表面强化铁基粉末冶金材料的摩擦磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基粉末冶金材料是发展迅速和具有巨大应用潜力的工程材料。近年来,由于具有优异的技术经济性,铁基粉末冶金材料逐渐取代部分传统的锻铸材料在机械、航天、农机,特别是汽车工业得到广泛的应用,制造像汽车齿轮、齿类零件(如带轮、链轮和齿毂等)和凸轮轴等几何形状复杂,加工困难或加工成本高的部件。但是,粉末冶金材料特有的孔隙的存在制约了其强度指标和摩擦学性能,使其急速上升的应用势头减慢。为了进一步扩大其应用领域,必须在提高粉末冶金材料密度级别的基础上,进一步改善其摩擦学特性。本试验制备出不同合金成分的铁基粉末冶金材料,并对其采用高频感应淬火和宽带激光淬火两种工艺进行表面处理,得到了高硬度和耐磨性的表面功能层,从而扩大了粉末烧结技术的应用领域,改善了烧结部件的性能。
    本试验采用普通压制烧结方法制备出不同合金成分的C-Cr-Ni-Mo-Cu系铁基粉末冶金材料,其密度级别达到6.7g/cm3。其中设计的合金成分变化范围为:C0.45~0.55%、Cr0.5~2.5%、 Ni1~3%、Mo0.85%、Cu1%~3%。并对制备过程中的压制压力、烧结温度和烧结时间等工艺参数对材料密度、硬度和组织的影响进行了研究。通过对制备工艺过程的分析,最终确定出优化后的制备工艺参数为:压制压力为600MPa,烧结温度为1200℃,烧结时间为60分钟。
    为了进一步提高材料的使用性能,本实验对制备出的铁基粉末冶金材料进行了两种表面淬火处理工艺:高频感应淬火和宽带激光淬火。对两种工艺下工艺参数对显微硬度的影响进行了研究,最终确定出优化后的表面处理工艺参数为:高频淬火装置输出功率为26.1kW;激光淬火装置的输出功率为3.2kW,扫描速度为8mm/s。
    材料的性能决定于其内部的组织结构,因此我们对铁基粉末冶金材料的组织和常规性能进行了系统的研究,并对两种表面处理工艺的强化机理进行了讨论。通过研究表明:烧结态铁基粉末冶金材料的组织为铁素体+珠光体组织。表面强化铁基粉末冶金材料的组织表现为层状组织,最表层为完全淬硬
    
    
    层,组织为淬火马氏体和残余奥氏体;第二层为过渡层,组织为马氏体、铁素体和渗碳体的混合组织。;第三层为基体,组织为铁素体和珠光体。本实验通过对表面强化铁基粉末冶金材料的常规性能进行研究表明,在本实验条件下,激光淬火后的硬化层硬度高达HV0.3 690~849,厚度约为1.2~1.9mm。而高频淬火后的硬化层硬度为HV0.3 598~678,厚度约为0.7~1.3mm,比激光淬火的硬化层硬度低,厚度也略薄。本研究表明硬化层形成残余压应力、马氏体晶粒细小、马氏体含量较多及弥散强化是材料高频感应淬火后硬度大幅度提高的主要原因;晶粒超细化,高的马氏体含量,马氏体高位错密度和高的固溶含碳量是材料经激光热处理后获得超高表面硬度的主要原因。
    作为减摩耐磨材料使用时,铁基粉末冶金材料的耐磨性及其影响规律的确定是非常重要的。因此本实验对该系列材料的摩擦磨损特性进行了系统的研究,对其在摩擦磨损过程中的磨损机理进行了详细的讨论。本试验铁基粉末冶金材料的摩擦磨损特性是在MG-2000型高温高速磨损试验机上进行的,摩擦形式采用销-盘式干滑动摩擦。影响摩擦磨损试验的因素主要有合金成分、试验载荷、滑动速度和磨损时间。本试验中分别测试了在这些参量影响下铁基粉末冶金材料在三种状态下(烧结态、高频淬火和激光淬火)的摩擦磨损曲线。试验结果表明:铁基粉末冶金材料经表面处理后摩擦磨损性能有了显著的改善,磨损量与摩擦系数比未淬火处理材料明显降低;并且宽带激光淬火铁基粉末冶金材料的摩擦磨损性能略优于高频感应淬火材料。通过对表面处理铁基粉末冶金材料摩擦磨损特性曲线的综合分析,我们得出在本试验成分范围内符合摩擦学设计的材料组成为:C0.45~0.55%;Cr1.0~1.5%;Ni2.0%;Cu2~2.5%;Mo0.85%。
    在本试验摩擦过程中,铁基粉末冶金材料的摩擦表面形成一表面层,该摩擦表面层的形成是由于加工硬化在摩擦表面产生塑性变形引起的。该表面层具有高的硬度,可有效阻止亚表层裂纹向表面的扩展,从而提高表面的耐磨性。在该表面层的最表面还覆盖着一层表面膜,该表面膜的存在可以起到降低摩擦系数和磨损率的作用。在较高载荷下由于该表面膜遭到破坏,从而影响了其减磨作用的发挥。通过对该表面膜进行结构分析得知其是由Fe、Fe3O4、Fe2O3和Fe4Cu3等物质组成的混合膜。在不同的试验条件下,摩擦表面膜的氧化物类型有所不同。在较低试验载荷(50N)和滑动速度(1.01m/s)下,摩擦表面膜中的氧化物类型主要是Fe2O3,摩擦表面呈砖红色。在中、高试验载荷(120N)和滑动速度(3.14m/s)下,摩擦表面膜中的氧化物主要为FeO,
    
    
