Fe matrix,Cr_7C_3, Fe_3C and martensite hard phases and the good bonding between them.
     LADMD was used to fabricate Co-285, Co-285+30wt% and (Co-285+30wt%WC) +0.8wt%Y coatings on 1018 mild steel substrates.
     The optimal parameters for the Co-285 coating were laser power 0.8kW, spot diameter 0.5mm, powder flow rate 8.6g/min and the scanning, overlapping ratio 50% and scanning speed 0.375m/min. The coating was pore and crack free with a microhardness of 420HV_(0.5) with the optimal parameters. The coating was composed ofα-Co solid solution, Cr_(23)C_6 and Co_3W. Volume loss of the coating after wear against the Al_2O_3 ball in the ambient air in the room temperature for 60min was 1.4mm3. Wear mechanism of the coating was a mixture of adhesive wear, plastic deformation, abrasive wear and oxidation wear.
     The optimal parameters for the Co-285+30wt% and Co-285+30wt%WC+Y coatings were: laser power 1kW, spot diameter 0.5mm, powder flow rate 8.5g/min, overlapping ratio 50% and scanning speed 0.3m/min. The average hardness of the coating without the undissolved WC was 751HV_(0.5), which was 1.83 times of that of the Co-285 coating (420HV_(0.5)). Co-285+30wt%WC+Y coating was pore and crack free while the Co-285+30wt%WC coating had some micro-cracks and pores. XRD results indicated that the Co-285+30wt%WC coating was composed of WC, NiCoCr solid solution, W_2C, CoC_x, Cr_3C_2 and Cr_(23)C_6, while Co-285 +30wt%WC+Y coating was composed of WC, NiCoCr solid solution, W_2C, CoC_x, Cr_7C_3, Cr_(23)C_6 and Co_6W_6C. Volume loss of the Co-285+WC and Co-285 +WC+Y coatings after wear against the Al_2O_3 ball in the ambient air in the room temperature for 60min was 0.18mm~3 and 0.17mm~3, respectively. The wear volume loss of the Co-285 coating was 7.8 times of that of the Co-285+WC coating and 8.2 times of that of the Co-285+WC+Y coating. Wear mechanism of the two coatings was also a mixture of adhesive wear, plastic deformation, abrasive wear and oxidation wear, but the adhesive wear and abrasive wear of them were greatly suppressed. The Co-285+WC coating was remelted by laser to investigate the remelting effect on the microstructure and hardness of the coating. Results indicated that the microstructure in the remelting layer was uniform without pores or cracks and the WC had a large dissolution. Furthermore, the microhardness was improved from the 770HV_(0.5) in the Co-285+WC coating to 963HV_(0.5) in the remelting layer. Laser remelting is good to improve the quality of the deposited coatings. The addition of 0.8wt% Y reduced the residual stress, crack or pore ratio and hardness in the Co-285+WC coating, whilst improved the toughness and wear resistance a little without changing the wear mechanism.
     Laser surface alloying improved the wear resistance of the nodular cast iron and cast steel rolls. The effect is especially obvious when the roll material is of low carbon and alloying elements content. The deposited Co-285 coating is dense and of good properties, but the hardness and wear resistance of it need to be improved. The addition of WC can improve the wear resistance of the Co-285 coating and laser surface re-melting improved the distribution of microstructure and the microhardness of the Co-285+WC coatings. The addition of Y decreased the crack rate and the microhardness of the Co-285+WC coatings while improved the wear resistance of it at the same time.
引文
1.熊运昌,梁秀山,杨凌平.热轧辊的选材及热处理[J],机械研究与应用,2002,15(1):6-7.
    2.Golkin Yu E,Sabel'nikov Yu A,Men'shikov O I.New system for changing the work rolls in the first stand of temper-rolling mills[J],Metallurgist,2002,46(05-06):185-186.
    3.宋阳,朱世根,渠彬,等.轧辊表面修复与强化的技术途径[J],机械设计与制造,2005(8):113-115.
    4.专家访谈.董祖钰教授级高工谈堆焊技术的发展[J],中国表面工程,2005,18(3):50-51.
    5.丁洁,申茜辉.轧辊堆焊工艺[J],焊接技术,2005,34(2):64-65.
    6.汪选国,武永宇.45Cr4NiMoV轧辊堆焊焊条堆焊工艺及性能研究[J],武汉理工大学学报(交通科学与工程版),2006,30(2):272-274.
    7.聂斌英.热轧工作辊堆焊修复选材与工艺[J],机械工程材料,2004,28(7):43-44,54.
    8.Nakajima A,Mawatari T,Yoshida M,et al.Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling/sliding contact[J],Wear,2000,241:166-173.
    9.应小东,李午申,冯灵芝.激光表面改性技术及国内外发展现状[J],焊接,2003(1):5-8.
    10.潘邻.激光表面改性技术的现状与展望[J],表面工程资讯,2005(1):5-6.
    11.佗劲红,陈岁元,周利,刘常升,李慧利.激光表面改性对轧辊用高速钢组织与硬度的影响[J],金属热处理,2006,31(1):56-59.
    12.Heitkemper M,Bohne C,Pyzalla A,et al.Fatigue and fracture behaviour of a laser surface heat treated martensitic high-nitrogen tool steel[J],International Journal of Fatigue,2003,25:101-106.
    13.王清波,晁明举,杨坤,等.38CrMoAl钢激光淬火研究[J],金属热处理,2005,30(2):81-83.
    14.张三川,晁明举,姚建铨.白口铸铁磨辊表面的激光淬火强化工艺[J],电加工与模具,2001(2):42-44.
    15.晁明举,赵栋,梁二军.过丝辊激光表面淬火[J],金属热处理,2003,28(2):42-45.
    16.刘其斌,魏远翔,李海,等.T10钢宽带激光相变硬化的组织与性能研究[J],现代机械.金属材料与研究,2003(6):85-87.
    17.杨洗陈,王云山,李会山,等.激光宽带淬火机理及应用研究[J],中国机械工程,2004,15(3):196-198.
    18.张光钧,吴晓晖,邢琪.45钢激光相变强化梯度组织研究-激光扫描速度的影响[J],应用激光,2003,23(5):271-276.
    19.王贵,王建国,周新初,等.轧辊钢激光熔凝处理组织及性能研究[J],金属热处理,2001(3):35-37.
    20.姜幼卿,黄安国,周龙早,等.冶金用铸钢轧辊激光熔凝强化的研究和应用[J],中国机械工程,2006,17(16):1756-1759.
