正极纳米添加剂对MH/Ni电池性能的改善
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以改善高功率MH/Ni电池性能为应用背景,通过对MH/Ni电池正极物理添加CNTs、纳米CoO两种纳米添加剂,研究了正极纳米添加剂对Ni(OH)_2/NiOOH正极和对高功率MH/Ni电池性能的影响,并讨论了纳米添加剂对改善镍正极和MH/Ni电池性能的作用机理。
     利用化学气相沉积法(CVD)制备了多壁纳米碳管(CNTs),并对纳米碳管进行纯化和球磨的处理。采用透射电子显微镜(TEM)对纳米碳管的微观结构进行了观察。
     利用液相反应制备超细的碳酸钻中间体,加热分解后得到纳米CoO。采用激光粒度测试仪测量了试验制备的碳酸钻和氧化亚钻的粒度大小,并利用透射电子显微镜(TEM)观察了纳米碳酸钻和纳米氧化亚钻的形貌。
     利用DC-5型电池测试仪研究了正极纳米添加剂对Ni(OH)_2/NiOOH正极电化学性能的影响。结果表明:添加剂为纳米CoO的电极的活化性能最好,纳米CoO相对于普通CoO能更加均匀的分布在镍电极内,也更易溶解、反应生成CoOOH导电网路,从而加快了镍电极的活化进程;添加纳米CoO和添加CNTs的极片具有较高的放电电位和较大的放电容量,纳米添加剂能有效提高镍正极活性物质的放电效率和利用率;纳米添加剂可以有效地提高镍正极片的容量密度,其中添加纳米CoO的极片体积容量密度达到784 mAh/cm~3,质量容量密度达到224 mAh/g;添加CNTs的极片体积容量密度达到778 mAh/cm~3,质量容量密度达到223 mAh/g。
     利用BS-9365二次电池性能检测仪、BS-GF电池内阻测试仪研究了正极纳米添加剂对MH/Ni电池各方面性能的改善。结果表明:在高倍率放电的条件下,正极中添加少量CNTs的Ni/MH电池具有更好的循环稳定性、更高的放电平台以及更好的高倍率性能;正极中添加少量CNTs制成的MH/Ni电池在高倍率放电的循环过程中内阻升高较小;正极添加0.5 wt.%CNTs的电池具有理想的高倍率性能和综合性能,过多的加入CNTs无益于电池性能的提高。
    
    浙江人学硕十学位论文摘要
     正极添加纳米COO的Ni/MH电池具有较好的活化性能,纳米COO更好地
    增强了镍正极的导电性,进一步减小了电池的内阻;正极添加纳米CoO的Ni/MH
    电池还具有较高的放电平台;由于纳米CoO的纳米结构,以及相对于普通C00
    更大的比表面积,会在碱液中溶解形成更均匀致密的Co0OH导电网络,从而提
    高了放电效率,对电池的高倍率性能也有积极的影响。
In order to improving the performance of high-power Ni/MH batteries, nano-scale additives including CNTs and nano-scale CoO were added into the positive electrode of the batteries. The overall characteristics of Ni(OH)2/NiOOH electrode and Ni/MH batteries were investigated at different charge-discharge conditions at room temperature.
    Multi-walled carbon nanotubes were synthesized by chemical vapor deposition (CVD). Then the CNTs were purified by nitric acid and shortened by ball milling. The microstructure of carbon nanotubes was observed using transmission electron microscope (TEM).
    Nano-scale CoO was obtained by the decomposition of CoCO3, which synthesized by the liquid reaction. The grain-size of CoCO3 and CoO were measured by laser diffraction grain-size analysis. The microstructure of the samples was observed using transmission electron microscope (TEM).
    The electrochemical characteristics of the Ni(OH)2/NiOOH electrode were tested by DC-5 battery testing instrument. The results shows: the electrode with nano-scale CoO has best active properties. Nano-sacle CoO is apt to dissolve in the electrode homogeneously, and better conductive net of CoOOH come into being, thus contribute a lot to the procedure of the activation. The electrode with nano-scale CoO and CNTs shows higher discharge voltage and higher discharge capacity. Nano-scale additives can improve the specific capacity of the electrode, the volume specific capacity and the mass specific capacity of the electrode with nano-scale CoO are 784mAh/cm3 and 224mAh/g, respectively. That dates of the electrode with CNTs are 778mAh/cm3 and 223mAh/g.
    The improvement of overall characteristics of sealed MH/Ni batteries were investigated by BS-9365 rechargeable batteries and BS-GF internal-resistance testing instrument. The results shows: under high-rate discharge conditions, the batteries with CNTs added in the positive electrodes exhibited much better cycling stability, higher discharge voltage and high-rate capability. The increase in internal resistance of the batteries
    
