阿伏伽德罗常数测量中硅球直径测量的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质量单位“千克”是目前国际单位制七个基本量中唯一用实物复现的基准,而标准单晶硅球直径的精密测量是实现阿伏伽德罗常数精确测定,进而建立质量自然基准的关键技术。为完善我国标准单晶硅球直径精密测量系统的不足,进一步提高测量结果的准确度,以及为新直径测量系统的构建提供理论支持,本文在总结国内外标准硅球直径精密测量系统发展现状及其特点的基础上,对我国直径测量系统的测量光路优化调整、光束质量影响、干涉图像处理方法等若干问题进行了研究。
     标准硅球直径测量系统利用光学干涉基本原理实现测量,其关键组成包括相移发生系统、硅球位置控制系统、真空绝热及温控测量系统、Fabry-Perot干涉系统、计算机控制及数据处理系统等,论文对各个部分进行了研究,并给出了部分重要的实验结论。
     直径测量系统具有纳米级高精度和对称双光路的特点,确定合适的光路结构参数以及光路调整方法是保证测量系统精度的关键。从条纹对比度定义出发,对图像具有最佳对比度条件进行了理论分析和数值模拟。建立了光路对准误差分析模型,详细推导了光路对准对测量结果的影响,结合测量光路特点,提出了“虚拟平行平板法”对入射光的垂直度进行精确调整的方法,实验验证结果表明了该方法的可行性。
     由于系统采用的是激光光源,需要根据高斯光束的特点对其影响进行研究。在阐述高斯光束的特性及变换理论、平面波干涉理论基础上,对正入射时高斯光束反射光中心的多光束干涉和双光束干涉进行了分析,然后深入研究了高斯光束相位因子φ(z)在硅球与标准板间距测量,以及两标准板间距测量中引入的误差,最后对不同条件下高斯光束反射光中心的干涉光强进行了数值模拟,并分析了高斯光束对五步相移算法的影响。
     结合本系统干涉圆环图像的特点,对干涉图处理方法进行了改进,提出了精确确定硅球顶点与标准板内表面间距的新方法,引入了波面拟合技术。首先对干涉图像中所有点进行相位解算并展开,然后采用Zernike多项式对波面进行拟合,将离散的相位值变为连续的相位分布,最后通过确定相位的极值得到真正的圆环中心位置。数值模拟结果表明,此方法可以消除系统误差,进一步提高系统测量精度。
The unit of mass, the kilogram, is now the only base unit of the International System of Units (SI) being still defined in terms of a material artefact. The precision measurement for the diameter of a single crystal silicon sphere is one of the key techniques for the accurate determination of Avogadro constant, which aims at the realization of mass natural standard. In order to improve the accuracy of the diameter measurement system established by our country and give theoretical support for the establishment of the new measuring system, the present status and characteristics of the diameter measuring system for the single-crystal silicon sphere are summarized at home and abroad. In the thesis, some important aspects are studied, such as the optical path optimization and adjustment, the influence of the beam quality, and the processing method of interferograms.
     The basic principle of the diameter measuring system is the optical interferometry, and the key components include the phase-shifting system, the position control system of the silicon sphere, the vacuum insulation and temperature control system, the Fabry-Perot interferometric system, the computer control and data processing system, and so on. Each part of the system is studied, and also some important experiment results are given.
     The diameter measuring system has two significant characteristics, nano-meter accuracy and symmetric optical path. So the suitable optical structure and the adjustment methods are of great importance to insure the measurement accuracy. Based on the definition of the fringe contrast, the optimum contrast condition of the interference fringes is theoretically analyzed and numerically simulated. The mathematical model of the optical alignment error is established, and the influence on the measuring results is deduced. Considering the characteristics of the optical path, a novel method is proposed for accurately adjusting the incident angle of laser beam relative to the plate, which is called virtual parallel plate method. In addition, the results of the verification experiment are finished.
     Because the light source of the system is He-Ne laser, the influence of Gaussian beam on the diameter measurement needs to be studied. The characteristics and the transform theories of Gaussian beam and the plane-wave interfeorence theories are expounded, and multiple beam interference and dual beam interference of the central reflected light of a Gaussian beam with normal incidence are analyzed. Furthermore, the distance measurement errors between silicon sphere and the plate and the space measurement of two parallel plates are studied, which are caused by phase factorφ(z). Then, the numerical simulations of the central reflected light of a Gaussian beam in different situations are performed,and the impact of Gaussian beam on five-step phase-shifting interferometry is shown.