    摩擦表面呈黑亮色。在二者之间的试验条件下(本试验中试验载荷为80N,滑动速度为2.04m/s),摩擦表面膜中的氧化物主要为Fe3O4,摩擦表面呈黑色。磨损过程中主要产生三种形状的磨屑:片状磨屑、块状磨屑和条状磨屑。在不同的试验条件下,磨屑的形态分布也有所变化。在较低试验载荷和滑动速度下,磨屑以块状磨屑为主,且粒度较小,一般在几百纳米到几微米之间。在较高试验载荷和滑动速度下,磨屑以片状磨屑为主,且较大,一般
Ferrous powder metallurgical materials possess enormous potential market and have been developed rapidly. Recently, the more and more ferrous P/M materials instead of a part of wrought steels and casting irons are used to manufacture high performance structure components, such as automotive gears, camshafts and connecting rods, which would be difficult and expensive to generate by machining. However, the tribological and mechanical properties of P/M materials are limited by their residual porosity. To widen application field of P/M materials, it is very essential to improve its tribological properties based on increasing its density level. In this paper, ferrous P/M materials with different composition were prepared, and their surfaces treated by high-frequency induction quenching and wide-band laser hardening techniques. As a result, surfaces with high hardness and good wear resistance were obtained. The application field of powder metallurgical technology is widened and properties are improved.
    In this work, we prepared different composition C-Cr-Ni-Mo-Cu series ferrous P/M materials with density 6.7g/cm3 by common pressing-sinter technique. The designed range of component is C0.45~0.55%, Cr0.5~2.5%, Ni1~3%, Mo0.85%, Cu1%~3%. We studied the effect of suppress pressure, sinter temperature and sinter times on density, hardness and structure of the materials in the course of preparation. Ultimately, we obtained optimal processing parameter: suppress pressure 600MPa, sinter temperature 1200℃, sinter times 60 minutes.
    In order to improve surface properties of the materials, high-frequency induction quenching and wide-bond laser quenching techniques were used in this test. We studied the effect of processing parameter of the two surface treatment techniques on microhardness. Finally, we obtained optimal surface treatment processing parameter: high-frequency induction quenching output power 26.1kW; laser quenching output power 3.2kW, scanning speed 8mm/s.