    
    
    with CNTs was lower than that of the batteries without CNTs during charge-discharge cycles. The addition of 0.5 wt.% CNTs was proved a desired amount to modify the batteries performance at the high discharge rates. Too much CNTs contributed no effect in the improvement of overall performance of the batteries.
    The batteries with nano-scale CoO shows better active properties, the addition of nano-scale CoO further the conductivity of the nickel electrode, thus lower the internal resistance of the batteries, higher discharge voltages are achieved accordingly. For the formation of the better conductive net of CoOOH, the effectivity of discharge rise, that contributes positive effect to the high rate capability of the batteries.
引文
[1] S. K. Dhar, S. R. Ovshinsky, P. R. Gifford, D. A. Corrigan, M. A. Fetcenko, S. Venkatesan. Nickel/metal hydride technology for consumer and electric vehicle batteries-a review and up-date. J. Power Sources. 1997 65: 1-7.
    [2] 燕丽.绿色电源——镍氢电池,无线电,1998(7):328-329.
    [3] E. E. Havinga, J. H. N. van Vucht and K. H. J. Buschow. Effect of high pressure on the crustal structures of lanthanide trialumindes, Philips Res. Repts., 1970, 25: 255-256.
    [4] J. J. Reilly, R.H. Wiswall. Current topics in materials science, Inorg. Chem., 1974, 13: 218-222.
    [5] 大角泰章,金属氢化物的性质与应用,化学工业出版社,1990.
    [6] E.W. Justi, H.H. Ewe, A.W. Kalberlan, N. M. Saridakis, M. H. Schaefer, Electrochemical accumulation and oxidation of hydrogen using the intermetallic compound lanthanum-nickel (LaNi5), Energy Conversion, 1973, 10:109-113
    [7] M.W. Earl, J.D. Dunlop, Electronic Structure and Surface Oxidation of the Haucke Compounds LaNi_5, Proceedings of the 26th Power Sources Symposium, Atlantic City, NJ, 1974, 24.
    [8] J.J.G. Willems. Alloy optimizes the compromise between a high discharge, Philips J. Res., 1984, (suppl. 1), 39-40.
    [9] F. Zhan, L.J. Jiang, B.R. Wu, Z.H. Xia, Wei, G.R. Qin. Characteristics of Ni/MH power batteries and its application to electric vehicles, J. Alloys Comp., 1999, 11: 804-808.
    [10] 雷永泉,李洲鹏,陈长聘,吴京,王启东,储氢电极材料与氢化物-镍电池的发展,材料科学与工程,1990,8(1):1-8.
    [11] M. Luisa Soria, Joaquin Chacon, J. Carlos Hernandez, Daniel Moreno, Araceli Ojeda. Nickel metal hydride batteries for high power applications, J. Power Sources, 2001, 96: 68-75.
    [12] Singh D. Characteristics and effect of r-NiOOH on cell performance and a method to quantify it in nickel electrodes, J. Electrochem. Soc., 1998, 145: 116-119.
    [13] M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, Y. Matsumaru, Development of a pasted nickel electrode with high active material utilization, J. Electrochem. Soc.,
    