     According to the characteristic of the circular interferogram, the improvement of the processing method is performed. A new method with the wavefront fitting technique is proposed to determine the accurate distance between the sphere and the inner face of the plate. Firstly, the phases of all the discrete points in the interference image must be calculated and unwrapped. Then the continuous phase distribution can be obtained by Zernike polynomials fitting at all discrete points. Lastly, the real center of the circular fringes can be calculated from analytic representation at the location of the extremum on the phase map. Numerical simulation results show that this method can eliminate the system errors, and the measuring accuracy can be improved.
引文
[1] http://www.bipm.org/en/si/base_units/
    [2] Barry N. Taylor, Ambler Thompson, The International System of Units(SI), Washington: NIST Special Publication 330(2008 Edition), 2008, 17~23
    [3]中华人民共和国国家技术监督局,GB3100-3102,中华人民共和国国家标准,北京:中国标准出版社,1994-11-01
    [4] P Becker, P De Bièvre, K Fujii, et al., Considerations on future redefinitions of the kilogram, the mole and of other units, Metrologia, 2007, 44(1): 1~14
    [5] Ian M Mills, Peter J Mohr, Terry J Quinn, et al., Redefinition of the kilogram: a decision whose time has come, Metrologia, 2005, 42(2): 71~80
    [6] Ian M Mills, Peter J Mohr, Terry J Quinn, et al., Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1(CI-2005), Metrologia , 2006, 43(3): 227-246
    [7]沈慧君,管寿沧,陈鸿林,阿伏伽德罗常量测定的进展与千克的新定义,物理,1995,24(7):396~401
    [8]陆祖良,张钟华,赵燕,质量单位千克的重新定义——第17届CCU会议讨论重新定义千克、安培和开尔文,中国计量,2005,(8):46~48
    [9] http://www.bipm.org/en/scientific/mass/prototype.html
    [10] Richard Davis, The SI unit of mass, Metrologia, 2003, 40(6): 299~305
    [11] Jean Kovalevsky, Terence J. Quinn, The international system of units(SI), Comptes Rendus Physique, 2004, 5(8): 799~811
    [12]柳建明,丁京安,质量计量基准的建立、现状及发展,物理通报,2002,(2):1~2
    [13] G Girard, The third periodic verification of national prototypes of the kilogram (1988-1992), Metrologia, 1994, 31: 317~336
    [14] Stuart Davidson, A review of surface contamination and the stability of standard masses, Metrologia, 2003, 40(6): 324~338
    [15] Gabrielle Walker, A most unbearable weight, Science, 2004, 304: 812~813
    [16] Wolfgang Schwitz, Beat Jeckelmann, Philippe Richard, Towards a new kilogram definition based on a fundamental constant, Comptes Rendus Physique, 2004, 5(8): 881~892
    [17]周宝国,新的阿伏伽德罗常数与新的千克定义,现代计量测试,1997,5(2):35~36
    [18]罗志勇,质量自然基准的研究进展及发展方向,计量学报,2004,25(2):138~141
    [19] B P Kibble, I A Robinson, Replacing the kilogram, Meas. Sci. Technol., 2003, 14: 1243~1248
    [20]赵克功,当代计量学的现状和发展③——更新计量基本单位——质量“kg”定义的研究,大学物理,2002,21(4):38~43
    [21]赵克功,当代计量学的现状和发展④——更新计量基本单位——质量“kg”定义的研究(续),大学物理,2002,21(5):44~46
    [22]周宝国,千克自然化定义的发展现状,现代计量测试,1996,4(6):4~9
    [23] A Eichenberger, B Jeckelmann, P Richard, Tracing Planck’s constant to the kilogram by electromechanical methods, Metrologia, 2003, 40(6): 356~365
    [24] B. P. Kibble, I. A. Robinson, J. H. Belliss, A realization of the SI watt by the NPL moving-coil balance, Metrologia, 1990, 27: 173~192
    [25] Ian A. Robinson, Bryan P. Kibble, The NPL moving-coil apparatus for measuring Planck’s constant and monitoring the kilogram, IEEE Transactions on Instrumentation and Measurement, 1997, 46(2): 596~600