    The properties of materials are decided by their inner structure. So we studied the structure and general properties of ferrous P/M materials, and discussed the strengthen mechanism of
    
    
    the two surface treatment processing. The results show that the metallographic structure of sintered state ferrous P/M materials is ferrite, pearlite. Surface strengthened ferrous P/M materials show a kind of layered structure. From the surface to the center, surface quenched materials can be divided into three layer. The first layer is complete hardened layer made up of fine martensite and remained austenite. The second layer is the transition layer which microstructures are martensite, ferrite and cementite. The third layer is matrix which microstructure is ferrite and pearlite. The study also showed that the microhardness and thickness of hardened layer for laser quenching ferrous P/M materials reaches HV0.3 690~849 and 1.2~1.9mm; the microhardness and thickness of hardened layer for high-frequency induction quenching ferrous P/M materials reaches HV0.3 598~678 and 0.7~1.3mm which are lower laser quenching materials. The primary reasons of high-frequency induction quenching strengthen are the formation of remained press-stress in the hardened layer, fine martensite grain, more martensite content and dispersion strengthen. The mostly reasons of laser surface quenching strengthen are superfine grain, high martensite content, martensite containing high dislocation density and high carbon content.
    For use in tribological applications,it is very important that make certain the wear resistance of ferrous P/M materials and the influence rules on it. So friction and wear properties of ferrous P/M materials were studied emphatically in this test,and its wear mechanisms were discussed in detail. Dry sliding wear tests were performed using a MG-2000 type pin-disk wear apparatus. The factors affecting the friction and wear tests of ferrous P/M materials are mostly alloy composition, the experimental loads,sliding speeds and times. The curves of friction and wear of ferrou
引文
郭青蔚; 粉末冶金工艺发展现状, 世界有色金属,1998,(10):8-9
    张仲和,王爱华,李念辛;铁基粉末冶金结构零件的开发, 粉末冶金工业,1998, 8(1):31-35
    黄世民; 粉末冶金技术的应用与发展, 航空工艺技术,1999,(4):36-38
    Teruo Shimizu, Ken Matsuzaki. PM in the Japanese automotive industry(J). Metal Powder Report, 1992,47(1) : 38-41
    Bocchini, G.F. Tengzelius, J. High property sintered steels for automotive applications. Development and perspectives. Metallurgia Italiana, 1995, 87(1): 47-54
    James, Brian W. Recent developments in ferrous powder metallurgy alloys. International Journal of Powder Metallurgy, 1994, 30(2): 157-162
    李绍忠,我国汽车用粉末冶金结构零件的现状与发展,粉末冶金技术,1996, 14(2): 139-144
    毛志强; 粉末冶金零件在汽车上的应用, 粉末冶金工业, 2003,13(1):8-11
    Shimada,Kazuo. Developments of the production engineering in ferrous sintered machine parts. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42(10): 1093-1098
    David Whittaker. Process economics and technological advances in P/M automotive parts(J). International Journal of Powder Metallurgy, 1998, 34(4) : 53,55-56,58-60,62