    1989(6): 1590-1593.
    [14] 任小华,蒋文全,部分杂质对球形氢氧化镍结果及性能的影响,电源技术,1998,22:43-46.
    [15] 原鲜霞,王荫东,钴的添加方式对镍电极析氧特性的影响,电源技术,1999,23:112-115.
    [16] R. Barnard, C.F. Randell, F.L. Tye, Studies concerning charged nickel hydroxide electrodes. I. measurement of reversible potentials, J. Appl. Electrochem., 1980, 10: 109-112.
    [17] P.V. Kamath, M. Dixit, L. Indira. A.K. Shukla, V.G. Lumar, N. Munichandraiah, Stabilized alpha-Ni(OH)_2 as electrode material for alkaline secondary cells, J. Electrochem. Soc., 1994, 141:2956-2960.
    [18] M. Dixit, R.S. Jayashree, P.V. Kamath, A.K. Shukla, V.G. Kumar, N. Munichandraiah. Electrochemically impregnated aluminium stabilized α-nickel hydroxide electrodes, Electrochem. Solid State Lett., 1999, 2:170-174.
    [19] Jinxiang Dai, Sam F.Y. Li, T. Danny Xiao, Donald M. Wang, David E. Reisner, Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries, J. Power Sources, 2000, 89: 40-45.
    [20] Xianyou Wang, Hean Luo, P.V. Parkhutik, Ari-Carman Millan, E. Matveeva. Studies of the performance of nanostructural multiphase nickel hydroxide, J. Power Sources, 2003, 115: 153-160.
    [21] J. J. G. Willems, K. H. J. Buschow, From permanent magnets to rechargeable hydride electrodes, J. Less-Common Met., 1987, 13: 129-133.
    [22] 敖鸣,王启东,储氢材料的研究与应用,材料导报,1992(1):63~67。
    [23] Lei. Y.Q, Zhou. Y, Luo. Y.C, Yang. X.G, Wang, Q.D, Preparation and electrochemical properties of unidirectionally solidified MI(NiCoMnTi)_5 alloys, Journal of Alloys and Compounds, 1997, 253(3):590-593.
    [24] Y.Q. Lei, S.K. Zhang, G.L. L, L.X. Chen, Q.D. Wang, F. Wu. Influence of the material processing on the electrochemical properties of cobalt-free Ml (NiMnAlFe)_5 alloy, J. Alloys Comp., 2002, 174: 861-865.
    [25] C. Iwakura, K. Ohkawa, H. Senoh and H. Inoue, A Co-free AB_5-type hydrogen storage alloy for nickel-metal hydride batteries: LmNi_(4.0)Al_(0.3)Si_(0.1)Fe(0.6), J. Electrochem. Soc., 2002, 28: A462-A465.
    [26] S.K. Dhar, M.A. Fetcenko, S.R. Ovshinsky. Advanced materials for next generation high energy and power nickel-metal hydride portable batteries, J.
    
    Power Sources, 2001, 96(2): 325-336.
    [27] F.J. Liu, S. Suda, F-treatment effect on the hydriding properties of the La-substituted AB_2 compound (Ti, Zr)(Mn, Cr, Ni)_2, J. Alloys Comp., 1995, 231: 666-669.
    [28] B.H. Liu, J.H. Jung, H.H. Lee, K.Y. Lee, J.Y. Lee. Improved electrochemical performance of AB_2-type metal hydride electrodes activated by the hot-charging process, J. Alloys Comp., 1996, 245: 132-141.
    [29] Q.A. Zhang, Y.Q. Lei, C.S. Wang, F.S. Wang, Q.D. Wang. Structure of the secondary phase and its effects on hydrogen-storage properties in a Ti_(0.7)Zr_(0.2)V_(0.1)Ni alloy, J. Power Sources, 1998, 11: 288-291.
    [30] M. Tsukahara, K. Takahashi, T. Mishima, T. Sakai, H. Miyamura, N. Kuriyama, I. Uehara. Metal hydride electrodes based on solid solution type alloy TiV_3Ni_x(0≤x≤0.75), J. Alloys Comp., 1995, 226: 203-207.
    [31] M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, T. Sakai. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes, J. Alloys Comp., 1997, 253: 583-586.
    [32] M. Tsukahara, T. Kamiya, K. Takahashi, A. Kawabata, S. Sakurai, J. Shi, H. T. Takeshita, N. Kuriyama, T. Sakai. Hydrogen storage and electrode properties of V-Based solid solution type alloys prepared by a thermic process, J. Electrochem. Soc., 2000, 147: 2941-2944.
    [33] K. Kadir, N. Kuriyama, T. Sakai, I. Uehara, L. Eriksson. Structural investigation and hydrogen capacity of CaMg_2Ni_9: a new phase in the AB_2C_9 system isostructural with LaMg_2Ni_9, J. Alloys Comp., 1999, 287: 145-154.
    [34] J. Chen, N. Kuriyama, H. T. Takeshita, H. Tanaka, T. Sakai, M. Haruta. Hydrogen storage alloys with PuNi_3-type structure as metal hydride electrodes, Electrochem. Solid-State Lett., 2000, 307: 249-252
    [35] T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda. Hydrogen storage properties of new ternary system alloys: La_2MgNi_9, La_5Mg_2Ni_(23), La_3MgNi_(14), J. Alloys Comp., 2000, 311: L5-L7.
    [36] M.L. Sofia, J. Chacn, J.C. Hernndez. Metal hydride electrodes and Ni/MH batteries for automotive high power applications. J. Power Sources, 2001, 102: 97-104.
    [37] H W Kroto, J R Heath, S C O'Brien, R F Curl, R E Smalley. C_(60): Buckministerfullerene, Nature, 1985, 318: 162-163.
    [38] W Kratschmer, L D Lamb, K Fostiropoulos, D R Hulfman. Solid C_(60): a new form
    