    21.刘喜明,刘衍.球铁表面激光重熔层及各物相区结合界面附近的相变特性[J],应用激光,2006,26(6):375-380.
    22.Hu Y P,Chen C W,Mukherjee K.Development of a new laser cladding process for manufacturing cutting and stamping dies[J],Journal of materials science,1998(33):1287-1292.
    23.李胜,胡乾午,曾晓雁,等.激光熔覆用高硬度铁基合金的研究与应用[J],金属热处理,2004,29(9):6-10.
    24.胡邦喜,莽克伦,王静洁,等.堆焊技术在国内石化、冶金行业机械设备维修中的应用[J],中国表面工程,2006,19(3):4-8.
    25.张来启,陈光男,杨玉玥,等.激光熔凝和熔敷在热轧辊强化中的应用[J],天津工业大学学报,2003,22(5):69-71.
    26.郭作兴,王红颖,李玉龙,等.球墨铸铁激光表面熔覆的组织和性能[J],吉林工业大学学报,1995,25(1):74-77.
    27.郭丽环.材料表面的激光合金化[J],大连大学学报,2003,24(2):16-20.
    28.Zeng D W,Yung K C,Xie C S.Investigation of corrosin behavior of high nickel ductile iron by laser surface alloying with copper[J],Scripta Mater,2001,44(12):2747-2752.
    29.Costa A R da,Craievich A,Vilar R.Phase transitions in Nb rich coating produced by laser alloying:a synchrotron radiation diffraction study[J],Materials Science and Engineering A,2002,336:215-218.
    30.Geiger M.Synergy of laser material processing and metal forming[J],Manufacturing Technology,1994,43(2):563-570.
    31.Zhong M L,Zhang W Q,Liu W J.Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner[J],Wear,2006,260(11-12):1349-1355.
    32.Hussain A,I.Ahmad,A.H.Hamdani,et al.Laser surface alloying of Ni-plated steel with CO_2 laser[J],Applied Surface Science,2007,253(11):4947-4950.
    33.Grum J,Slabe J M.Effect of laser-remelting of surface cracks on microstructure and residual stresses in 12Ni maraging steel[J],Applied Surface Science,2006,252(13):4486-4492.
    34.Zeng D W,Xie C S,Hu M L,et al.In situ laser synthesis of Co/Cu composite coating on copper substrate and its microstructural evolution[J],Surface & Coatings Technology,2006,200:4065-4071.
    35.Almeida A,Petrov P,Nogueira I,et al.Structure and properties of Al-Nb alloys produced by laser surface alloying[J],Materials Science and Engineering A,2001,303:273-280.
    36.Gnanamuthu D S.Laser surface treatment[J],Optical Engineering,1980,19(5):783-792.
    37.周昌炽,唐西南,查莹,等.激光熔覆金属合金和WC复合涂层及其应用[J],清华大学学报:自然科学版,1998,38(10):32-34.
    38.Walker A,Flower H M,West D R F.The laser surface-alloying of iron with carbon[J],Journal of materials Science,1985,20:989-995.
    39.Navas C,Conde A,Ferna'ndez B J,et al.Laser coatings to improve wear resistance of mould steel[J],Surface & Coatings Technology,2005,194:136-142.
    40.Almeida A,Carvalho F,Carvalho P A,et al.Laser developed Al-Mo surface alloys:microstructure,mechanical and wear behaviour[J],Surface & Coatings Technology,2006,200:4782-4790.
    41.肖红军,彭云,马成勇,等.激光表面改性[J],表面技术,2005,34(5):10-12.
    42.王家金.激光加工技术[M],北京:中国计量出版社,1992,282-282.
    43.汪洪海,郑启光,辜建辉,等.TiAl合金的激光气相氮化[J],中国激光,1998(10):955-960.
    44.Geiger M.Synergy of laser material processing and metal forming[J],Manufacturing Technology,1994,43(2):563-570.
    45.Shahdin S,Hussain A,Ahmad L,et al.Laser surface alloying of Ni-plated steel with CO_2laser[J],Applied Surface Science,2007,253(11):4947-4950.
    46.Grum J,Slabe J M.Effect of laser-remelting of surface cracks on microstructure and residual stresses in 12Ni maraging steel[J],Applied Surface Science,2006,252(13):4486-4492.
    47.李智,马椿喻,刘相华,等.激光表面合金化工艺进展[J],1999,17(2):80-84.
    48.王维洁.国外激光铬合金化的研究[J],激光技术,1988,4(12):44-48.
    49.孙桂芳,刘常升,陶兴启,等.高镍铬无限冷硬铸铁轧辊表面激光合金化的研究[J],东北大学学报:自然科学版,2008,29(6):845-848.
    50.梁勇.激光涂层技术工业应用动向的评述[J],全国激光涂层科学与技术研讨会文集,1991,(12):80-86.
    51.李玉龙,吕健.激光合金化研究的现状与前景[J],吉林冶金,1989,(2):42-47.
    52.Zhang D W,Lei T C,Zhang J G,et al.The effects of heat treatment on microstructure and erosion properties of laser surface-clad Ni-base alloy[J],Surface and Coatings Technology,1999,115(2-3):176-183.
    53.关振中.激光加工工艺手册[M],北京:中国计量出版社,1998,318-323.
    54.Anjos M A,Vilar R,Li R,et al.Fe-Cr-Ni-Mo-C alloys produced by laser surface alloying[J],Surface and Coatings Technology,1995,70:235-242.
    55.刘江龙,邹至荣.激光产生金属表层合金化的若干问题[J],应用激光,1988,8(3):129-132.
    56.魏仑,陈庆华,李俊昌,等.40铬钢表面加碳激光合金化处理[J],激光技术,2002,26(1):1-3.
    57.Watkins K G,Liu Z,McMahon M,et al.Influence of the overlapped area on the corrosion behaviour of laser treated aluminium alloys[J],Materials Science and Engineering A,1998,252:292-300.
    58.应郁平,罗启富.45钢激光表面铬合金化[J],江苏理工大学学报,1996,17(6):64-67.
    59.曹鹏军,石功奇,丁培道.20Cr2Ni4W钢钴粉涂层激光合金化的试验研究[J],材料科学与工程,1994,12(3):38-45.
    60.王福德,胡乾午,曾晓雁.ZL108镍基粉末激光表面合金化气孔与裂纹的研究[J],应用激光,2004,24(5):265-268.
    61.蔺荣岩,汪家道,孔宪梅,等.激光合金化冷轧辊的技术研究[J],新技术新工艺,2002,(1):30-31.