    邹志强,曲选辉,黄伯云;国外粉末冶金的最新进展(从全球性国际会议看发展趋势),粉末冶金技术,1997,15(1):66-70
    徐守权,轴类零件对高频感应淬火硬化层的要求,金属热处理,1996,(3):29-31
    赵显恕,凸轮轴感应加热淬火设备和工艺,金属热处理,1998,(11):24-26
    赵军,摩托车凸轮轴热处理工艺改进,金属热处理,2001,(1):42-43
    Magalhaes, Silvia S.M. Surface Composition and Microstructure Control
    
    
    during Forming and Sintering of Ferrous Powder Metallurgy Materials. Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2003, (2050): 51
    Khraisat, W. Nyborg, L. Liquid phase sintering of ferrous powder by carbon and phosphorus control. Powder Metallurgy, 2003, 46(3): 265-270
    Prucher, Thomas R. Heat treatment and carbon control for ferrous P/M alloys. International Journal of Powder Metallurgy (Princeton, New Jersey), 2003, 39(7): 39-42
    K.S.Narasimhan. Sintering of powder mixtures and the growth of ferrous powder metallurgy(J). Materials Chemistry and Physics, 2001, 67: 56-65
    Randall M.German. Manipulation of strength during sintering as a basis for obtaining rapid densification without distortion(J). Materials Transactions, 2001, 42(7) : 1400-1410
    Mars,Owe. High performance P/M steels, Scandinavian Journal of Metallurgy, v 24, n 4, Aug, 1995, 24(4): 147-151
    Rutz, H.G. Rawlings, A.J. Cimino, T.M.Advanced properties of high density ferrous powder metallurgy materials, Advances in Powder Metallurgy and Particulate Materials, 1995, 3: 10/97-10/115
    Herring, Daniel H. (C.I. Hayes, Inc); Hansen, Peter T. Heat treating of ferrous P/M parts. Technical Paper - Society of Manufacturing Engineers. FC, 1998, CM98-277:17
    赵新,金杰,姚建铨;激光表面改性技术的研究与发展,光电子·激光, 2000,11(3):324-328
    张光钧;激光热处理的现状及发展,金属热处理,2000,(1):6-11
    丁厚福,李吉泉,郑治祥;铁基粉末冶金材料的热处理,国外金属热处理,2002,23(3):39-41
    郭庚辰;烧结铁基材料的淬火处理,粉末冶金技术,1995,12(2):131-138
    刘宏,郭荣新;激光热处理在汽油机凸轮轴上的应用研究,机械工程材料,2000,12(6):36-38
    刘金授,吴建辉,许再薇;钢铁材料激光热处理的研究,应用激光,1995,15(3):129-130
    Lim S C. Recent developments in wear-mechanism maps. Tribology
    
    
    international. 1998, 31(1-3):87-97
    Lim S C, Ashby M F. Wear-mechanism maps. Acta Merallurgia. 1987,35(1): 1-24
    Ashby M F, Lim S C. Viewpoint set No.14:Wear-mechanism maps. Scripta metallurgia, 1990,24:1343-1348
    Lim S C, Liu Y B, Lee S H. Wear maps: useful databases for wear applications. Journal of instition of engineers, Singapore. 1991, 31(5):51-55
    H.So, D.S.Yu, C.Y.Chuang. Formation and wear mechanism of tribo-oxides and the regime of oxidational wear of steel(J). Wear, 2002, 253: 1004-1015
    E.R.leheup,D.Zhang,J.R.Moon. Fretting wear of sintered iron under low normal pressure. Wear, 1998, 221: 86
    G.Straffelini, D.Trabucco, A.Molinari. Oxidative wear of heat-treated steels(J), Wear, 2001, 250 : 485-491
    I.I.Garbar. The effect of load on the structure and wear of friction pair materials(example of low-carbon steel and copper)(J). Wear, 1997, 205 : 240-245
    K.V.Sudhakar, P.Sampathkumaran, E.S.Dwarakadasa. Dry sliding wear in high density Fe-2%Ni based P/M alloys(J). Wear, 2000, 242 : 207-212
