基于选择性激光熔化技术的不锈钢零件宏观质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性激光熔化技术(Selective Laser Melting)是一种新型的快速成型技术,其成形工艺简单,可直接制成终端高致密度金属产品。SLM技术是近年来才发展起来的技术,国内外对成形零部件宏观质量方面的研究报道较少,因此,开展对SLM技术制造成形零部件宏观质量方面的研究具有重要意义。
     首先,本文依据选择性激光熔化技术的特点,从扫描线的单道熔覆高度和宽度出发,分别研究了激光功率、扫描速度、能量密度对单道熔覆高度和宽度的影响规律。并以此为基础,采用SLM方法在不同工艺参数下制造出理论高度为10mm的薄壁墙,并对薄壁墙高度方向的成形精度进行了研究,结果表明成形精度在±0.1mm的参数为:激光功率170W左右,扫描速度36~48m/min,切片层厚0.2~0.35mm。在此工艺参数范围内选取合适参数,制造出尺寸为27×12×10mm3的复杂结构零件,其平均误差达±0.172mm,偏差主要集中在0.002mm处。
     然后,通过正交实验的方法,研究了选择性激光熔化成型件时激光工艺参数对表面粗糙度的影响规律,结果表明,激光功率为主要影响因素。获得最佳表面粗糙度的工艺参数为:激光功率143W,扫描速度12m/min,搭接率为0.5。通过改变切片层厚和倾斜角度α,研究了选择性激光成型件侧表面的粗糙度,结果表明成型零部件的侧面粗糙度与切片层厚的大小成正比,与倾斜角度的大小成反比。当切片厚度为0.2mm,倾斜角度为90°时,零件侧面的粗糙度最小。
     采用优化的工艺参数,制造出了尺寸为10×10×10mm3金属立方体,其致密度达到了96.8%以上。最后,对不同切片层厚下薄壁的极限倾斜角度进行了研究,结果表明切片层厚为0.2mm时,选择性激光熔化成型的极限倾斜角度可以达到30~35°,当零件侧面倾斜角度在这个范围内变化时不用添加支撑即可直接成形。
Selective Laser Melting (SLM) is a new kind of rapid processing technology which is simple molding and can directly produce the terminal metal productions. Because of the recent development of SLM technology, the reports about the macro-quality of molding parts are few, which retard the further study of the technology. As a result, the developing research based on SLM of molding parts’macro-quality is very important.
     Firstly, this thesis studies the regulation of the height and width of single cladding, which are affected by the laser power, the laser scan velocity and the energy density. Based on the former theory, a further experiment analyses the changing regulation of the measurement precision by fabricating a wall of 10mm height. The research finds out that the parameter range is laser power 170W, scan velocity is from 36m/min to 48 m/min and the thickness of slice is from 0.2mm to 0.35mm when the molding precisions are±0.1mm. In the scope of technique parameters, the researchers successfully select the proper parameters to produce a complex structure with the size of 27×12×10mm3 in high precision, whose average error reaches±0.172mm and the deviation concentrates at 0.002mm.
     Then, based on the method of the design of the orthogonal experiment, the thesis investigates the roughness of the surface of molding parts and finds that the laser power is the main factor. By optimizing parameters the researchers finds out that when laser power reaches 143 W, the scan velocity is 12m/min and the overlap is 0.5 would be the best. Furthermore, through the method of changing the thickness of the slice and tilt angleα, the thesis researches the roughness of the side face of the molding parts. From the research, the roughness of the side face is direct proportional to the height of the slice and is inversely proportional to tilt angle. When the thickness of the slice reaches to 0.2mm and the tilt angle is 90°, the roughness of the side face achieves the minimum.
     Moreover, a 10×10×10mm3 metal cubic is made by technique parameter optimization. Through measurement and calculation, the density of the metal cube reaches more than 96.8%.
     Finally, the thesis research the ultimate tilt angle of the thin-sheets in different thickness of slice, and finds out that when the thickness of the slice is 0.2mm, the tilt angle can reach 30~35°. When the change of the tilt angle of the side face stays in this scope, it is not necessary to add a sustentation, but molding directly.