    [26] I A Robinson, B P Kibble, An initial measurement of Planck’s constant using the NPL Mark II watt balance, Metrologia, 2007, 44(6): 427~440
    [27] Alain Picard, Michael Stock, Hao Fang, et al., The BIPM Watt Balance, IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 538~542
    [28] Alain Picard, Hao Fang, Adrien Kiss, et al., Progress on the BIPM watt balance, IEEE Transactions on Instrumentation and Measurement, 2008, 58(4): 924~929
    [29] Gérard Genevès, Pierre Gournay, A. Gosset, et al., The BNM watt balance project, IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 850~853
    [30] Richard L Steiner, Edwin R Williams, David B Newell, et al., Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass, Metrologia, 2005, 42(5): 431~441
    [31] B. P. Kibble, A measurement of the gyromagnetic ratio of the proton by the strong field method, In: J. H. Sanders and A. H.Wapstra, eds., Atomic Masses and Fundamental Constants 5, New York: Plenum, 1976, 545~551
    [32] B. N. Taylor, P. J. Mohr, On the redefinition of the kilogram, Metrologia, 1999, 36: 63~64
    [33] Michael Gl?ser, Tracing the atomic mass unit to the kilogram by ion accumulation, Metrologia, 2003, 40(6): 376~386
    [34] D. Ratschko, D. Knolle, E. Finke, et al., Accumulation of decelerated gold ions, Nuclear Instruments and Methods in Physics Research B, 2002, 190: 217~221
    [35] Peter Becker, Michael Gl?ser, Avogadro constant and ion accumulation: steps towards a redefinition of the SI unit of mass, Meas. Sci. Technol., 2003, 14: 1249~1258
    [36] C Schlegel, F Scholz, M Gl?ser, Accumulation of 38 mg of bismuth in a cylindrical collector from a 2.5mA ion beam, Metrologia, 2007, 44(1): 24~28
    [37] Michael Gl?ser, Proposal for a novel method of precisely determining the atomic mass unit by the accumulation of ions, Rev. Sci. Instrum., 1991, 62(10): 2493~2494
    [38] Peter Becker, Michael Gl?ser, Primary mass standard based on atomic masses, International Journal of Mass Spectrometry, 2006, 251: 220~230
    [39] Peter Becker, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal, Metrologia, 2003, 40(6): 366~375
    [40] P Becker, H Bettin, H-U Danzebrink, et al., Determination of the Avogadro constant via the silicon route, Metrologia, 2003, 40(5): 271~287
    [41] P. Sevfried, P. Becker, A. Kozdon, et al., A determination of the Avogadro constant, Zeitschrift für Physik B Condensed Matter, 1992, 87(3): 289~298
    [42] Giuseppe Basile, Peter Becker, Angelo Bergamin, et al., A new determination of NA, IEEE Transactions on Instrumentation and Measurement, 1995, 44(2): 538~541
    [43] Michael J. Kenny, Achim J. Leistner, Christopher J. Walsh, et al., Precision determination of the density of a single crystal silicon sphere and evaluation of the Avogadro constant, IEEE Transactions on Instrumentation and Measurement, 2001, 50(2): 587~592
    [44] K. Fujii, M. Tanaka, Y. Nezu, et al., Determination of the Avogadro constant by accurate measurement of the molar volume of a silicon crystal, Metrologia, 1999, 36: 455~464
    [45]易洪,阿伏加德罗常数测定的新进展,计量学报,2007,28(4):394~399
    [46] A Picard, Mass determinations of a 1kg silicon sphere for the Avogadro project, Metrologia, 2006, 43(1): 46~52