    62.叶宏.铸铁激光表面合金化的裂纹[J],重庆工业管理学院学报,1996,10(1):28-31.
    63.王银军.多功能辊体堆焊装置在轧钢厂的应用[J],焊接,2005(10):60-62.
    64.王新林,漆海滨.厚层激光熔覆层裂纹控制的综合实验研究与理论分析[J],南华大学学报:理工版,2001,15(3):36-40.
    65.Kyu K C,Lee S,Jung J Y,et al.Effects of complex carbide fraction on high temperature wear properties of hardfacing alloys reinforced with complex carbides[J],Materials Science and Engineering A,2003,349:1-11.
    66.张光钧,李军,李文戈,等.激光熔覆纳米WC/Co复合涂层组织与抗裂性能的研究[J],金属热处理,2007,32(5):1-5.
    67.姚建华,张伟.激光熔覆镍包纳米氧化铝[J],中国激光,2006,33(5):705-708.
    68.袁晓敏,斯松华,何宜柱.铝合金表面多层复合纳米碳管/钛的激光合金化[J],焊接学报,2004,25(3):68-70.
    69.Mazumder J,Schifferer A,Choi J.Direct materials deposition:designed macro and microstructure[J],Materials Research Innovations,1999,3:118-131.
    70.Pinkerton A J,Li L.The development of temperature fields and powder flow during laser direct metal deposition wall growth[J],Journal of Mechanical Engineering Science,2004,218:531-541.
    71.Morrow W R,Qi H,Kim I,et al.Environmental aspects of laser-based and conventional tool and die manufacturing[J],Journal of Cleaner Production,2007,15:932-943.
    72.Krantz D,Nasla S,Byme J,et al.On-Demand spares fabrication during space missions using laser direct metal deposition[C],in American Institute of Physics,Space Technology and Applications International Forum,New York,USA,2001,CP552:170-175.
    73.Choi J,Chang Y.Characteristics of laser aided direct metal/material deposition process for tool steel[J],International Journal of Machine Tools & Manufacture,2005,45:597-607.
    74.Backes G,Kreutz E W,Gasser A,et al.Laser-shape reconditioning and manufacturing of tools and machine parts[C].In Proceedings of ICALEO '98,Orlando,Florida,1998:E48-56.
    75.Zhang K,Liu W J,Shang X F.Characteristics of Laser Aided Direct Metal Powder Deposition Process for Nickel-based Superalloy[C],Progress in Powder Metallurgy Proceedings of the 2006 Powder Metallurgy World Congress and Exhibition(PM 2006):Materials Science Forum,2006,534-536:457-460.
    76.钟敏霖,宁国庆,刘文今.金属零件的激光直接快速制造[J],激光技术,2002,26(5):388-391.
    77.张魁武.国外激光熔覆应用和直接熔覆金属零件及梯度材料制造[J],金属热处理,2002,27(9):1-4.
    78.Mazumder J,Dutta D,Kikuchi N,et al.Closed loop direct metal deposition art to part[J],Optics and Lasers in Engineering,2000,34:397-414.
    79.Milewski J O,Lewis G K,Thoma D,et al.Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition[J],Journal of Materials Processing Technology,1998,75:165-172.
    80.Lewis K Gary,Schlienger Eric.Practical considerations and capabilities for laser assisted direct metal deposition[J],Materials and Design,2000,21:417-423.
    81.何金江,钟敏霖,刘文今.基于激光直接制造技术的材料研究[J],金属热处理,2006,31(1):4-8.
    82.Keicher D M,Smugeresky J E.The Laser forming of metallic components using particulate materials[J],Journal of Metals,1997,5:51-54.
    83.张永忠,石力开,章萍之,等.基于金属粉末的激光快速成型技术新进展[J],稀有金属材料与工程,2000,29(6):361-365.
    84.杨森,钟敏霖,张庆茂,等.金属零件的激光直接快速制造[J],粉末冶金技术,2002,20(4):234-238.
    85.Lewis G K,Schlienger E.Practical considerations and capabilities for laser assisted direct metal deposition[J],Materials and Design,2007,21:417-423.
    86.Xiong Y K,Smugeresky J E,Schoenung J M.The influence of working distance on laser deposited WC-Co[J],Journal of Materials Processing Technology,2009,209:4935-4941.
    87.Lin X,Yue T M.Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy[J],Materials Science and Engineering A,2005,402:294-306.
    88.Lin X,Yue T M,Yang H O,et al.Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy[J],Acta Materialia,2006,54:1901-1915.
    89.Banerjee R,Collins P C,Bhattacharyya D,et al.Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys[J],Acta Materialia,2003,51:3277-3292.
    90.Collins P C,Banerjee R,Baberjee S,et al.Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys[J],Materials Science and Engineering A,2003,352(1-2):118-128.
    91.Shin K H,Natu H,Dutta D,Mazumder J.A method for the design and fabrication of heterogeneous objects[J],Materials and Design,2003,24:339-353.
    92.Li P,Carroll J,Mazumder J.Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition[J],Jouranl of Physics D:Applied Physics,2003,36:1605-1608.
    93.Mazumder J,Choi J,Nagarathnam K,et al.The direct metal deposition of H13 tool steel for 3-D components[J],Journal of the Minerals Metals & Materials Society,1997,49(5):55-60.
    94.Mazumder J,Schifferer A,Choi J.Direct materials deposition:designed macro and micro structure[J],Materials Research Innovations,1999,3(3):118-131.
    95.Bi G J,Gasser A,Wissenbach K,et al.Characterization of the process control for the direct laser metallic powder deposition[J],Surface & Coatings Technology,2006,201:2676-2683.
    96.曹永上.快速原型制造的新技术-LSL技术[J],机械制造,1995,2:5-7.
    97.曾晓雁,吴懿平.表面工程学[M],北京:机械工业出版社,2001,253-253.
    98.关振中,卜宪章,刘耀武.激光表面熔覆的现状及工业应用展望[C],全国激光涂层科学与技术研讨会论文集,沈阳:1991,5.
    99.Qi H,Mazumder J,Green L,et al.Laser beam analysis in direct metal deposition process [J],Journal of Laser Applications,2005,17(3):136-143.
    100.Pei Y T,Hosson J Th M De.Functionally graded materials produced by laser cladding[J],Acta Materialia,2000,48:2617-2624.
    101.曾晓雁,朱蓓蒂,陶曾毅,等.激光工艺参数对熔覆层质量的影响[J],金属热处理,1993,7:23-28.