引文
[1]刘强,曾晓雁.选择性激光熔化设备和工艺研究: [硕士学位论文].武汉:华中科技大学图书馆,2007
    [2]颜永年,林峰,王小红等.快速制造技术的最新进展及其发展趋势.电加工与模具, 2006: 12~21
    [3]颜永年,林峰,张人佶.快速制造技术及其应用发展之路.航空制造技术, 2008.: 26~31
    [4] [德]Reinhart Poprawe著.激光制造工艺基础、展望和创新应用实例(第一版).北京:清华大学出版社,2008: 178~181
    [5]曹凤国.激光加工技术(第一版).北京:北京科学技术出版社,2007:142~184
    [6]尹西鹏,李祥友.选择性激光熔化快速成型系统设计与实现: [硕士学位论文].武汉:华中科技大学图书馆,2008
    [7]史玉升,鲁中良.选择性激光熔化快速成形技术与装备.中国表面工程, 2006, 19(5): 13~15
    [8]黄卫东,林鑫,陈静等.激光立体成形——高性能致密金属零件的快速自由成形(第一版).西安:西北工业大学出版社,2007: 41~64
    [9]李鹏,曾晓雁.基于激光熔覆的三维金属零件激光直接制造技术研究: [博士学位论文].武汉:华中科技大学图书馆,2005
    [10]卢尧君,曾晓雁. Nd: YAG激光快速制造不锈钢零件工艺与性能研究: [硕士学位论文].武汉:华中科技大学图书馆,2007
    [11]姬生钦,曾晓雁.激光熔覆直接制造不锈钢零件的工艺与性能研究: [硕士学位论文].武汉:华中科技大学图书馆,2005
    [12] Over C, Meiners W, W issenbach K, et al. Selective laser melting: a new approach for the direct manufacturing of metal parts and tools. 1st International Conference on Laser Assisted Net Shape Engineering, Germany: Frankfurt, 2001: 22~35
    [13] Jeng-Ywan Jeng, Ming-Ching Lin. Mold fabrication and modification using hybridprocesses of selective laser cladding and milling. Journal of Materials Processing Technology, 2001, 110(1): 98~103
    [14] Ki-Hoon Shin, Harshad Natu. A method for the design and fabrication of heter ogeneous objects. Mater Des. 2003, 24:339
    [15] F. Costache, A. Marian, D. M. Buca, et al. Selective laser sintering processing of metallic components by using a Nd: YAG laser beam, In SIOEL 99, Sixth Symposium on Optoelectronics. Proceedings of SPIE, 2002, 4068: 555~561
    [16] MCP Group. The Product Instruction of MCP RealizerSLM. Germany: MCP Group, 2005: 5~17
    [17] K rutha J P, Froyenb L, V aerenbergha J V an, et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149: 616~622
    [18] Lu L., Fuh, J.Y.H., Chen Z.D. eta1. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin, 2000, 35(9): 1555~1561
    [19] Abdolreza, Haliko poh1. Direct metal laser sintering: material consideration and mechanisms of particle bonding. The International Journal of Polder Melallurgy, 2001, 37(2): 49~61
    [20] F Abe, E Costa Santors, Y Kitamura. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(7): 711~719
    [21] Juergen J. Brandner, Edgar Hansjosten, Eugen Anurjew. Microstructure devices generation by selective laser melting. Proceedings of SPIE - The International Society for Optical Engineering, 2007: 1~9
    [22] Olaf Rehme, Claus Emmelmann. Rapid manufacturing of lattice structures with Selective Laser Melting. Proceedings of SPIE - The International Society for Optical Engineering, 2006, 6107: 61070K
    [23]鲁中良,史玉升,黄树槐. Fe-Ni-C合金粉末选择性激光熔化成形.华中科技大学学报(自然科学报), 2007, 35(8): 19~22
    [24]章文献,史玉升,李佳佳等.选区激光熔化成形温度场模拟与工艺优化.应用激光, 2008, 28(3): 20~22
    [25]杨永强,吴伟辉.选区激光熔化快速成型系统及工艺研究.新技术新工艺, 2006: 48~50
    [26]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术.机械工程学报, 2007: 43(8): 30~31
    [27]师文庆,杨永强.选区激光熔化中激光束的传输转换及聚焦特性.激光技术, 2008, 32(3): 15~17
    [28]来克娴,杨永强,张林华.光纤激光器及其在选区激光熔化快速原型制造中的应用.激光与光电子学进展, 2006, 43(3): 36~39
    [29]张冬云.采用区域选择激光熔化法制造铝合金模型.中国激光, 2007, 34(12): 46~49
    [30]吴峥强.金属零件选区激光熔化快速成型技术的现状及发展趋势.金属铸锻焊技术, 2008. 118~121: 45~47
    [31]张冬云.粉末材料性能对SLM模型制造过程影响的研究.应用激光, 2007, 27(1): 33~36
    [32]孙大庆,陈继民.金属粉末选区激光熔化实验研究: [硕士学位论文].北京:北京工业大学图书馆,2007
    [33]王成,史玉升.基于小功率激光烧结的金属零件/模具快速制造工艺研究: [硕士学位论文].武汉:华中科技大学图书馆,2006
    [34]张剑峰,黄因慧. Ni基金属粉末直接烧结成形及关键技术研究: [博士学位论文].南京:南京航空航天大学图书馆, 2002
    [35]付立定,史玉升,章文献. 316L不锈钢粉末选择性激光熔化快速成形的工艺研究.应用激光, 2008, 28(2): 42~45
    [36] Xiaoyong Tian, Jens Günster, J?rg Melche eta1.Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi’s method. Science Direct. Journal of the European Ceramic Society, 2009: 1903~1915
    [37]赵剑峰,吴晓明,唐亚新等.激光烧结快速成型技术误差综合分析.科技成果.学术论文, 1999: 26~29
    [38]卢锡龙,史玉升,黄树槐.选择性激光烧结金属件精度和密度的研究.机械科学与技术, 2003, 22(4): 53~56
    [39]王荣吉,王玲玲,赵立华.选择性激光烧结成型件密度模型研究.湖南大学学报(自然科学版), 2005, 32(2): 29~32
    [40]尚晓峰,刘伟军,王维等.金属粉末激光成形零件倾斜极限.机械工程学报, 2007, 43(8): 41~44
    [41]潘炎峰,沈以赴,顾东东等. 316L不锈钢粉末直接激光烧结的球化效应.中国机械工程, 2005, 16(17): 1573~1576
    [42] Jan-Erik Lind, Juha Kotila, Tatu Syvanen, et al. Dimensionally accurate mold inserts and metal components by direct metal laser sintering. Materials Research Society, 2000, 625: 45~50
    [43] I. Yadroitsev, Ph. Bertrand, I. Smurov. Parametric analysis of the selective laser melting process. Applied Surface Science, 2007, 253(19): 8064-8069
    [44] I. Yadroitsev, L. Thivillon, Ph. Bertrand. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surface Science, 2007, 254(4): 980-983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700