    [47] Roberto Gonfiantini, Paul De Bièvre, Staf Valkiers, et al., Measuring the molar mass of silicon for a better Avogadro constant: reduced uncertainty, IEEE Transactions on Instrumentation and Measurement, 1997, 46(2): 566~571
    [48] Kenichi Fujii, Atsushi Waseda, Naoki Kuramoto, et al., Present state of the Avogadro constant determination from silicon crystals with natural isotopic compositions, IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 854~859
    [49] P. Becker, G. Mana, The lattice parameter of silicon: a survey, Merrologia, 1994, 31: 203~209
    [50] Kenichi Fujii, Present state of the solid and liquid density standards, Metrologia, 2004, 41(2): S1~S15
    [51] Kenichi Fujii, Horst Bettin, Anna Peuto, et al., Final report on CIPM key comparison CCM.D-K1: density measurements of a silicon sphere, Metrologia, 2006, 43(Technical Supplement): 1~26
    [52] A. Leistner, W. Giardini, Fabrication and testing of precision spheres, Metrologia, 1991, 28: 503~506
    [53] A. J. Leistner, W. J. Giardini, Fabrication and sphericity measurements of single-crystal silicon spheres, Metrologia, 1994, 31: 231~243
    [54] J. G. Collins, W. J. Giardini, A. J. Leistner, et al., The influence of Young's modulus on roundness in silicon spherefabrication, Conference on Precision Electromagnetic Measurements Digest, 1996, 466~467
    [55] A. J. Baker, W. J. Giardini, Developments in Australia's surface roughness measurement system, International Journal of Machine Tools & Manufacture, 2001, 41: 2087~2093
    [56] Peter Becker, Arnold Nicolaus, The marathon race to an new atomic kilogram, Europhysics News, 2009, 40(1): 24~26
    [57] B. N. Taylor, Determining the Avogadro constant from electrical measurements, Metrologia, 1994, 31: 181~194
    [58] Peter Becker, History and progress in the accurate determination of the Avogadro constant, Rep. Prog. Phys., 2001, 64: 1945~2008
    [59] http://physics.nist.gov/cgi-bin/cuu/Value?na|search_for=avogadro
    [60] Peter J. Mohr, Barry N. Taylor, David B. Newell, CODATA recommended values of the fundamental physical constants: 2006, J. Phys. Chem. Ref. Data, 2008, 37(3): 1187~1284
    [61] J B Saunders, Ball and cylinder interferometer, J. Res. Nat. Bur. Stand. Sect. C, 1972, 76: 11~20
    [62] K. Fujii, M. Tanaka, Y. New, et al., Interferometric measurements of the diameters of a single-crystal silicon sphere, Rev. Sci. Instrum., 1992, 63(11): 5320~5325
    [63] Attilio Sacconi, Anna M. Peuto, Walter Pasin, et al., Toward the Avogadro constant-preliminary results on the molar volume of silicon, IEEE Transactions on Instrumentation and Measurement, 1989, 38(2): 200~205
    [64] R. Arnold Nicolaus, Gerhard B?nsch, A novel interferometer for dimensional measurement of a silicon sphere, IEEE Transactions on Instrumentation and Measurement, 1997, 46(2): 563~565
    [65] Kenichi Fujii, AtsushiWaseda, Naoki Kuramoto, Development of a silicon density standard and precision density measurements of solid materials by hydrostatic weighing, Meas. Sci. Technol. 2001(12): 2031~2038
    [66] Naoki Kuramoto, Kenichi Fujii, Yasushi Azuma, et al., Density determination of silicon spheres using an interferometer with optical frequency tuning, IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 476~480
    [67] Naoki Kuramoto, Kenichi Fujii, Interferometric determination of the diameter of a silicon sphere using a direct optical frequency tuning system, IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 631~635