    Jun’an Wang, Herbert Danninger. Dry sliding wear behavior of molybdenum alloyed sintered steels(J). Wear, 1998, 222 : 49-56
    You Wang, Tingquan Lei. Wear behavior of steel 1080 with different microstructures during dry sliding(J). Wear, 1996, 194 : 44-53
    Yang Dehua, Zhang Xushou. The friction and wear of metals modified by a continuous wave CO2 laser(J). Surface and Coatings Technology, 1994, 63 : 43-48
    X.M.Zhang, H.C.Man, H.D.Li. Wear and friction properties of laser surface hardened En31 steel(J). Jounal of Materials Processing Technology, 1997, 69 : 162-166
    Miura, Hideshi. Studies on the structure control and improvement of properties for sintered ferrous materials. Journal of the Japan Society of
    
    
    Powder and Powder Metallurgy, 1993, 40(9): 923-934
    冯春雨;浅谈合金元素在钢中的作用,冶金标准化与质量,1996,(8) :20-23
    李吉泉,丁厚福,董盼,郑治祥,低铬铁基烧结材料的研究,2002,12(4):16-20
    王才德,曹顺华, 高铬铁基烧结材料的研究,粉末冶金技术,1998,16(2):116-119
    刘志国,合金元素对耐热钢组织及性能的影响,材料开发与应用,1997,12(1):17-21
    姚萍屏,熊翔,袁国洲,黄伯云, 铜对粉末冶金航空刹车材料物理力学性能的影响,中国有色金属学报, 2000,10(增刊1):81-83
    祖方遒,戴维鉴,熊振茵,赵再希,吴有进,郑丁科, 钼镍铜等合金元素对球墨铸钢的组织和性能的影响,铸造,1996,(6):36-39
    Miura, Hideshi; Miyazaki, Naotoshi; Mori, Yasuhide; Hachisuka, Joji; Hagita, Masatoshi. Microstructural control for high performance sintered ferrous materials. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45(5): 425-429
    S.A.Fedosov. Laser beam hardening of carbon and low alloyed steels: discussion of increased quantity of retained austenite(J). Jounal of Materials Science, 1999, 34 : 4259-4264
    T. Bell. Srurface Engineering: past, present and future. Surface Eng. 1990, (6):31-40
    A.I.Katsamas, G.N.Haidemenopoulos. Surface hardening of low-alloy 15CrNi6 steel by CO2 laser beam(J). Surface and Coating Technology, 1999, 115: 249-255
    E.Capello, P.Chiarello, B.Previtali, etc. Laser welding and surface treatment of a 22Cr-5Ni-3Mo duplex stainless steel(J). Materials Science and Engineering , 2003, A351 : 334-343
    Jae-Do Kim, Jae-Kyoung Jung, Byung-Cheol Jeon, etc. Wide band laser heat treatment using pyramid polygon mirror(J). Optics and Lasers in Engineering, 2001, 35 : 285-297
    T.L.Chen, Y.H.Guan, H.G.Wang, J.T.Zhang. A study on austenite
    
    
    transformation during laser heating(J). Jounal of Materials Processing Technology, 1997, 63 : 546-549
    Janez Grum, Roman Sturm. Laser surface melt-hardening of gray and nodular irons(J). Applied Surface Science, 1997, 109-110 : 128-132
    路纲,席守谋,4Cr13钢激光相变强化机理研究,材料热处理学报,2002,23(4):25-30
    张宏,余承业,陆博良,张树人,40Cr钢的激光热处理,航空精密制造技术,1995,31(3):33-35
    J.Senthil Selvan, K.Subramanian, A.K.Nath. Effect of laser surface hardening on En18(AISI 5135) steel(J). Jounal of Materials Processing Technology, 1999, 91 : 29-36
    徐波,丁厚福,FeCuCrC粉末冶金材料性能研究,材料开发与应用,2002,17(5):4-6
    GongQi Shi, PeiDao Ding, JiangLong Liu, etc. Microstructure and properties of laser surface hardened M2 high speed steel(J). Acta Metall.Mater. 1995, 43(1) : 217-223
    M.Kulka, A.Pertek. Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting(J). Applied Surface Science, 2003, 214 : 278-288
