基于光内送粉激光熔覆扭曲薄壁件的成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆成形技术LCRM(Laser Cladding Rapid Manufacturing)是20世纪90年代中后期发展起来的一种先进制造技术,它综合了激光熔覆技术与快速成形技术的优点,在汽车、钢铁、航空、航天、电子等方面都有广泛应用。目前此项技术中成形所采用送粉方式多为光外侧向同轴送粉,该种方式激光束与粉末耦合性差,成形件表面较粗糙,金属粉末利用率低。本实验室提出一种新的光内送粉激光熔覆成形技术,具有光粉耦合好,粉末利用率高,熔道平整等优点。本文重点对光内送粉激光熔覆熔池温度场以及熔覆成形扭曲薄壁高层零件进行研究。
     设计了一种新型光内泄压送粉喷嘴。在原有环形光光内送粉激光熔覆成形光头的基础上,对送粉喷嘴进行了改进,设计了一种泄压送粉喷嘴,送粉效果显示泄压后的粉末束在保护气体的约束下汇聚的更细,直线段距离更长,可进一步提高粉末利用率,同时有助于薄壁件的熔覆成形。
     分析了光内送粉单道激光熔覆的温度场。理论分析了环形光辐照下扫描线宽方向吸收能量的“马鞍形”分布,建立了环形光光内送粉单道激光熔覆的有限元模型,得到了单道熔覆过程中熔池的温度场分布呈彗星状,高温区域形状似“马鞍形”;提出了通过观察熔池横断面温度分布等值线图来判断熔覆层成形质量和其与基体的结合情况,且单道实验验证了其准确性;另外熔池中心的定点在环形光扫过时经历了两次升温和降温的过程,熔池近边缘和熔池中心的点在光斑扫过的时候温差不大,说明了环形光光内送粉激光熔覆的优越性。
     系统研究了激光功率、送粉速率、扫描速度和离焦量等因素对激光熔覆成形单道熔覆层表面形貌以及熔覆层高度和宽度的影响。研究得出了一些重要结论,为采用该工艺成形薄壁扭曲零件以及今后环形光光内送粉激光熔覆成形技术的应用提供重要参考和依据。
     试验堆积成形了扭曲薄壁件。在单道实验的基础上确定了扭曲薄壁件光内送粉激光熔覆成形的初始参数和试验方案;建立了扭曲薄壁件激光熔覆成形的有限元模型,分析了扭曲薄壁件熔覆成形过程中温度场的演变过程和定点温度的热循环,并且通过仿真实时控制模型中输入激光功率的大小,模拟得到了保持熔池温度稳定时激光功率的变化值;通过层高控制和参照数值计算得到的功率变化值调节激光器功率,成功熔覆成形了扭曲薄壁件,性能分析表明:成形件表面光滑,没有粘粉,尺寸与设计数值基本相同,组织细小致密,与基体形成冶金结合,且成形件硬度较高。
LCRM is an advanced manufacturing technology developed from the1990s, itcombines the advantages of the laser cladding and the rapid forming technique, and isused widely in the car, steel, aviation, aerospace, and electronics industry. At present, inthis technology, the powder feeding way of forming is lateral coaxial powder feedingoutside the laser beam, in this way, laser beam and powder couples badly, theaccumulated parts have rough surfaces, and the utilization of metal powder is low.Soochow university laser special processing lab put forward a new laser claddingmanufacturing process with coaxial inside-beam powder feeding, it can make the laserbeam and the powder couple well, and improve the utilization rate of powder, also canmake the cladding layer more flat. In this paper, the temperature field of laser claddingand the forming process of screwy thin-walled part will be researched.
     In order to cover the shortage of the present powder feeding nozzle, this paper hasdesigned a pressure relief powder feeding nozzle base on coaxial inside-beam powderfeeding laser head, powder feeding effect shows that powder bunch become moreslender and straight under the restriction of the protection gas, it can improve thepowder utilization and be useful for the thin-walled parts laser cladding forming.
     The saddle distribution of energy absorbed at scanning direction is researched.Through building the finite element model of coaxial inside-beam powder feeding lasercladding, molten pool temperature field of single laser cladding is got, it is like a comet,and the high temperature area is like a saddle. The conclusion that the combinationbetween cladding layer and substrate can be judged by observed the molten poolcross-sectional temperature distribution isoline, and it is test by single laser claddingexperiments. The nodes in the middle of molten pool undergo warming and coolingtwice when the ring laser scanning across them. The temperature difference between molten middle and edge isn't big, and it reflects the superiority of inside-beam powderfeeding laser cladding.
     The effects of laser power, powder feeding rate, scanning speed, anddefocusingamount to single cladding layer surface, height, and width are studiedscientifically. Some conclusions are obtained, and these can be the references for usingthis technology forming thin-walled screwy part and the application of inside-beampowder feeding laser cladding forming.