    102.Pelletier J M,Sahour M C.Influence of Processing Conditions on Geometrical Features of Laser Claddings Obtained by Powder Injection[J],Journal of Materials Science,1993,28(8):5184-5188.
    103.Zeng X Y,Tao Z Y,Zhu B D.Investigation of Laser Cladding Ceramic Metal Composite Coatings Processing Modes and Mechanisms[J],Surface and Coatings Technology,1996,79(2):209-217.
    104.杨胶溪,左铁钏,徐文清,等.球墨铸铁表面激光熔覆钴基合金涂层的研究[J],激光技术,2006,30(5):517-519.
    105.李胜,胡乾午,曾晓雁.激光模式对激光熔覆层质量的影响[J],激光技术,2005,29(6):667-669.
    106.Brandt M,Scott D A,Emms S B,et al.Laser cladding with a pulsed Nd:YAG laser and optical fibers[J],Journal of Laser Applications,1997,9:67-75.
    107.Fang J,Ferreira M G S,Vilar R.Laser Cladding of Ni-Gr/Al_2O_3 Composite Coatings on AISI 304 Stainless Steel[J],Surface Coatings Technology(Swiss),1997,88(1-3):212-218.
    108.董丹阳,张滨,陈岁元,等.扫描速度对硅钢表面激光熔覆层组织和硬度的影响[J],东北大学学报:自然科学版,2008,29(6):849-852.
    109.张春华,张松,李春彦,等.热作模具钢表面激光熔覆Stellite X-40钴基合金[J],焊接学报,2005,26(1):17-20.
    110.Paul D,Isamu M,Mordilce B L.Laser Materials Processing[C],ICALEO'93 Processing of SPIE,1993,2306:913-922.
    111.张魁武.国外激光熔覆材料、工艺和组织性能的研究[J],金属热处理,2002,27(6):1-8.
    112.Singh J,Mazumder J.Microstructure and Wear Properties of Laser Clad Fe-Cr-Mn-C Alloys[J],Metallurgical and Materials Transactions A,1987,18(2):313-322.
    113.Choi J,Mazumder J.Non-equilibrium synthesis of Fe-Cr-C-W alloy by laser cladding[J],Journal of materials science,1994,29:4460-4476.
    114.Jendrzejewski R,Sliwinski G,Conde A,et al.Influence of the base preheating on cracking of the laser-cladded coatings[J],Laser Processing of Advanced Materials and Laser Microtechnologies,Proceedings of SPIE,2003,5121:356-361.
    115.李艳丽,胡芳友,尚晓峰,等.金属零件直接成型螺旋送粉器[J],应用激光,2004,24(6):355-356.
    116.张庆茂,刘文今,钟敏霖,等.宽带激光熔覆工艺参数对熔覆层质量的影响[J],钢铁研究学报,2001,13(4):14-18.
    117.张庆茂,刘文今,钟敏霖.送粉激光熔覆熔池深度解析模型的误差分析[J],表面热处理,2003,28(4):11-15.
    118.胡项,陈振华,朱蓓蒂,等.同步送粉激光熔覆的粉末分布密度[J],中国有色金属学报,1997,7(2):136-139.
    119.陆伟.激光熔覆高速线材轧辊熔覆层开裂问题的研究(D),北京:北京工业大学,2006.
    120.Jiang W H,Guan H R,Hu Z Q.Development of a heat treament for a directionally solidified cobalt-base superalloy[J],Metallurgical and Materials Transactions A,1999,30:2251-2254.
    121.Kuzucu V,Ceylan M,C,elik H,et al.Phase investigation of a cobalt base alloy containing Cr,Ni,W and C[J],Journal of.Materials Processing Technology,1998,74:137-141.
    122.Opiekun Z.Kinetics of secondary carbide precipitation in boron-modified cobalt alloys of MAR-M509 type[J],Journal of Materials Science,1991,26:3386-3391.
    123.Niederhauser S,Karlsson B,Sotkovszki P.Microstructural development in the heat-affected zone of a laser-cladded steel[J],Z.Metallkd,2005,96:370-376.
    124.Jasson A,Ion J C,Kujanpaa V.Co_2 and Nd:YAG Laser Cladding Using Stellite 6[J],Processing of SPIE,2003,4831:475-480.
    125.Farooq M U,Klement U,Nolze G.Microstructural characterization of a Co-Cr-Mo laser clad applied on railway wheels[J],International Journal of Materials Research,2006,97:838-844.
    126.Chiang K A,Chen Y C.Microstructural characterization and microscopy analysis of laser cladding Stellite12 and tungsten carbide[J],Journal of Materials Processing Technology,2007,182:297-302.
    127.张大伟,雷廷权,李福军,等.激光单道与多道熔覆Ni+Cr_3C_2复合涂层的组织及硬度[J],材料热处理学报,2001,22(3):23-27.
    128.Zeng X Y,Zhu B D,Tao Z Y,et al.Anslysis of energy conditions for laser cladding ceramic-metal composite coatings[J],Surface and Coatings Technology,1996,79:162-169.
    129.张松,张春华,吴维驶,等.Ti6Al4V表面激光熔覆原位自生TiC颗粒增强钛基复合材料及摩擦磨损性能[J],金属学报,2001,37(3):315-320.
    130.刘秀波,王华明.TiAl合金激光熔覆金属硅化物复合材料涂层耐磨性和高温氧化性能研究[J],中国激光,2005,32(8):1143-1149.
    131.张宇,钟敏霖,刘文今.送粉式激光熔覆合成制备WC/Ni硬质合金涂层及其耐磨性[J],金属热处理,2005,30(11):1-5.
    132.Quyang J H,Nowotny S,Richter A,et al.Characterization of laser clad yttria partially-stabilized ZrO_2 ceramic layers on steel 16MnCr5[J],Surface and Coatings Technology,2001,137:12-20.
    133.Yang Y Q,Man H C.Microstructure evolution of laser clad layers of W-C-Co alloy powders[J],Surface and Coatings Technology,2000,132:130-136.
    134.A Conde,F Zubiri,y J de Damborenea.Cladding of Ni-Cr-B-Si coatings with a high power diode laser[J],Materials Science and Engineering A,2002,334:233-238.
    135.裴宇韬.激光熔TiC_P/Ni合金自生梯度涂层及其自生机制[J],金属学报,1998,34(9):987-991.
    136.Li Y,Steen W M.Laser Cladding of Stellite and Silica on Aluminium Substrate[J],Processing of ICLOE,1992:602-608.