    Donaldson, Ian; Hanejko, Francis G. Effects of processing methods and heat treatments on the mechanical characteristics of high performance ferrous P/M materials. Industrial Heating, 1996, 63(9):5
    H.Khorsand, S.M.Habibi, H.Yoozbashizadea, etc. The role of heat treatment on wear behaviour of powder metallurgy low alloy steels(J). Materials and Design, 2002, 23 : 667-670
    Hoffman Gottfried, Lipp Klaus, Michaelis Klaus,etc. Testing P/M materials for high loading gear applications(J). International Journal of Powder Metallurgy, 1999, 35(6) : 35-44
    R.K.Shiue, C.Chen. Laser transformation hardening of tempered 4341 steel(J). Metallurgical Transactions A, 1992, A 23: 163-170
    K.Obergfell, V.Schulze, O.Vohringer. Classification of microstructural changes in laser hardened steel surfaces(J). Materials Science and
    
    
    Engineering , 2003, A335 : 348-356
    K.H.Lo, F.T.Cheng, H.C.Man. Laser transformation hardening of ALSI 440C martensitic stainless steel for higher cavitation erosion resistance(J). Surface and Coating Technology, 2003, 173 : 96-104
    H.Visscher, M.B.de Rooij, P.H.Vroegop, D.J.Schipper. The influence of laser line hardening of carbon steel AISI 1045 on the lubricated wear against steel AISI 52100(J). Wear, 1995, 181-183 : 638-647
    李若园,李月英,刘勇兵. 铁基粉末冶金材料的激光淬火研究. 兵器材料科学与工程. 2003,26(3):36-37
    刘丽,吴东江,李守春,庄娟,王连元, 30CrMnSiA钢激光表面淬火的显微组织及耐磨性,应用激光,2003,23(2):69-71
    王存山,关振中,石岩,张冬云,40Cr钢宽带激光淬火组织和性能研究,金属热处理学报,1999,20(1):24-27
    范广能,Fe-Cu-C-WC烧结合金摩擦磨损性能研究,机械工程材料,1998,22(4):41-43
    R.Sagaro, J.S.Ceballos, A.Blanco, etc. Tribological behaviour of line hardening of steel U13A with Nd:YAG laser(J). Wear, 1999, 225-229 : 575-580
    D.I.Pantelis, E.Bouyiouri, N.Kouloumbi, etc. Wear and corrosion resistance of laser surface hardened structural steel(J). Surface and Coating Technology, 2002, 298 : 125-134
    A.Pertek, M.Kulka. Characterization of single tracks after laser surface modification of borided 41Cr4 steel(J). Applied Surface Science, 2003, 205 : 137-142
    P.Peyre, X.Scherpereel, L.Berthe, etc. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance(J). Materials Science and Engineering , 2000, A280 : 294-302
    L.Rapoport. The competing wear mechanisms and wear maps for steels(J). Wear, 1995, 181-183 : 280-289
    G.Greetham, T.Chatterley. Composite camshafts(J). Powder Metallurgy, 1991, 34(2) : 119-125
    
    Miyauchi Kenichi, Kobayashi Motokazu, Ogawa Eiji. Development of sintered materials for cam lobe in diesel engine(J). Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46(5) : 529-532
    A.F.Hortenhuber. PM camshaft technology(J). Metal Powder Report, 1992, 47(1) : 16-19
    Ali Haerian, Abolghasem Arvand. Optimum sintering conditions of Fe-2Cu-2Sn alloys(J). Advances in Powder Metallurgy, 1992, 3 : 21-26
    D.Abson. Competitive technologies for camshaft manufacture(J). Powder Metallurgy, 1997, 40(1) : 6-8
    F.Vollertsen, U.Engel. Production of cams by a P/M route(J). Powder Metallurgy International, 1992, 24(5) : 284-290