    [68] R A Nicolaus, G B?nsch, Absolute volume determination of a silicon sphere with the spherical interferometer of PTB, Metrologia, 2005, 42: 24~31
    [69] R. Arnold Nicolaus, Ralf D. Geckeler, Improving the measurement of the diameter of Si spheres, IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 517~522
    [70] R A Nicolaus, K Fujii, Primary calibration of the volume of silicon spheres, Meas. Sci. Technol., 2006, 17: 2527~2539
    [71] R. Arnold Nicolaus, Clemens Elster, Diameter determination of Avogadro spheres #1 and #2, IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 872~876
    [72]罗志勇,杨丽峰,顾英姿等,固体密度基准研究,科学通报,2007,52(12):1382~1386
    [73]罗志勇,杨丽峰,陈允昌,标准硅球直径精密测量系统的设计,计量学报,2005,26(4):289~294
    [74]罗志勇,杨丽峰,顾英姿等,阿伏加德罗常数测量中单晶硅密度的绝对测量,计量学报,2008,29(3):211~215
    [75] Akihiro Sakuma, Ken-ichi Fujii, Mitsuru Tanaka, Experimental determination of the volume of a crystalline silicon sphere using spherical harmonics, Meas. Sci. Technol., 1994, 5: 1233~1238
    [76]杨国光,近代光学测试技术,杭州:浙江大学出版社,1997,13~14
    [77]梁铨廷,孔宪炎,光学,广州:广东高等教育出版社,1999,139~140
    [78]郁道银,谈恒英,工程光学,北京:机械工业出版社,1999,21~22
    [79]敖磊,谭久彬,崔继文等,一种快速高精度激光CCD自准直仪圆目标中心的定位方法,光学学报,2007,27(2):253~258
    [80]苏大图,光学测试技术,北京:北京理工大学出版社,1996,111~112
    [81]史亚莉,高云国,张磊,提高CCD激光自准直测角精度的硬件方法,光学精密工程,2008,16(4):726~732
    [82]林玉池,洪昕,赵美蓉,微机械自跟踪双坐标光电自准直仪的研究,光电工程,2002,29(4):43~45
    [83]孙爱鲜,王晶,何衡湘,激光光斑重心测试精度理论分析,激光技术,2004,28(6):667~669
    [84] D. H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognition, 1981, 13(2): 111~122
    [85]魏振忠,高明,张广军等,一种光斑图像中心的亚像素提取方法,光电工程,2009,36(4):7~12
    [86]孔兵,王昭,谭玉山,基于圆拟合的激光光斑中心检测算法,红外与激光工程,2002,31(3):275~279
    [87]郑毅,基于空间矩的激光光斑中心亚像素定位,激光与红外,2005,35(7):521~523
    [88]周春雷,激光干涉图像处理技术研究:[硕士学位论文],湖南;国防科学技术大学,2005
    [89]蓝章礼,杨小帆,激光光斑中心定位算法的实用性改进,计算机工程,2008,34(6):7~9
    [90]唐冠群,几种激光光斑中心定位算法的比较,北京机械工业学院学报,2009,24(1):61~64
    [91] H. K. Yuen, J. Princen, J. Illingworth, et al., Comparative study of Hough transform methods for circle finding, Image and Vision Computing, 1990, 8(1): 71~77
    [92]杨耀权,施仁,于希宁,用Hough变换提高激光光斑中心定位精度的算法,光学学报,1999,19(12):1655~1660
    [93]孔兵,王昭,谭玉山,激光光斑的高斯拟合,激光技术,2002,26(4):277~278
    [94]李为民,俞巧云,胡红专等,光点定位中的曲面拟合迭代算法,光学技术,2004,30(1):33~35
    [95] Hyun-Wook Lee, Hyoung-Jun Park, June-Ho Lee, et al., Accuracy improvement in peak positioning of spectrally distorted fiber Bragg grating sensors by Gaussian curve fitting, Applied Optics, 2007, 46(12): 2205~2208
    [96]张强,施涌潮,吕乃光等,激光光斑中心位置的探测,北京机械工业学院学报,1996,11(2):24~29
    [97]黄劼,周肇飞,邓建清等,基于圆拟合的孔系中心坐标高精度检测方法研究,工具技术,2004,38(4):47~49
    [98] Edward P. Lyvers, Owen Robert Mitchell, Mark L. Akey, et al., Subpixel measurements using a moment-based edge operator, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(12): 1293~1309
    [99]周炳琨,高以智,陈倜嵘等,激光原理,北京:国防工业出版社,2000,69~74
    [100] L. D. Dickson, Characteristics of a propagating Gaussian beam, Applied Optics, 1970, 9(8): 1854~1861
    [101]吕百达,李大义,高斯光束通过望远镜系统的变换和准直,激光杂志,1984,5(2):72~78
    [102]刘金环,高斯光束的光学变换,光学精密工程,1994,2(3):15~21
    [103] Sidney A. Self, Focusing of spherical Gaussian beams, Applied Optics, 1983, 22(5): 658~661
    [104]孙长库,叶声华,激光测量技术,天津:天津大学出版社,2001,12~19
    [105] J. D. Zook and T. C. Lee, Geometrical interpretation of Gaussian beam optics, Applied Optics, 1972, 11(10): 2140~2145