    137.曾凯,陈泽民,廖丕博.激光熔覆WC/Co多层过渡涂层与单层涂层的热应力有限元分析[J],昆明大学学报,2006,17(4):57-59.
    138.Lo K H,Kwok C T,Cheng F T,et al.Corrosion resistance of laser-fabricated metal-matrix composite layer on stainless steel 316L[J],Journal of Laser Applications,2003,5:107-114.
    139.Cheng F T,Kwok C T,Man H C.Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MCC[J],Materials Letters,2002,57:969-974.
    140.Li T J,Lou Q H,Dong J X,et al.Improved adhesion of diamond coating on cobalt-cemented tungsten carbide hardmetal by using pulsed-UV-laser substrate surface pretreatment[J],Applied Surface Science,2002,193:102-119.
    141.Igor Smurov.Laser cladding and laser assisted direct manufacturing[J],Surface &Coatings Technology,2008,202:4496-4502.
    142.Li M X,He Y Z,Sun G X.Laser cladding Co-based alloy/SiCp composite coatings on IF steel[J],Materials and Design,2004,25:355-358.
    143.J.L.De Mol Van Otterloo,J.Th.M De Hosson.Microstructural features and mechanical properties of a cobalt-based laser coating[J],Acta Materialia,1997,45(3):1225-1236.
    144.姚宁娟,陆伟,陈铠,等.激光熔覆技术制造热轧辊的钴基合金层研究[J],中国激光,2003,30(8):759-762.
    145.钱兆勇,钟敏霖,刘文今,等.瓦楞辊高耐磨激光熔覆颗粒增强铁基复合涂层[J],中国激光,2008,35(8):1271-1276.
    146.Gedda H,Powell J.Energy redistribution during CO_2 laser cladding[J],Journal of Laser Applications,2002,14(2):78-82.
    147.Lin J M.Temperature analysis of the powder streams in coaxial laser cladding[J],Optics and Laser Technology,1999.31(8):565-570.
    148.Lin J M.Laser attenuation of the focused powder streams in coaxial laser cladding[J],Journal of Laser Applications,2000,12(1):28-33.
    149.Liu C Y,Lin J N.Thermal processes of a powder particle in coaxial laser cladding[J],Optics and Laser Technology,2003,35(2):81-86.
    150.Pinkerton A J,Li L.An analytical model of energy distribution in laser direct metal deposition[J],Journal of Engineering Manufacture,2004,218:363-374.
    151.He X,Mazumder J.Transport phenomena during direct metal deposition[J],Journal of Applied Physics,2007,101:053113-053113-9.
    152.Qi H,Mazumder J,Ki H.Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition [J], Journal of Applied Physics, 2006, 100,024903-024903-11.
    153.Mazumder J, Mohanty P, Kar A. Mathematical modelling of laser materials processing [J], International Journal of Materials and Product Technology, 1996, 11: 193-252.
    154.Hoadley A.F.A, Rappaz M. A Thermal-Model of Laser Cladding by Powder Injection [J], Metallurgical Transactions B-Process Metallurgy, 1992, 23(5): 631-642.
    155.Zhao G, Cho C, Kim J. Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process [J], Internatial Journal of Mechanical Science, 2003, 45: 777-796.
    156.Kar A, Mazumder J. One-Dimensional Diffusion-Model for Extended Solid-Solution in Laser Cladding [J], Journal of Applied Physics, 1987, 61(7): 2645-2655.
    157.Kar A, Mazumder J. Model for Nonequilibrium Partitioning During Rapid Solidification of Binary Concentrated-Solutions [J], Acta Metallurgica Et Materialia, 1992, 40(8): 1873-1881.
    158.Peyre P, Aubry P, Fabbro R, et al. Analytical and numerical modelling of the direct metal deposition laser process [J], Journal of Physics D: Applied Physics, 2008, 41: 025403-025403-10.
    159.Ki H, Mazumder J. Numerical Simulation of Multi-Material Laser Cladding by Coaxial Powder Injection [C]. ICALEO, 2004, San Francisco.
    160.QJ H. Synthesis of Designed Materials by Laser-Based Direct Metal Deposition Technique: Experimental and Theoretical Approaches (D) , Ann Arbor: University of Michigan, 2005.
    161.Backes G, Kreutz E W, Gasser A, et al. Laser-shape reconditioning and manufacturing of tools and machine parts [C]. In Proceedings of ICALEO'98, Orlando, Florida, 1998: E48-56.
    162.HaqSyed W U, Pinkerton A J, Li L. A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping [J], Applied Surface Science, 2005, 247:268-276.
    163.Sundaram R, Choi J. A slicing procedure for 5-axis laser aided DMD process [J], Journal of Manufacturing Sience and Engineering, 2004, 126: 632-636.
    164.巨毅,郭绍义,李宗全.金属表面激光合金化及熔覆处理的研究进展[J],材料科学与工程,2002,20(1):143-145.
    165.孙桂芳,刘常升,陈岁元,等.轧辊的失效及其修复技术[J],材料导报,2007,21(6):100-103.
    166.付志云,赵玲叶.热轧精轧工作辊的改进[J],设备管理与维修,2001(8):22-24.
    1.王艳.高镍铬钼无限冷硬铸铁的回火稳定性[J],物理测试,2002,2:16-17.
    2.代毅,黄文荣,汤光平.4Crl3不锈钢激光表面强化技术研究[J],激光技术,2002,26(3):177-180.
    3.黄开金,谢长生,许德胜.脉冲激光熔凝和相变硬化的研究现状[J],激光技术,2003,27(2):130-133.
    4.刘江龙,邹至荣.激光相变硬化后的残余奥氏体分析[J],机械工程材料,1989(2):35-38.
    5.文铁铮,郭玉珍.冶金轧辊技术特性概论[M],河北:河北科学技术出版社,1995.
    6.冶金科学技术普及读物现代钢铁流程编辑委员会编.轧钢新技术3000问[中],北京:中国科学技术出版社,2003,147.
    7.王进,李友国,康国政,等.无限冷硬铸铁轧辊中“编织碳化物”的形成和作用[J],金属热处理,2006(增刊):75-79.
    8.Dobrzanski L A,Bonek M,Hajduczek E,et al.Alloying the X40CrMoV521 steel surface layer with tungsten carbide by the use of a high power diode laser[J],Applied Surface Science,2005,247(1/4):328-332.