    Polasik, S.J. Williams, J.J.; Chawla, N.; Narasimhan, K.S. Fatigue crack initiation and propagation in ferrous powder metallurgy alloys. Advances in Powder Metallurgy and Particulate Materials, 2001, :2042-2056
    李月英,刘勇兵,鹿云. 激光淬火铁基烧结材料的摩擦与磨损. 金属热处理. 2003, 28(6):10-13
    李月英,鹿云,刘勇兵,包晓军. 宽带激光扫描铁基烧结材料的耐磨性研究. 机械工程材料. 2003, 27(6):11-13
    Lim S C, Liu Y N, Lee S H. Wear maps for undated cutting tools. Tribotest. 1996 , 3 : 67-87
    H. Krause. Tribochemical reactions in the friction and wearing process of iron, Wear, 1971, (18) : 403
    N. Tenwich and S.W.Earles. A simplified theory for the oxidative wear of steels(J). Wear, 1971 (18) : 403
    S.C.Lim, M.F.Ashby, Wear mechannism maps, Acta Metallogr. 1987, 35 : 1-24
    T.F.J.Quinn, J.L.Sullivan, D.M.Rowson. Origins and development of oxidational wear at low ambient temperatures, Wear , 1984, 94 : 175-191
    H.So, The mechanism of oxidational wear, Wear, 1995, 184 : 161-167
    F.H.Stott. The role of oxidation in the wear of metals, Tribology Int. 1998, 31 : 61-71
    
    J.L.Sullivan, S.G.Hodgson, A study of mild oxidational wear for conditions of low load and speed, Wear, 1987 , 121 : 95-106
    李溪滨,刘如铁,程时和,李美英, 烧结材料中孔隙度对摩擦学特性的影响,润滑与密封,2002,(1):34-35
    罗云川,果世驹,林涛,杜耀陆, 粉末烧结钢下贝氏体的形成和优化,粉末冶金技术,1999,17(3):176-181
    罗云川,果世驹,林涛,杜耀陆,化学不均匀性对粉末烧结钢下贝氏体组织的影响,机械工程材料,1999,23(4):11-14
    姚萍屏,熊翔,韩娟, 粉末冶金航空刹车材料磨屑的形成机理研究,材料工程,2001,(11):35-37
    方宁象,徐润泽,孔隙在粉末冶金铁基材料磨损中的作用,粉末冶金技术, 1996, Vol. 14, No.3:193-197
    D.W.Borland, S.Bian. Unlubricated sliding wer of steels: towards an alternative wear equation, Wear, 1997, 209: 171-178
    S.C.Lim, J.H.Brunton. The unlubricated wear of sintered iron, Wear, 1986, 113: 371
    A.Molinari, G.Straffelini. Surface durability of steam treated sintered iron alloy, Wear, 1995, 181-183: 334
    A.Molinari, G.Straffelini. Wear processes in high strength sintered alloys under dry rolling-sliding, Wear, 1994, 173: 121
    G. Straffelini, A.Molonari. Dry sliding behavior of steam treated sintered iron alloys, Wear, 1992, 159: 127
    樊毅,张金生,王零森,高游, 铁含量对铜-铁基摩擦材料性能的影响,摩擦学学报,1999,19(3):204-208
    沈容,刘世楷,张吉喜, 铜氧化对粉末冶金材料摩擦性能的影响,西安交通大学学报,1997,32(4):424-427
    P.Gopalakrishnan, P.Shankar, R.V.Subba Rao, M.Sundar, S.S.Ramakrishnan. Laser surface modification of low carbon borided steels, Scripta Mater. 2001, 44: 707-712
    Dubrujeaud, B. Vardavoulias, M. Jeandin, M. Role of porosity in the dry sliding wear of a sintered ferrous alloy. Wear, 1994,174(1-2): 155-161
    Ernani,Sales. Effect of porosity on the strength coefficient and
    
    
    strain-hardening exponent of sintered ferrous materialsPalma. Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, 1997, 19(1): 72-79
    S..Bian,S.Maj,D.W.Borland. The unlubricated sliding wear of steels: the role of the hardness of the friction pair. Wear, 1993, 166:1-5
    A.T.Alpas,H.Hu,J.Zhang. Plastic deformation and damage accumulation below the worn surfaces. Wear, 1993, 162-164:188-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700