    [106]廖延彪,物理光学,北京:电子工业出版社,1986,84~88
    [107]罗志勇,杨丽峰,陈允昌,精密干涉测量中余弦依赖算法的误差研究,光学学报,2005,25(12):1629~1633
    [108]刘木林,吴正茂,夏光琼,高斯光束斜入射非平行法布里珀罗干涉仪后的透射光强分布,光学学报,2005,25(1):109~114
    [109] H. Abu-Safia, R. Al-Tahtamouni, I. Abu-Aljarayesh, et al., Transmission of a Gaussian beam through a Fabry-Perot interferometer, Applied Optics, 1994, 33(18): 3805~3811
    [110] P. Hariharan, B. F. Oreb, T. Eiju, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm, Applied Optics, 1987, 26(13): 2504~2506
    [111] P. Hariharan, Digital phase-shifting interferometry: effects of multiply reflected beams, Applied Optics, 1987, 26(13): 2506~2507
    [112] P. Hariharan, Phase-stepping interferometry with laser diodes: effect of changes in laser power with output wavelength, Applied Optics, 1989, 28(1): 27~29
    [113] P Carré, Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures, Metrologia, 1966, 2(1): 13~23
    [114] J. H. Bruning, D. R. Herriott, J. E. Gallagher, et al., Digital wavefront measuring interferometer for testing optical surfaces and lenses, Applied Optics, 1974, 13(11): 2693~2703
    [115]刘青,数字相移干涉术中图像处理和波前再现误差的分析及校正算法的研究:[博士学位论文],山东;山东大学,2005
    [116] Joanna Schmit, Katherine Creath, Malgorzata Kujawinska, Spatial and temporal phase-measurement techniques: a comparison of major error sources in one dimension, Proc. SPIE, 1993, 1755(202): 202~211
    [117] Creath K., Schmit J., N-point spatial phase-measurement techniques for non-desstructive testing, Optics and lasers in Engineering, 1996, 24(5): 365~379
    [118] James C. Wyant, Katherine Creath, Advances in interferometric optical profiling, Int. J. Mach. Tools Manufact., 1992, 32(1/2): 5~10
    [119] Katherine Creath, Phase-shifting speckle interferometry, Applied Optics, 1985, 24(18): 3053~3058
    [120] Guanming Lai, Toyohiko Yatagai, Generalized phase-shifting interferometry, J. Opt. Soc. Am. A, 1991, 8(5): 822~827
    [121] Y. Surrel, Phase stepping: a new self-calibrating algorithm, Applied Optics, 1993, 32(19): 3598~3600
    [122] Katherine Creath, Phase-measurement interferometry techniques, In: Emil Wolf, eds., Amsterdam: Progress in optics XXVI, Elsevier B.V., 1988, 352~393
    [123] H. Jaffe, D. A. Berlincourt, Piezoelectric transducer materials, Proceedings of the IEEE, 1965, 53(10): 1372~1386
    [124] Chiayu Ai, James C. Wyant, Effect of piezoelectric transducer nonlinearity on phase shift interferometry, Applied Optics, 1987, 26(6): 1112~1116
    [125]金国藩,李景镇,激光测量学,北京:科学出版社,1998,353~355
    [126] K. G. Larkin, B. E. Oreb,Design and assessment of symmetrical phase-shifting algorithms, J. Opt. Soc. Am. A, 1992, 9(10): 1740~1748
    [127] C. Joenathan, Phase-measuring interferometry: new methods and error analysis, Applied Optics, 1994, 33(19): 4147~4155
    [128] Kenichi Hibino, Bob F. Oreb, David I. Farrant, et al., Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts, J. Opt. Soc. Am. A, 1997, 14(4): 918~930
    [129] Johannes van Wingerden, Hans J. Frankena, Cornelis Smorenburg, Linear approximation for measurement errors in phase shifting interferometry, Applied Optics, 1991, 30(19): 2718~2729
    [130] C. J. Morgan, Least-squares estimation in phase-measurement interferometry, Optics Letters, 1982, 7(8): 368~370
    [131] R. Onodera, Y. Ishii, Phase-extraction analysis of laser-diode phase-shifting interferometry that is insensitive to changes in laser power, J. Opt. Soc. Am. A, 1996, 13(1): 139~146