     Base on the single laser cladding experiments, screwy thin-walled part inside-beampowder feeding laser cladding forming initial parameters and test plans are confirmed.The finite element model of laser cladding forming screwy thin-walled part isestablished. The evolution of temperature field and thermal cycle of the node are studiedduring the screwy thin-walled part forming process. In the emulation laser power ischanged real time, and it can keep the molten pool temperature steady. The screwythin-walled part is formed successfully through storey height control and laser powerchange real time. Performance analysis shows that formed part has smooth surface and ahigh rigidity, no powder paste outside the surface, the size is basically the same to thedesign value, the microstructure is small and density, metallurgical combination isformed between part and substrate.
引文
[1]王冰.快速成型技术发展新趋势[J].科技论坛,2005(6):43
    [2]杨家林,王洋等.快速成型技术研究现状与发展趋势[J].新技术新工艺,2001(1):28-29
    [3]周惦武,徐翔,周述积.快速成型技术的研究进展与发展趋势[J].铸造设备研究,2003(2):52-54
    [4]许勤,张坚.激光快速成型技术研究现状与发展[J].九江学院学报,2005(1):8-10
    [5] B.S.Shin.A new rapid manufacturing process for multi-face high-speed machining[J].The intermational journal of advanced manufacturing technology.2003(22):68-74
    [6] N.P.Karapatisect. Direct rapid tooling:a review of current research. RapidPrototyping Jounrnal,1998,2(4):77-89
    [7]左铁钏.21世纪的先进制造-激光技术与工程[M].科学出版社,2007,5
    [8] Li Y,et al. Laser direct forming of metal components:technical characterizations[J].Proceeding of SPIE,2002,4915:395-402.
    [9] Atwood C,et al. Laser Engineered Net Shaping:A tool for direct Fabrication ofMetal Parts[J]. ICALEO1998,1998,Section E:1-9
    [10] Xue L,et al. Free-Form Laser Consolidation for Producing Functional MetalComponents[J]. ICALEO1998,1998,Section E:15-3
    [11]钟敏霖,刘文今.国内外高功率激光材料加工研究的最新发展[J].激光集锦,2003,11
    [12]周惦武,徐翔,周述积.快速成型技术的研究进展与发展趋势[J].铸造设备研究,2003,(2)
    [13]杨森,钟敏霖,张庆茂等.激光快速成型金属零件的新方法[J].激光技术,2001,25(4):254-257.
    [14]黄卫东.激光立体成形[M].西北工业大学出版社,2007.11
    [15]张凯,刘伟军等.金属零件激光直接快速成形技术的研究(上)-国外篇[J].工具技术,2005,39:3-8
    [16] J.-Y.Jeng,S.-C.Peng and C.-J.Chou. Metal Rapid Prototype Fabrication UsingSelective Laser Cladding Technology[J]. Int J Adv ManufacturingTechnology(2000)-16:681-6872000Springer-Verlag London Limited
    [17]张凯,刘伟军等.金属零件激光直接快速成形技术的研究(下)-国内篇[J].工具技术,2005,(39):3-5
    [18]李延民,李建国等.金属零件激光直接成形[J].应用激光,2002,22(2):140-144
    [19]张永忠,章萍之等.金属零件激光快速成型技术研究[J].材料导报,2001,25(2):10-13
    [20]钟敏霖,宁国庆等.激光快速柔性制造金属零件研究与发展[J].激光技术,2002,26(5):388-391
    [21]梁朝罡,邓琦林.激光熔覆制造致密金属零件送料方式的分析和比较[J].电加工与模具,2003,(5).
    [22]刘常乐.载气式激光熔覆送粉器的研制[D].天津工业大学,2003,2.
    [23]高淑英,杨洗陈.用于激光熔敷的同轴送粉喷嘴的设计[J].天津工业大学学报,2003,22(5):42-45.
    [24]张红军,钟敏霖,刘文今,孙鸿卿.高汇聚温度显示激光快速制造同轴送粉喷嘴的研制[J].应用激光,2004,12,24(6):380-384.
    [25]张正伟,杨武雄.激光熔覆快速成形技术送粉喷嘴的研制[M].激光杂志,2004,28(1):79-80.
    [26]蔡齐飞,石世宏,李春生,刘嘉.激光熔覆快速成型光内送粉方式的研究[J].苏州大学学报(工科版),2009,29(2):43-45
    [27]王明娣,左敦稳,王珉,石世宏.光内送粉激光熔覆工艺参数对单层熔覆质量的影响[J].南京航空航天大学学报,2009,41(3):354-357
    [28]王明娣.基于光内送粉的激光熔覆快速制造机理与工艺研究[D].南京航空航天大学,2008,4.
    [29]狄科云.激光熔覆快速成形光内同轴送粉斜壁堆积的初步研究[D].苏州大学,2008,3.