    9.Kyu K C,Lee S,Jung J,et al.Effects of complex carbide fraction on high temperature wear properties of hardfacing alloys reinforced with complex carbides[J],Materials Science and Engineering A,2003,349(1/2):1-11.
    10.殷光红.现代轧辊材料金相图谱[M],北京:机械工业出版社,1993,3-4.
    11.崔忠圻.金属学与热处理[M],北京:机械工业出版社,2002,94.
    12.张林,张彩碚.材料凝固时晶粒生长-粗化的二维元胞自动机模型[J],东北大学学报(自然科学版),2007,28(2):217-220.
    13.郭志群,刘均海,刘航,等.轧辊(辊环)材料的发展与应用[J],上海金属,2004,26(5):38-43.
    14.刘炀.离心法生产针状贝氏体球铁轧辊技术[J],铸造技术,2004,25(2):101-102.
    15.王天义,曹建芳,饶建华.轧辊材料机器热处理工艺发展的现状与趋势[J],西部探矿工程,2005,110:122-124.
    16.郭景杰,李邦盛,贾均,等.球墨铸铁的激光表面铬合金化[J],1995(4):7-9.
    17.张三川,郭洪,姚建铨.铸铁磨辊表面激光淬火[J],金属热处理,2001,(3):9-10.
    18.Qian M,Lim L C,Chen Z D,et al.Parametric studies of laser cladding processes[J],Journal of Materials Processing Technology,1997,63(1-3):590-593.
    19.王福德,胡乾午,曾晓雁.ZL108镍基粉末激光表面合金化气孔与裂纹的研究[J],2004,24(5):265-319.
    20.刘秀波,于利根,王华明.TiAl合金激光表面合金化涂层的组织与耐磨性[J],中国有色金属学报,2000,10(6):785-789.
    21.Guo J J,Li B S,Zhao J Z,et al.Microstructure change of laser surface remelting WC-Co coating[J],Transactions of the Nonferrous Metals Society of China,1995,5(4):142-145.
    22.冯志刚,韩志范,邹至荣.球墨铸铁激光涂层裂纹研究[J],金属热处理学报,1995,16(1):31-34.
    23.鲁建平,骆芳.激光合金化技术提高轧辊寿命的研究[J],浙江冶金,2007,(7):41-45.
    24.胡汉起.金属凝固[M],北京:冶金工业出版社,1985,192-198.
    25.陈君才,曹建春.铸铁激光表面改性的组织与性能特征的研究[J],昆明理工大学学报,1997,22(4):27-33.
    26.Benedek J.Absorptance of material for laser on steel surface[J].Optics and Laser Technology,1980,112(6):247-250.
    27.王东升,于志青,晁明举,等.V_2O_5和工艺参数对镍基合金激光熔覆层裂纹敏感性的影响[J],激光杂志,2005,26(6):81-83.
    28.李尚平,冯涤,骆合力,等.Cr_7C_3/Ni_3Al复合材料制备过程中碳化铬的溶解再析出行为[J],复合材料学报,2005,22(4):53-57.
    29.Stadlera S,Winarskia R P,MacLarena J M,et al.Electronic structures of the tungsten borides WB,W_2B and W_2B_5[J],Journal of Electron Spectroscopy and Related Phenomena,2000,110-111:75-86.
    30.Zarubova N,Kraus V,Cermak J.Mechanisms of phase transformations during laser treatment of grey cast iron[J],Journal of Materials.Science,1992,27:3487-3496.
    31.Fouquet F,Szmatula E.Laser surface melting of a pearlitic grey cast iron[J],Materials Science and Engineering,1988,98:305-308.
    32.Colaco R,Vilar R.Effect of the processing parameters on the proportion of retained austenite in laser surface melted tool steels[J],Journal of Materials Science Letters,1998, 17:563-567.
    33.Liu X B,Yu R L.Effects of La_2O_3 on microstructure and wear properties of laser clad γ/C_r7C_3/TiC composite coatings on TiAl intermatallic alloy[J],Materials Chemistry Physics,2007,101:448-454.
    34.Vilar R,Colacp R,Almeida A.Laser surface treatment of tool steels[J],Optical and Quantum Electronics,1995,27:1273-1289.
    35.汪刘应,王汉功,苏勋家,等.铝合金表面激光熔覆NiCrBSi涂层工艺参数对显微组织的影响[J],金属热处理,1999,(7):12-15.
    1. Jiang W H, Guan H R, Hu Z Q. Development of a heat treament for a directionally solidified cobalt-base superalloy [J], Metallurgical and Materials Transactions A, 1999, 30(8): 2251-2254.
    2. Kuzucu V, Ceylan M, C, elik H, et al. Phase investigation of a cobalt base alloy containing Cr, Ni, W and C [J], Journal of Materials Processing Technology, 1998, 74(1-3): 137-141.
    3. Opiekun Z. Kinetics of secondary carbide precipitation in boron-modified cobalt alloys of MAR-M509 type [J], Journal of Materials Science, 1991, 26(12): 3386-3391.
    4. Niederhauser S, Karlsson B, Sotkovszki P. Microstructural development in the heat-affected zone of a laser-cladded steel [J], Z. Metallkd, 2005, 96: 370-376.
    5. Lo K H, Kwok C T, Cheng F T, et al. Corrosion resistance of laser-fabricated metal-matrix composite layer on stainless steel 316L [J], Journal of Laser Application, 2003,5(2): 107-114.
    6. Jansson A, Ion J C, Kujanpaa V. Co_2 and Nd: YAG Laser Cladding Using Stellite 6 [J], Proceedings of SPIE, 2003, 4831: 475-480.
    7. Farooq M U, Klement U, Nolze G. Microstructural characterization of a Co-Cr-Mo laser clad applied on railway wheels [J], International Journal of Materials Research, 2006, 97: 838-844.
    8. Chiang KA, Chen Y C. Microstructural characterization and microscopy analysis of laser cladding Stellite 12 and tungsten carbide [J], Jouranl of Materials Processing Technology, 2007, 182:297-302.
    9. Thivillon L, Bertrand Ph, Laget B, et al. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components [J], Journal of Nuclear Materials, 2009, 385: 236-241.
    10. Sun G F, Liu C S, Dinda G P, et al. Laser-Aided Direct Metal Deposition of Co-285 [C], ICALEO, 27th, International Congress on Application of Lasers & Electro-Optics, Pechanga Resort & Casino, Temecula, CA, USA, October 20-23, 2008.
    11. Lin J M. Temperature analysis of the powder streams in coaxial laser cladding [J], Optics and Laser Technology, 1999, 31(8): 565-570.