    [132]惠梅,表面微观形貌测量中相移干涉术的算法与实验研究:[博士学位论文],陕西;中国科学院西安光学精密机械研究所,2001
    [133] T. R. Judge, P. J. Bryanston-Cross, A review of phase unwrapping techniques in fringe analysis, Optics and Lasers in Engineering, 1994, 21(4): 199~239
    [134] Kazuyoshi Itoh, Analysis of the phase unwrapping algorithm, Applied Optics, 1982, 21(14): 2470
    [135]李朝辉,基于相移干涉法的微表面轮廓仪的研究:[博士学位论文],天津;天津大学,2004
    [136] R. Cusack, J. M. Huntley, H. T. Goldrein, Improved noise-immune phase-unwrapping algorithm, Applied Optics, 1995, 34(5): 781~789
    [137] Karl A. Stetson, Jawed Wahid, Paul Gauthier, Noise-immune phase unwrapping by use of calculated wrap regions, Applied Optics, 1997, 36(20): 4830~4838
    [138] P H Chan, P J Bryanston-Cross, S C Parker, Fringe-pattern analysis using a spatial phase-stepping method with automatic phase unwrapping, Meas. Sci. Technol., 1995, 6: 1250~1259
    [139] J. M. Huntley, H. Saldner, Temporal phase-unwrapping algorithm for automated interferogram analysis, Applied Optics, 1993, 32(17): 3047~3052
    [140] J M Huntley, H O Saldner, Shape measurement by temporal phase unwrapping: comparison of unwrapping algorithms, Meas. Sci. Technol., 1997, 8: 986~992
    [141] Mark D. Pritt, Comparison of path-following and least-squares phase unwrappingalgorithms, IEEE International Geoscience and Remote Sensing, 1997, 2(2): 872~874
    [142] Mark D. Pritt, Jerome S. Shipman, Least-squares two-dimensional phase unwrapping using FFT's, IEEE International Geoscience and Remote Sensing, 1994, 32(3): 706~708
    [143] Dennis C. Ghiglia, Louis A. Romero, Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A, 1994, 11(1): 107~117
    [144] D. Kerr, G. H. Kaufmann, G. E. Galizzi, Unwrapping of interferometric phase-fringe maps by the discrete cosine transform, 1996, Applied Optics, 35(5): 810~816
    [145] G. Fornaro, G. Franceschetti, R. Lanari, Interferometric SAR phase unwrapping using Green's formulation, IEEE International Geoscience and Remote Sensing, 1996, 34(3): 720~727
    [146] Bernd Gutmann, Herbert Weber, Phase unwrapping with the branch-cut method: role of phase-field direction, Applied Optics, 2000, 39(26): 4802~4816
    [147] Yuangang Lu, Xiangzhao Wang, Xianghong Zhong, et al., A new quality map for quality-guided phase unwrapping, Chin. Opt. Lett., 2004, 2(12): 698~700
    [148] Song Zhang, Xiaolin Li, Shing-Tung Yau, Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction, Applied Optics, 2007, 46(1): 50~57
    [149] Thomas J. Flynn, Two-dimensional phase unwrapping with minimum weighted discontinuity, J. Opt. Soc. Am. A, 1997, 14(10): 2692~2701
    [150] Daniel Malacara, Optical Shop Testing, New York: John Eiley & Sons, Inc., 1978, 489~505
    [151]莫卫东,Zernike多项式拟合干涉波面的基本原则,空军工程大学学报(自然科学版),2002,3(3):35~38
    [152] J. Y. Wang, D. E. Silva, Wave-front interpretation with Zernike polynomials, Applied Optics, 1980, 19(9): 1510~1518
    [153]单宝忠,王淑岩,牛憨笨等,Zernike多项式拟合方法及应用,光学精密工程,2002,10(3):318~323
    [154]杨志文等,光学测量,北京:北京理工大学出版社,1995,241~247
    [155]鄢静舟,雷凡,周必方等,用Zernike多项式进行波面拟合的几种算法,光学精密工程,1999,7(5):119~128
    [156]鄢静舟,孙厚环,高志强等,用Zernike多项式进行波面拟合的一种新算法,数学物理学报,2000,20(3):378~385
    [157]刘月爱,条纹分析中一种简单的Zernike多项式拟合方法,光学学报,1985,5(4):368~373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700