    of carbon Nature, 1990, 347: 354-358.
    [39] N Hamada, S I Sawada, A Oshiyama. New one-dimensional conductors: graphite microtubules, Phys. Rev. Lett., 1992, 68: 1579-1581.
    [40] J.W. Mintmire, B I. Dunlap, C.T. White. Are fullerene tubules metallic? Phys. Rev. Lett., 1992, 68: 631-634.
    [41] S. Iijima. Helical micro-tubules of graphitic carbon, Nature, 1991, 354: 56-58.
    [42] T. W. Ebbesen, P. M. Ajiyan. Large-scale synthesis of carbon nanotubes, Nature, 1992, 358: 220-222.
    [43] A. Oberlin, M. Endo, T. Koyama. Filamentous growth of carbon through benzene decomposition, J Crystal Growth, 1976, 32: 335-349.
    [44] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603-605.
    [45] D.S. Bethune, C H Kiang, M S Devries, G Gorman, R Savoy, J Vazquez, R Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363: 605-607.
    [46] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S G Kim, A G Rinzler, D T Collbert, G Scuseria, D Tomanek, JE Fischer, R E Smalley. Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487.
    [47] C. Journet, W.K. Master, P. Bernier, A Loiseau, M. Lamy, D.L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J. Fischer. Large scale production of single wall carbon nanotube by the electric arc technique, Nature, 1997, 388: 756-758.
    [48] H.M Cheng, F.Li, G. Su, H.Y. Pan, L.L. He, X Sun, M.S. Dresselhaus. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Lett., 1998, 72: 3282-3284.
    [49] 王淼,李振华,鲁阳,陈小华,齐仲甫,李文铸,在氢气氛围下利用电弧放电法大量制备纳米碳管的研究,物理学报,2001,49:1106-1113.
    [50] R.T.K Baker, P.S. Harris, R.B. Thomas, R.J. Waite. Formation of filamentous carbon from iron, cobalt an chromium catalyzed decomposition of acetylent, J. Catalysis, 1973, 30:86-95
    [51] M J Yacaman, M M Yoshida, L Rendon, J G. Santiesteban. Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett., 1993, 62: 657-659.
    [52] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem.
    
    Phys. Lett., 2002, 360: 229-234.
    [53] Z. F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provecio. Synthesis of large arrays of well-alligned carbon nanotubes on glass, Science, 1998, 282: 1105-1107.
    [54] P.C. Eklund, B. K. Pradhan, U.J. Kim, Q. Xiong, J. E. Fischer, A.D. Friedman, B.C. Holloway, K. Jordan, M.W. Smith. Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser, Nano Letters, 2002, 2: 561-566.
    [55] S W Lee, D K Park, J K Lee, J B Ju, T W Sohn. Discharge capacitance of electric double layer capacitor with electrodes made of carbon nanotubes directly deposited on SUS304 plates, Korean J. Chem. Eng., 2001, 11: 387-392.
    [56] P. Calvert. Nanotube composites: a recipe for strength, Nature, 1999, 399: 210-321.
    [57] M.M.J. Treacy, T.W. Obbesen, J.M. Gibson. Exceptionality high Young's modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678-680.
    [58] A. Krishna, E. Dujardin, T.E. Ebbesen, P.N. Yianilos, M.M. Jtreacy. Young's modulus of single-walled nanotubes, Phy. Rev. Lett., 1998, 58: 14013-14019.
    [59] J.E Salvetat, J. M. Bonard, N.H. Thomson, A.J. KuliK, L. Forro, W. Benoit, L. Zuppiroli. Mechanical properties of carbon nanotubes, Appl. Phys. A, 1999, 69: 255-260.
    [60] J.P Salvetat, G.Andrew, D Briggs, J. M Bonard, R R Bacsa, A J Kulik, T Stockli, N A Burnham, L Forro. Elastic and shear modulus of single-walled carbon nanotube ropes, Phys. Rev. Lett., 1999, 82: 944-947.
    [61] J.P.Lu. Elastic properties of carbon nanotubes and nanoropes, Phys Rev Lett., 1997, 7: 1297-300.
    [62] H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley. Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384: 147-150.
    [63] Y.Zhang, S.Iijima. Elastic response of carbon nanotube bundles to visible light, Phys. Rev. Lett., 1999, 17: 3472-3475.
    [64] M.Nardelli, B.I. Yakobson, J. Bernhotc. Mechanism of strain release in carbon nanotubes, Phys. Rev. Lett., 1998, 57: 4277-4279.
    [65] M.B. Nardelli, B. IYakobson, J. Bernhotc. Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett., 1998, 57: 4279-4280.
    [66] J.Bernholc, M.Buongiorno Nardelli, C.Roland, B.I.Yakobson. Theory of growth and mechanical properties of nanotubes, Appl. Phys. A, 1998, 67: 39-46.
    