    [30]蔡齐飞.激光快速成型光内送粉回转体堆积研究[D].苏州大学,2010,4
    [31]肖军艳.环形激光光内送粉熔池特征与熔层性能[D].苏州大学,2009,5
    [32]石世宏,傅戈雁,王安军等.激光加工成形制造光内送粉工艺与光内送粉喷头
    [P].中国专利,CN200610116413.1,2006
    [33]石世宏,傅戈雁,李龙等.中空激光光内同轴送丝熔覆工艺的实现及其试验研究[J].中国激光,2010,37(1):266-270
    [34]石皋莲,石世宏,吴少华等.光内送粉激光熔覆快速成形粉末利用率实验研究[J].金属铸锻焊技术,2010,4:152-154
    [35]张冬云,王瑞泽,赵建哲等.激光直接制造金属零件技术的最新进展[J].中国激光,2010,37(1):18-25
    [36]左铁钏.制造用激光—光束质量、传输质量与聚焦质量[M].北京:科学出版社,2008
    [37]金岡優(日).激光加工[M].机械工业出版社,2005
    [38]罗时荣.平顶分布光束的描述、计算模拟和基于强度矩方法的激光光束质量研究[D].四川大学博士论文,2003.10
    [39]赵洪运,舒凤远,张洪涛等.基于生死单元的激光熔覆温度场数值模拟[J].焊接学报,2010,31(5):81-84
    [40] Ehsan Toyserkani. Amir Khajepour, Steve Corbin.3-D finite element modeling oflaser cladding by powder injection: effects of laser pulse shaping on the process[J]. Optics and Lasers in Engineering.2004,41:849~867
    [41]席明哲,虞钢.连续移动三维瞬态激光熔池温度场数值模拟[J].中国激光,2004,31(12):1527-1532
    [42]贾文鹏,林鑫,陈静等.空心叶片激光快速成形过程的温度/应力场数值模拟[J].中国激光,2007,34(9):1308-1311
    [43]方昆凡.工程材料手册-黑色金属材料卷[M].北京:北京出版社,2002.2
    [44]姬生钦.激光熔覆直接制造不锈钢零件的工艺与性能研究[D].华中科技大学,2005.5
    [45] D.Srivastava,I.T.H.Chang,M.H.Loretto.The optimization of processing parametersand characterization of microstructure of direct laser fabricated TiAl alloycomponents.Materials and Design.2000(21):425-433.
    [46]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D].华中科技大学,2005.4
    [47] C.Atwood,M.Griffith,L.Harwell et al.Laser Engineered Net Shaping(LENS):A toolfor direct fabrication of Metal Parts.Proceedings of ICALEO'98,November16-19,1998,Orlando,FL:E-1.
    [48] Gray K.Lewis,Eric Schlienger.Practical considerations and capabilities forlaserassisted direct metal deposition[J].Materials and Design,2000,21(4):417-423.
    [49] J.Mazumder,D.Dutta,N.Kikuchi et al.Closed loop direct metal deposition:art topart[J].Optics and Lasers in Engineering,2000,34(4-6):397-414.
    [50]朱刚贤,张安峰,李涤尘等.激光金属制造薄壁零件z轴单层行程模型[J].焊接学报.2010,31(8):57-60
    [51]朱鹏飞.基于PMAC的激光三维堆积温度控制研究[D].苏州大学,2007.5
    [52] William Hofmeister, Melissa Wert, John Smugeresky, et al. Investigatingsolidification with the laser engineered net shaping (LENSTM) process. JOM,1999,51(7):1-6.
    [53] Griffith M L, Schlienger M E, Harwell L D, et al. Understanding thermal behaviorin the LENS process. Materials and Design,1999,20:107-113.
    [54]郭华锋,周建忠,胡增荣.金属粉末激光烧结温度场的三维有限元模拟[J].工具技术,2006,40(11):13-18.
    [55]刘振侠,黄卫东,万柏涛.送粉式激光熔覆数值模型基本问题研究[J].中国激光,2003,30(6):567-570.
    [56] GU Dongdong, SHEN YiFu, LIU ManCang, et al. Numerical simulations oftemperature field in direct metal Laser sintering process[J]. Transactions ofNanjing University of Aeronautics&Astronautics,2004,21(3):225-233.
    [57]徐庆鸿,郭伟,田锡唐等.激光熔覆三维温度场数值模型的建立与验证[J].焊接学报,1997,18(2):58-62.
    [58]崔洪武.基于光内同轴送粉光粉耦合及高层成形技术的研究[D].苏州大学,2009.5
    [59]李春生.三维成形中空环形激光传输转换建模及光料耦合分析[D].苏州大学,2010.5
    [60]邵其文.基于光内送粉的激光熔覆快速成形技术研究[D].苏州大学,2008.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700