    12. Liu C Y, Lin J M. Thermal processes of a powder particle in coaxial laser cladding [J], Optics and Laser Technology, 2003, 35(2): 81-86.
    13. Pinkerton A J, Li L. An analytical model of energy distribution in laser direct metal deposition [J], Journal of Engineering Manufacture, 2004, 218: 363-374.
    14. He X, Mazumder J. Transport phenomena during direct metal deposition [J], Jouranl of Applied Physics, 2007, 101(5), 053113-053113-9.
    15. Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition [J], Jouranl of Applied Physics, 2006, 100,024903-024903-11.
    16. Peyre P, Aubry P, Fabbro R, et al. Analytical and numerical modelling of the direct metal deposition laser process [J], Journal of Physics D: Applied Physics, 2008, 41, 025403-025403-10
    17. Dinda G. P, Dasgupta A. K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability [J], Materials Science and Engineering A, 2009, 509: 98-104.
    18. Nurminen J, Nakki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding [J], International Journal of Refractory Metals & Hard Materials, 2009, 27: 472-478.
    19. Paul C P, Alemohammad H, Toyserkani E, et al. Cladding of WC-12Co on low carbon steel using a pulsed Nd: YAG laser [J], Materials Science and Engineering A, 2007, 464: 170-176.
    20. Zhong M L, Liu W J, Yao K F, et al. Microstructural evolution in high power laser cladding of Stellite 6+WC layers [J], Surface and Coatings Technology, 2002, 157: 128-137.
    21. Yang Y Q, Man H C. Microstructure evolution of laser clad layers of W-C-Co alloy powders [J], Surface and Coatings Technology, 2000, 132: 130-136.
    22. Jia K, Fisher T E. Sliding wear of conventional and nanostructured cemented carbides [J], Wear, 1997,203-204: 310-318.
    23. Cheng F T, Kwok C T, Man H C. Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MCC [J], Materials Letters, 2002, 57: 969-974.
    24. Li T L, Lou Q H, Dong J X, et al. Improved adhesion of diamond coating on cobalt-cemented tungsten carbide hardmetal by using pulsed-UV-laser substrate surface pretreatment [J], Applied Surface Science, 2002,193: 102-119.
    25. Smurov I. Laser cladding and laser assisted direct manufacturing [J], Surface & Coatings Technology, 2008, 202: 4496-4502.
    26. Li M X, He Y Z, Sun G X. Laser cladding Co-based alloy/SiCp composite coatings on IF steel [J], Materials and Design, 2004, 25: 355-358.
    27. Si S H, Yuan X M, Liu Y L, et al. Effect of Laser Power on Microstructure and Wear Resistance of WCp /Ni Cermet Coating [J], Journal of Iron and Steel Research (International), 2006, 13: 74-78.
    28. Badisch E, Kirchgassner M. Influence of welding parameters on microstructure and wear behavior of a typical NiCrBSi hardfacing alloy reinforced with tungsten carbide [J], Surface & Coatings Technology, 2008,202: 6016-6022.
    29. Kirchgassner M, Badisch E, Franek F. Behaviour of iron-based hardfacing alloys under abrasion and impact [J], Wear, 2008, 265: 772-779.
    30. Chen H H, Xu C Y, Chen J, et al. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear [J],Wear, 2008, 264: 487-493.
    31. Liu X B, Yu R L. Effects of La_2O_3 on microstructure and wear properties of laser clad γ/Cr_7C_3/TiC composite coatings on TiAl intermatallic alloy [J], Materials Chemistry and Physics, 2007, 101:448-454.
    32. Tian Y S, Chen C Z, Chen L X, et al. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique [J], Scripta Materialia, 2006, 54: 847-852.
    33. Li M X, He Y Z, Yuan X M. Effect of nano-Y_2O_3 on microstructure of laser cladding cobalt-based alloy coatings [J], Applied Surface Science, 2006, 252: 2882-2887.
    34. Wang K L, Zhang Q B, Sun M L, et al. Rare earth elements modification of laser-clad nickel-based alloy coatings [J], Applied Surface Science, 2001, 174: 191-200.
    1.张维平,刘文艳.激光熔敷陶瓷涂层综述[J],表面技术,2001,30(4):30-32.
    2.Ariely S,Shen J,Bamberger M,et al.Laser surface alloying of steel with TiC[J],Surface and coating technology,1991,45(1/3):403-408.
    3.Fasasi A Y,Pons M,Tassin C et al.Laser surface melting of mild steel with submicronic titanium carbice powders[J],Journal of Materials Science,1994,(29):5121-5126.
    4.周二华,曾晓雁,吴新伟,等.A3钢表面激光熔覆Fe-WC金属陶瓷复合层的研究[J],激光技术,1997,21(1):34-37.
    5.刘志勤,张洪欣,王开富,等.激光熔覆金属陶瓷复合合金层的组织与性能研究[J],激光技术,1998,22(1):46-49.
    6.Wang H M,Duan G.Wear and corrosion behavior of laser clad Cr_3Si reinforced intermetallic composite coatings[J],Intermetallics,2003,11:755-762.
    7.Conde A,Zubiri F,Damborenea J de.Cladding of Ni-Cr-B-Si coatings with a high power diode laser[J],Materials Science and Engineering,2002,A334:233-238.
    8.王文丽,晁明举,王东升,等.原位生成TaC颗粒增强镍基激光熔覆层[J],中国激光,2007,34(2):277-282.
    9.牛薪,晁明举,王文丽,等.原位生成NbC颗粒增强镍基激光熔覆层[J],中国激光,2006,33(7):987-992.
    10.Wang X B,Liang Y,Yang S L.Formation of TiB_2 whiskers in laser cladding Fe-Ti-B coatings[J],Surface & Coatings Technology,2001,137:209-216.
    11.Pinkerton J A J,Li L.The effect of laser pulse width on multiple-layer 316L steel clad microstructure and surface finish[J],Applied Surface Science,2003,208-209:411-416.
    12.Zhang Q M,He J J,Liu W J,et al.Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding[J],Surface and Coatings Technology,2003,162:140-146.
    13.Yue T M,Huang K J,Man H C.In situ laser cladding of Al_2O_3 bearing coatings on aluminium alloy 7075 for improvement of wear resistance[J],Surface Engineering,2007,23(2):142-146.
    14.栾景飞,罗伟,严密,等.铸铁表面抗裂耐磨激光熔敷材料的研制[J],中国激光, 2002,29(7):652-656.