    
    [67] E.W.Wong, P.E.Sheehan, C.M.Lieber. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes, Science, 1997, 277:1971-1975.
    [68] M.R. Falvo, G.J. Clary, R.M. Tayler, V. Chi, F.P. Brooks J.R.S.Washburn, R. Superfine. Bending and buckling of carbon nanotubes under large strain, Nature, 1997, 389: 582-584.
    [69] O. Lourie, D.M. Cox, H.D. Wagner. Buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett., 1998, 81(8): 1638-1641.
    [70] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren. Electrochemical characterization of carbon nanotubes as electrode in electrochemical doublelayer capacitors, Carbon, 2002, 40: 1193-1196.
    [71] H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 1996, 272: 523-526.
    [72] T.W. Ebbesen, H.J. Lezec, H. Hinra, J.W. Bennett, H.F. Ghaemi, T. Thio. Electrical conductivity of individual carbon nanotubes, Nature, 1996, 54: 328-330.
    [73] 于成洲,赖为华、镍氢电池的现状和发展方向,电池,2001, 31(2): 58-61.
    [74] L. B. Wang, H. T. Yuan, Y. J. Wang, H. B. Yang, Q. D. Li, Y. N. Lin, Y. S. Zhang. Effect of Zn on the hydrogen storage characteristics of multi-component AB_5-type alloys, J. Alloys Comp., 2001, 319(1-2): 242-246.
    [75] H.Ye, Y.X. Huang, J.X. Chen, H. Zhang. MmNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3)B_(0.3) hydrogen storage alloys for high-power nickel/metal hydride batteries, J. Power Sources, 2002, 103(2): 293-299.
    [76] J.K. Chang, D.S. Shong, W.T Tsai. Effects of Co, Mn contents on the electrochemical characteristics of the LaNi_(3.8)(Co+Mn)_(0.96)Al_(0.24) electrodes in potassium hydroxide electrolyte, J. Power Sources, 2002, 103(2): 280-285.
    [77] J. Chen, S. X. Dou, K. Liu. Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi_5 based alloy electrodes, J. Power Sources, 1996, 63(2): 267-270.
    [78] W.X Chen,,Z.D. Xu, J.P. Tu. Electrochemical investigations of activation and degradation of hydrogen storage alloy electodes in sealed Ni/MH battery, Inter. J. Hydrogen Energy, 2002, 27(4): 439-444.
    [79] 刘煦.提高MH/Ni电池大电流冲放电性能,电池,2002,32(2):88-89.
    [80] 陈卫祥,陈文录,徐铸德,刘宗建,涂江平,张孝彬,郭鹤桐.碳纳米管的特性及其高性能的复合材料,复合材料学报,2001,18(4):1-5.
    [81] 阎杰,周震,李宇轩,宋德瑛,张允什.在冲放电循环过程中Ni/MH电池
    
    正负极的结构和性能变化,无机化学学报,1998,14(1):74-78.
    [82] M. S. Dresselhaus. New tricks with nanotubes, Nature, 1998, 391: 19-20.
    [83] A.H. Zimmerman, P.K Effa. Discharge Kinetics of the Nickel Electrode, J. Electrochemical Soc., 1984, 131(4): 709-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700