    15.沈以赴,佟百远,冯钟湖,等.稀土在激光熔覆涂层中的分布及其对腐蚀性能的影响[J],材料研究学报,1998,12(5):434-436.
    16.沈以赴,陈继志,冯钟湖,等.稀土在激光熔覆涂层中的分布和行为[J],中国稀土学报,1997,15(4):344-349.
    17.Wang Y,Liu J J,Yu Z H.Effect of rare earth elements on microstructure and wear resistance of laser remelted iron alloy coating containing metalloids[J],Surface Engineering,1993,9(2):151-153.
    18.Tsai H L,Tsai P C.Microstructures and properties of laser-glazed plasma-sprayed ZrO_2-YO_(1.5)/Ni-22Cr-10Al-1Y thermal barrier coating[J],Journal of Materials Engineering and Performance,1995,4(6):689-696.
    19.李智,马椿喻,刘相华,等.激光表面合金化工艺进展[J],材料科学与工程,1999,17(2):81-84.
    20.Atamert S,Bhadeshia H K D H.Comparison of the microstructures and abrasive wear properties of satellite hardfacing alloys deposited by arc welding and laser cladding[J],Wear,1989,20A:1037-1054.
    21.HWang J R,Shan Y S,Doong J L.Laser remelting of plasma-sprayed coatings on Co-based alloys[J],Surface and Coatings Technology,1990,41(3):365-376.
    22.Abbas G,West D R F.Laser surface cladding of stellite and stellite SiC composite deposites for enhanced hardness and wear[J],Wear,1991,143:353-363.
    23.张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J],复合材料学报,2005,22(3):98-102.
    24.刘颖,杨成召,郗安民.Ni-Mo贝氏体球墨铸铁复合轧辊成分与性能的优化[J],机械工程学报,2006,42(5):214-218.
    25.周继烈,程耀东.Ni基WC金属陶瓷激光熔覆开裂特性的试验研究[J],电加工与模具,2003(4):32-34.
    26.宋武林,朱蓓蒂,甘翠华,等.激光熔覆层结晶方向对覆层裂纹方向和开裂敏感性的影响[J],中国激光,1995,A22(4):309-312.
    27.姚军.AZ91D镁合金激光熔覆与重熔层组织特征及其性能研究[M],长春:吉林大学,2007.
    28.王进,李友国,康国政,等.无限冷硬铸铁轧辊中“编织碳化物”的形成和作用[J],金属热处理,2006年增刊:75-79.
    29.刘家浚.材料磨损原理及其耐磨性[M],北京:清华大学出版社,1993,124-136.
    30.罗云川,果世驹,林涛,等.粉末烧结钢下贝氏体的形成和优化[J],粉末冶金技术,1999,17(3):176-181.
    31.罗云川,果世驹,林涛,等.化学不均匀性对粉末烧结钢下贝氏体组织的影响[J],机械工程材料,1999,23(4):11-14.
    32.赵玉珍,刘建萍,史耀武.高碳高合金钢激光熔凝处理的性能研究[J],激光技术,2003,27(3):205-210.
    33.Buchanan V E,Shipway P H,McCartney D G.Microstructure and abrasive wear behaviour of shielded metal arc welding hardfacings used in the sugarcane industry[J],Wear,2007,263(1-6):99-110.
    34.Buchely M F,Gutierrez J C,Leon L M,et al.The effect of microstructure on abrasive wear of hardfacing alloys[J],Wear,2005,259(1-6):52-61.
    35.Chatterjee S,Pal T K.Wear behaviour of hardfacing deposits on cast iron[J],Wear,2003,255(1-6):417-425.
    36.Badisch E,Mitterer C.Abrasive wear of high speed steels:Influence of abrasive particles and primary carbides on wear resistance[J],Tribology International,2003,367(10):765-770.
    37.Pagounis E,Lindroos V K.Processing and properties of particulate reinforced steel matrix composites[J],Materials Science and Engineering,1998,A246(1-2):221-234.
    38.Badisch E,Kirchgaβner M.Influence of welding parameters on microstructure and wear behavior of a typical NiCrBSi hardfacing alloy reinforced with tungsten carbide[J],Surface & Coatings Technology,2008,202:6016-6022.
    39.周利,刘芳,刘常升,等.高速钢轧辊工作层材料的高温氧化行为[J],钢铁研究学报,2005,17(2):60-63.
    40.Kubaschewski O,Hopkins B E.Oxidation of Metals and Al-loys[M],London:Butterworths,1962.
    41.Hanlon D N,Rainforth W M.The rolling sliding wear response of conventionally processed and spray formed high speed steel at ambient and elevated temperature[J],Wear,2003,255:956-966.
    42.王溪,胡汉起,史京明,等.WCp/Fe-Ni钢基复合材料的抗热疲劳特性[J],钢铁研究学报,998,10(5):44-48.
    43.Kirchgassner M,Badisch E,Franek F.Behaviour of iron-based hardfacing alloys under abrasion and impact[J],Wear,2008,265:772-779.
    44.李见.材料科学基础[M],北京:冶金工业出版社,2000,136-136.
    45.姚萍屏,熊翔,韩娟.粉末冶金航空刹车材料磨屑的形成机理研究[J],材料工程,2001,(11):35-37.
    46.方宁象,徐润泽.孔隙在粉末冶金铁基材料磨损中的作用[J],粉末冶金技术,1996,14(3):193-197.
    47.Borland D W,Bian S.Unlubricated sliding wear of steels:towards an alternative wear equation[J],Wear,1997,209:171-178.
    48.Lim S C,Brunton J H.The unlubricated wear of sintered iron,Wear,1986,113:371-382.
    49.Molinari A,Straffelini G.Surface durability of steam treated sintered iron alloy[J],Wear,1995,181-183:334-341.
    50.Molinari A,Straffelini G.Wear processes in high strength sintered alloys under dry rolling-sliding[J],Wear,1994,173:121-128.
    51.Straffelini G,Molonari A.Dry sliding behavior of steam treated sintered iron alloys[J],Wear,1992,159:127-134.
    52.高家诚,张亚军,文静.稀土对激光涂覆生物陶瓷涂层的影响[J],材料研究学报,1998,12(1):95-101.
    53.王宝森,李建国,邹宏军,等.一种新型的铁基自熔性台金粉末[J],焊接技术,2002,31(2):41-42.
    54.仁登义.稀土对高碳钢焊缝中碳化物的变质作用[J],中国稀土学报,1998,16(2):154-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700